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Abstract—This paper presents performance of two robust 
gradient-based heuristic optimization procedures based on 3n 
enumeration and tunneling approach to seek global optimum of 
constrained integer problems. Both these procedures consist of two 
distinct phases for locating the global optimum of integer problems 
with a linear or non-linear objective function subject to linear or non-
linear constraints. In both procedures, in the first phase, a local 
minimum of the function is found using the gradient approach 
coupled with hemstitching moves when a constraint is violated in 
order to return the search to the feasible region. In the second phase, 
in one optimization procedure, the second sub-procedure examines 3n 
integer combinations on the boundary and within hypercube volume 
encompassing the result neighboring the result from the first phase 
and in the second optimization procedure a tunneling function is 
constructed at the local minimum of the first phase so as to find 
another point on the other side of the barrier where the function value 
is approximately the same. In the next cycle, the search for the global 
optimum commences in both optimization procedures again using 
this new-found point as the starting vector. The search continues and 
repeated for various step sizes along the function gradient as well as 
that along the vector normal to the violated constraints until no 
improvement in optimum value is found. The results from both these 
proposed optimization methods are presented and compared with one 
provided by popular MS Excel solver that is provided within MS 
Office suite and other published results. 

 
Keywords—Constrained integer problems, enumerative search 

algorithm, Heuristic algorithm, tunneling algorithm. 

I. INTRODUCTION 

NTE-GER programming is one of the most interesting and 
one of the most difficult research areas in mathematical 

programming and operations research. During the past years, 
much work has been devoted to the development of algorithms 
for solving integer problems. Several solution methods include 
branch and bound, Gomory cutting method are described in 
[1]. The generalized reduced gradient algorithm used in MS 
solver for solving nonlinear integer programming problems 
was developed by Wilde and Beightler [2], and the method 
implemented by Lasdon et al. is elaborated in report [3]. The 
use and development of heuristic-based optimization 
techniques have significantly grown, since they use a 
population of solutions in their search, it is thus more likely to 
find the global solution of a given problem [4], [5]. A hybrid 
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algorithm is developed [6] which combines integer 
programming branch and bound techniques with a genetic 
algorithm (GA) to gain advantage of the two approaches, i.e. 
tree search and GA algorithm to provide heuristic search for 
the optimum solution. Recently, an efficient robust and hybrid 
heuristic algorithm has been introduced by combining two 
heuristic optimization techniques, particle swarm optimization 
[7] and GAs [8].  

The methods for solving constrained integer programming 
reported by the authors in [4], [5] involved an iterative 
function minimization approach consisting of two phases. In 
the first phase, a local minimum is found using a steepest 
descent approach along the function gradient in the feasible 
region, and if a constraint is violated, the return to a point Xk 
in the feasible region is carried out using a hemstitching 
approach [12]. This hemstitching approach uses small moves 
normal to the violated constraint boundary into the feasible 
region. During this phase, all moves are restricted to integer 
points obtained by the discretization of each variable of the n 
tuple design vector. The search for the optimum point after 
rebounding from a constraint resumes along a direction that is 
the vector sum [13] of the function and the violated constraint 
gradients at Xk. The optimum point thus found is then used as 
a starting vector for the next iterative cycle. This process 
continues until no improvement in the minimum value is 
possible during this phase. The first phase would generally 
locate the local minimum within the same valley of the 
starting vector. This is a general problem of numerical search 
approaches when dealing with continuous or integer domains. 
Several well documented approaches have been reported in 
the open literature to increase the likelihood of capturing a 
global minimum. However, this problem is further aggravated 
by the increase in number of local minimums due to the 
discretization process. In order to circumvent the problem of 
getting stuck in local minima, the second phase is 
implemented. In this phase, a 3n enumeration [4] is carried out 
using the local optimum found in the first phase as a basis 
vector. The minimum function value found using the 3n 
enumeration is used as a starting vector for the next iterative 
search. The two-phase cycle continues until there is no further 
improvement in the optimum result, and the best possible 
optimum, X* is attained. 

While the approach reported in [4] was proven to be very 
effective in dealing with nonlinear integer optimization 
problems, as n increases the computational time of the above 
mentioned method increases. For very large values of n, the 
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computational time tends to be prohibitively large for practical 
purposes. Computation time analysis of the two phases 
revealed that as n increases, the time spent solving the 3n 
enumeration increases exponentially. 

