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Abstract—Low-resolution digital encoder (LRDE) is commonly 
adopted as a position sensor in low-cost and resource-constraint 
applications. Traditionally, a digital encoder is modeled as a 
quantizer without considering the initial position of the LRDE. 
However, it cannot be applied to extreme LRDE for which stroke of 
angular motion is only a few times of resolution of the encoder. 
Besides, the actual angular motion is substantially distorted by this 
extreme LRDE so that the encoder reading does not faithfully 
represent the actual angular motion. This paper presents a modeling 
method for extreme LRDE by taking into account the initial position 
of the LRDE. For a control system with sinusoidal reference signal 
and extreme LRDE, this paper analyzes the characteristics of angular 
motion. Specifically, two descriptors of sinusoidal angular motion are 
studied, which essentially sheds light on the actual angular motion 
from extreme LRDE.  

 
Keywords—Low resolution digital encoder, resource-constraint 

control system, sinusoidal reference signal, servo motion control. 

I. INTRODUCTION 

NCREMENTAL optical encoders, also known as shaft 
encoders, are widely used for precision motion control 

systems. It is an electro-mechanical device that converts the 
angular position to an analog or digital code. High precision 
motion control relies critically on the resolution of encoders as 
the feedback sensor. However, measurement precision is 
limited by the manufacturing technology of the encoders. 
Although advances in encoder technology have greatly 
improved the scale grating on linear optical encoders, the 
trade-off between resolution and cost is unavoidable. In many 
applications where the cost limitations are very stringent, 
capabilities of sensing will be compromised. In this context, 
many researchers have been conducted to increase the 
resolution of the encoder without changing the sensor 
hardware. Interpolation method is proposed which uses soft 
techniques to further improve the encoder resolution by 
processing the analog encoder signals to derive the small 
intermediate positions [1]-[3]. One disadvantage of this 
method is that it requires an additional analog-to-digital 
converter and increases computational costs. Also, more 
accurate position information can