In order to circumvent the deficiency of dealing with 
problems where n is large as well as to increase the robustness 
of the algorithm by replacing the 3n enumeration phase, the 
second phase, with a tunneling approach that was first 
reported in [9]. This approach is modified to suit the 
requirements of second optimization procedure reported in [5] 
and involves creating a pole at the local minimum and 
constructing a tunneling function whose solution is found 
using a descent along the gradient of the tunneling function. 
The solution to the minimization of the tunneling function, x  
x*, is taken as the starting point xo for the first phase of the 
next iterative cycle, and the search for the global optimum 
continues. The iterative process is stopped when the optimal 
step size becomes smaller than a pre-assigned value during the 
first phase or when the search returns to a previously found 
minimum. During the iterative search for the desired 
constrained global minimum, the records for all local minima 
found during each cycle are kept, and the search is terminated 
when no improvement in function value is found or after a set 
number of iterations. The minimum of the recorded set is 
taken as the optimum. Therefore the search algorithm 
generates a non-increasing sequence f1 ≥ f2 ≥ : : : _≥fk, where 
the lowest function value fk, is the global minimum f *. 

MS Excel solver also provides an option to use the Simplex 
procedure for Linear programming problems [10], [11] and 
Generalized Reduced Gradient (GRG2) Algorithm for 
optimizing nonlinear problems [3]. Additionally, several 
commercial solvers for linear and non-linear integer 
programming problems are available. Examples include 
LINGO/LINDO1 commercial software packages and 
BARON, a software computational tool that utilizes the 
branch and bound approach developed in [1]-[11] to solve non 
convex integer programming problems. The optimum solution 
vector found for various integer programming test problems 
and computation times of both optimization procedures [4][5] 
are compared with that provided by MS Excel solver.  

A. Problem Statement 

The generic minimization problem is stated as follows: 
Find X* that minimizes f(X)  

Subject to:  
 

gj (X) ≤ bj j =1,2,……m, where, XL≤ X ≤ XH       (1) 
 

X Є In , In is the set of integer points in Rn → R. X, XL, and 
XH are the design vector with dimension n, and the lower, and 
upper bounds on X, respectively. 

It is to be noted that satisfying the upper and lower bounds 
on the design vector X does not imply satisfying the functional 
constraints gj (X). A feasible solution X* is optimal if f(X*) ≤ 
f(X) for every feasible solution X. 

II. DESCRIPTION OF THE ALGORITHM 

The proposed algorithm is composed of a sequence of 
cycles, each consists of two phases; a common minimization 
phase for both heuristic methods [4], [5] followed by and a 3n 
enumeration phase for the first heuristic method and a 
tunneling phase for the second heuristic method. The 
minimization phase is designed to locate the local minimum in 
the valley containing the starting point, whether unconstrained 
or constrained. The descent towards the minimum in the 
unconstrained domain is carried out along the function 
gradient,  

 
Xk+1= Xk+λk(׏f(Xk)/ ║(׏f(Xk) ║ 

 
that is converted to nearest integer and the function value is 
calculated. The step size is increased if the function value 
decreases or does not change and is decreased otherwise. An 
optimized step size based on a quadratic approach is described 
in [4]. However, when the constraints are violated, the search 
is modified to move along a direction vector Q that is the 
normalized sum of gradients of the p violated constraints 
g1(X), ….. gp(X) [12]. The ith element of the vector Q is given 
by:  
 

qi = - Σp
k=1 ℓk (ðgk /ðxi)/√Σn

j=1(ðgk /ðxj)
2  (2) 

 
 p is the number of violated constraints. The coefficients ℓk 
have values proportional to the magnitude by which the 
constraints are violated and are defined as follows: 
 

ℓk = (gk – bk)/	(Σ
p

j=1(gj - bj) 
 
The move towards the feasible region is carried out vector 

along Q as: 
  

Xj+1 = Xj + Q (λo + jℓ) , j = 0,1,…,k  (3) 
 

Xo is the vector in the infeasible region, and after kth moves 
along the director vectors Q that are evaluated at each move j, 
and λo, is the initial step size along the normal to the violated 
constraint which during each iteration is increased by small 
amount ℓ ≤ 1 until feasible vector Xk is realized. 

When the feasible region is reached then the search resumes 
along a direction P that is the vector sum of the normalized 
function and the violated constraints gradients at the new 
recovery point in the feasible region [13] as: 
 

P = p/ ║ p║                                      (4) 
 
where p is given by 

1

m
j

j j

g
p

g

f
f 
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The function minimization along P is carried out using the 

optimized step size approach reported in [4]. If the search 
strays again into the infeasible region, the recovery into the 
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feasible region is carried out using the hemstitching approach 
as described above. 

This phase, the first phase, of the search is terminated if no 
further improvement in the function value is achieved, or if a 
previously encountered minimum point is detected. The 
suboptimum vector is selected as a basis vector of the second 
procedure where the minimum is selected from 3n integer 
combinations vectors neighboring the result from the first 
procedure. Again here, an iterative cycle ensues until two 
cycles yield the same answer. This is taken as the desired 
optimum solution of the problem. The desired optimum 
solution of the problem can be verified by repeating the search 
for various starting values and initial step sizes. 

In the second heuristic optimization procedure [5] based on 
tunneling during, the second phase however uses the local 
minimum found in the phase I, X*, to calculate a good starting 
point through the tunnel to the next valley. A tunneling 
function [9] is defined as follows: 

 
*

* *

( ) ( )
( ) 1

[( ) ( )]T

f X f X
T X

X X X X  
 

 
 

 
For the current application η is set to 1. The root (i.e. zero) 

of the tunneling function, X0, is in essence a point at the same 
plateau in the neighboring valley. The root can be obtained 
through a classical root finding algorithm, or as implemented 
in the proposed algorithm the pseudo root is found through a 
minimization along the gradient of T(X). The function is 
assumed in this case to be unconstrained, and no discretization 
of the variables and no hemstitching are performed if the 
descent strays in the infeasible region. The descent along the 
tunneling function is terminated when │T(X*) - T(X0)│≤ ε, 
where ε is a small parameter. The resulting vector, X0, of the 
tunneling process is discretized and used as the starting vector 
for the first phase of the next cycle.  

The initial step size λo
k for the kth cycle is adjusted as:  

 
λo 

(k+1) = (1/ Δ) λo
(k) if f(x*

k) ≥ f(x*
k-1) 

or                                                                                            (5) 
λo

(k+1)=  Δ λo
(k) if f(x*

k) < f(x*
k-1) 

 

where x*
k is the local minimum and ∆ is a multiplier ( 1) 

During the iterative search for the desired constrained 
global minimum, the records for all local minima found during 
each cycle are kept, and the search is terminated when no 
improvement in function value is found or after a set number 
of iterations. The minimum of the recorded set is taken as the 
optimum. 

III.NUMERICAL EXAMPLES 

The algorithm is coded in FORTRAN programming 
language using double precision real numbers and a 64 bit 
Watcom FORTRAN compiler was used to compile the main 
source optimization program linked to the test function routine 
to create executable file. The coefficients of the test problem 
and the various parameters used by the optimization algorithm 

such as step size, acceleration factors etc., are entered in a data 
file that is read prior to the running of the algorithm. 
Constrained integer test problems shown in [5] have been 
solved using both optimization methods [4], [5] and MS Excel 
solver. Table I summarizes the results of the test problems of 
[5] as well as the results of these test problems solved by using 
MS solvers. Additionally, four published complex linear and 
non-linear constrained optimization test problems including a 
large scale 40 variables linear programming problem have 
been solved that demonstrates the usefulness of tunneling 
algorithm [5]. The results of both heuristic algorithms reported 
in [4] are compared to the optimum provided by MS solver. 
These additional test functions provided an opportunity to 
improve upon in the search for global optimum for heuristic 
involving tunneling as noted below for solving test problem 
#10 through # 13. 

Test Problem #10 Linear Integer Problem [22] 
Minimize f(x) = - x3 – x4 – x5  
Subject to: 

 
20x1 + 30 x2 + x3 + 2 x4 + 2 x5 ≤ 180 

 
30x1 + 20 x2 + 2x3 + x4 + 2 x5 ≤ 150 

 
-60x1 + x3 ≤ 0, -75 x2 + x4 ≤ 0 

 
0 ≤ xi ≤ 1 , i = 1,2 ; 0 ≤ xi ≤ 75, i = 3,4,5: xi ε ᵶ, i = 1, 2, ….,5 

 
A starting vector (1,1,….,1) for 3n enumerative algorithm 

[4] provides a local optimum (1,1,40,20,0) with function value 
-60. An examination of the coefficient of x3 and x4 of the first 
two constraints reveals that a vector (1,1,20,40,0) also with 
function value -60 is also acceptable. Using this vector as 
starting vector yields an improved optimum vector 
(1,1,28,44,0) with function value -72. The perturbation of this 
solution vector (1,1,28,44,0) will lead to realization of the 
global optimum (1,1,24,52,0) with minimum function value -
76 as reported [22]. The heuristic tunneling procedure [5] with 
starting vector (1,1,1,1,1) however yields optimum vector 
(1,1,23,53,0) with function -76, and the reported solution 
vector (1,1,24,52,0) with function value -76 implies presence 
of a bi-modal global optimum. MS solver provides reported 
solution vector (1, 1, 24, 52, 0). 

Test Problem #11 Non-linear Integer Problem [22] 
Minimize f(x)= x1x2x3 + x1x4x5 + x2x4x6 + x6x7x8 + x2x5x7 
Subject to : 

 
2x1 + 2 x4 +8x8 ≥ 12 

11x1 + 7 x4 +13x6 ≥ 41 
6x2 + 9x4 x6 + 5x7 ≥ 60 

3x2 + 5x5 + 7x8 ≥ 42 
9x3 + 6x2 x7 + 5x5 ≥ 53 

x5 + 4x3 x7 ≥ 13 
2x1 + 4x2 + 7x4 + 3x5 + x7 ≤ 69 
9x1 x8 + 6x3 x5 + 4x3 x7 ≤ 47 
12x2 + 8x2 x8 + 2x3 x6  ≤ 73 

x3+ 4x5 + 2x6 + 9x8 ≤ 31 
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0 ≤ xi ≤ 7, i = 1, 3, 4, 6, 8; 0 ≤ xi ≤ 15, i = 2,5,7 
xi ε ᵶ, i = 1, 2, ……,8 

 
As observed in Test problem #7 in [5], the presence of types 

of resource constraints where the equations of resource 
equations are ≥ or ≤ than a specified quantity then the lower 
bounds of the variables needs to be carefully selected in order 
to prevent search from getting trapped in the infeasible region. 
The lower bound of this test problem was selected as (1,1,1, 
1,0,0,0,0), and the upper bound governed by specification of 
the problem that is shown here as (7,15,7,7,15,7,15,7). The 
initial starting vector (5,5,1,1,4,1,1,1) that lies in the infeasible 
region provides the reported global optimum (5,4,1,1,6,3,2,0) 
with function value 110 using 3n enumerative algorithm [4] 
and provides a local optimum (4,4,1,2,6,2,2,0) using tunneling 
algorithm [5]. MS solver provides a sub-optimum solution 
vector (2,4,1,4,6,1,2,0) with function value 120, however, with 
initial starting value (4,4,1,1,11,2,1,0) the referenced global 
optimum value is obtained, and the search requires a higher 
execution time. 

Test Problem #12 Non-linear Integer Problem with Linear 
Constraints [23] 

Minimize f(x)= x1
2 + x2

2 + 3x3
2 +4x4

2 +2x5
2 - 8x1 - 2x2 - 3x3 – 

x4 - 2x5 
Subject to 

 
x1 + 2x2 + 2x3 + x4 + 6x5 ≤ 800 

2x1 + x2 + 6x3 ≤ 200 
x3 + x4 + 5x5 ≤ 200 

x1 + x2 + x3 + x4 ≥ 48 
x2 + x4 + x5 ≥ 34 
6x1 + 7x5 ≥ 104 

55 ≤ x1 + x2 + x3 + x4 + x5 ≤ 400 
0 ≤ xi ≤ 99 , xi : integer, i = 1,2,3,4,5. 

 
It is noticed from the 4th and 7th constraint that lower bound 

of x5 is 7, so the lower bound of design vector is selected as 
(0,0,0,0,7), upper bound as specified and a starting vector 
(20,20,10,20,7) in the infeasible region is selected. The global 
minimum (16, 22, 5, 5, 7) and the minimum function value 
807 is found using heuristic search [4] using 3n enumeration. 
In case of heuristic search involving tunneling [5], the 
multiplier ℓi used to adjust the step size of move along 
orthogonal to the violated constraint played a pivotal role in 
reaching at the desired point in the feasible from where 
descent to global minimum was achieved. MS Excel solver 
also provided the global optimum (16, 22, 5, 5, 7) using the 
same initial vector.  

Test Problem #13 Large Variable Integer Problem with 
Linear Constraints [24] 

 
Maximize f(x) = 215x1+116x2+670x3+924 x4+510 

x5+600x6+424x7+942x8+43x9+369x10+408x11+52x12+319x13+ 
214x14+851x15+394x16+88x17+124x18+17x19+779x20+278x21+2

58x22+271x23+281x24+326x25+ 
819x26+485x27+454x28+297x29+53x30+136x31+796x32+114x33+

43x34+80x35+268x36+179x37+ 8x38+105x39+281x40 

Subject to:  
 

9x1+11x2+6x3+x4+7x5+9x6+10x7+3x8+11x9+11x10+2x11+x12+16
x13+18x14+2x15+x16+x17+2x18+3x19+4x20+7x21+6x22+2x23+2x24 

+x25+2x26+x27+8x28+10x29+2x30+x31+9x32+x33+9x34+2x35+4x36+
10x37+8x38+6x39+x40  ≤ 25,000 

 
5x1+3x2+2x3+7x4+7x5+3x6+6x7+2x8+15x9+8x10+16x11+x12+2x13

+2x14+7x15+7x16+2x17+2x18+4x19+3x20+2x21+13x22+8x23+2x24+
3x25+4x26+3x27+2x28+x29+10x30 

+6x31+3x32+4x33+x34+8x35+6x36+3x37+4x38+6x39+2x40  ≤ 25,000 
 

3x1+4x2+6x3+2x4+2x5+3x6+7x7+10x8+3x9+7x10+2x11+16x12+3x
13+3x14+9x15+8x16+9x17 +7x18 +6x19+16x20+12x21+x22+3x23 

+14x24+7x25+13x26+6x27+16x28 
+3x29+2x30+x31+2x32+8x33+3x34+2x35+7x36+x37+2x38+6x39+5x40  

≤ 25,000 
 
10 ≤ xi ≤ 99 , (i = 1,2,….,20)   20 ≤ xi ≤ 99 i = 21,22,…..,40) xi 

: integer, 
 

The problem was solved using tunneling algorithm [5] and 
the solution vector provided (99,99,…….,99) with function 
1,352,439 that agrees with the solution provided by MS 
solver. This result is superior to the one reported in [24] as 
f(x*) = 1,030,361, and the solution vector is shown in Table I. 

IV. DISCUSSION 

This paper presents the comparison of two robust heuristic 
methods [4], [5] developed by the authors for dealing with the 
optimization of general class of integer problems with a linear 
or non-linear objective function subject to linear or non-linear 
constraints and presented the effectiveness of these search 
algorithms for finding global optimum by comparison with 
reported results and those provided by MS Excel solver, a 
commonly available commercially tool within MS Office 
suite. The method generally does not require the user to guess 
the starting vector or the parameters required for the operation 
of the method, like step size or accelerations factors. However, 
for problems involving complex constraints, the lower 
boundary is suitably selected to avoid the search from getting 
trapped in infeasible region. In case for test problem #12, the 
choice of the multiplier used to adjust the step size during the 
hemstitching for the returning the search to feasible region 
played pivotal role in returning the search to appropriate 
region of the feasible region from where the descent to global 
optimum was achieved. Through the use of a tunneling 
algorithm, higher dimensionality problems such as #8 and 
#13, can be solved, and the method seeks its own starting 
vector for its different iterations. 

The results presented here show that the both reported 
heuristic approaches [4], [5], provide results that are in most 
cases either yield the same as those reported in the original 
references or superior as seen in problems #3 and #4. 
However, the optimum result provided by MS solver in most 
cases agree with the reported one, but it is worse for the test 
problem # 4, and the search for global optimum for complex 
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problems requires different initial starting vector as seen for 
test problem #11. The execution times in most cases are 
comparable between those for heuristic methods and MS 

Excel solver except for test problems #2 shows marked 
improvement of several order of magnitude for the heuristic 
method [4] based on 3n enumeration.  

 
TABLE I 

COMPARISON OF THE RESULTS FROM HEURISTIC SEARCH METHODS [4], [5] AND MS EXCEL SOLVER 
Integer Optimization 

Problem 
Optimum results using 

heuristic method [4] 
Optimum Reported in 

Reference Paper 
Optimum results using 

heuristic method [5] 
Optimum results using 

Ms Excel solver 
CPU time (sec) 

3n scheme /tunneling
/MS solver 

1) Dynamic variable 
problem [14] 

(0,1,2)  
f= 16 

(0,1,2) 
f= 16 

(0,1,2) 
f= 16 

(0,1,2) 
f = 16 

0.01/0.055/0.14 

2) Rel’y allocation problem 
[15] 

(1,2,1,1,1,5,5,5,6,6) 
f=0.9966 

(1,2,1,1,1,5,5,5,6,6) 
f=0.9966 

(2,1,1,1,1,5,6,4,6,6) 
f=0.9943 

(1,2,1,1,1,5,5,5,6,6) 
f=0.9966 

0.605/0.109 
/899.89 

3) Rel’y opt with multiple 
choice of comp [16] 

(2,0,0,1,10,1,0) 
f=0.975982 

(2,0,0,0,3,0,1,0) 
f=0.97206 

(2,0,0,1,10,1,0) 
f=0.975982 

(2,0,0,1,10,1,0) 
f=0.975982 

0.055/0.110/0.437 

4) Knapsack Problem [17] (32,2,1,0,0,0,0) 
f=19979 

(33,1,0,1,0,0,0) 
f=19972 

(32,2,1,0,0,0,0) 
f=19979 

(33,1,0,1,0,0,0) 
f=19972 

0.00/0.769/ 
0.062 

5) Rosen-Suzuki Problem 
[18] 

(0,1,2,-1) 
f=-44.0 

(0,1,2,-1) 
f=-44.0 

(0,1,2,-1) 
f=-44.0 

(0,1,2,-1) 
f=-44.0 

0.000/0.165/0.374 

6) Integer linear problem 
[19] 

(4,87,34,149,0) 
f= 316 

(4,87,34,149,0) 
f= 316 

(4,87,34,148,0) 
f= 315 

(4,87,34,149,0) 
f= 316 

0.110/0.110/0.265 

7) Transport Problem [20] (849,351,0,0,250,0,0,7
50,1,49,750,0) 

f= 84020 

(850,350,0,0,240,2,0,750,2,4
0,750,0) 
f= 84000 

(850,350,0,0,248,2,0,750,
2,48,750,0) 
f= 84056 

(850,350,0,0,240,2,0,750
,2,40,750,0) 

f= 84000 

3.74/55.75/ 
0.032 

8) Quadratic problem [21] Could not locate 
solution 

(1,1,1,1,1,1,1,1,1,3,3,3,1) 
f=15 

(1,1,1,1,1,1,1,1,1,3,3,3,1)
f=15 

(1,1,1,1,1,1,1,1,1,3,3,3,1) 
f=15 

NA/20.16/ 
0.047 

9) Quadratic constrained 
problem [21] 

(5,1,5,0,5,10) 
f= -310 

(5,1,5.,0,5,10) 
f= -310 

(5,1,5.,0,5,10) 
f= -310 

(5,1,5.,0,5,10) 
f= -310 

000/0.440/ 
0.031 

10) Linear Integer 
Problem [22] 

(1,1,24,52,0) 
f=-76 

(1,1,24,52,0) 
f=-76 

(1,1,23,53,0) 
f=-76 

(1,1,24,52,0) 
f=-76 

0.016/9.219/ 
0.016 

10) Linear Integer 
Problem [22] 

(1,1,24,52,0) 
f=-76 

(1,1,24,52,0) 
f=-76 

(1,1,23,53,0) 
f=-76 

(1,1,24,52,0) 
f=-76 

0.016/9.219/0.016 

11)Non-linear Integer 
Problem [22] 

(5,4,1,1,6,3,2,0) 
f=110 

(5,4,1,1,6,3,2,0) 
f=110 

(4,4,1,2,6,2,2,0) 
f=128.00 

(5,4,1,1,6,3,2,0) 
f=110 

0.016/0.297/ 
5.109 

12) Non-linear Integer 
Problem [23] 

(16,22,5,5,7) 
f=807 

(16,22,5,5,7) 
f=807 

(16,22,5,5,7) 
f=807 

(16,22,5,5,7) 
f=807 

0.000/0.110/ 
0.172 

13) Large Variable Integer 
Problem [24] 

Could not locate 
solution 

(48,73, 16,86 ,49, 99,94,79 
,98, 86,94,33, 95, 80,53, 86, 
87, 50,39,78, 47, 72, 97,98, 

73, 86, 99, 81, 77, 95,28, 95, 
58, 23,55, 70, 35, 82,32,94) 

f= 1030361 

(99,99,….,99) 
 

f= 1,352,439 

99,99,….,99) 
 

f= 1,352,439 

NA/0.078/ 
0.062 

 
The work reported here clearly demonstrates that the 

algorithm for heuristic methods [4], [5] to find optimum for 
general integer programming problems is efficient as 
demonstrated by the comparison of results with those reported 
in the reference papers and those provided by the 
commercially available tool MS Excel solver, and would 
converge to a global or near global optimum solution. 
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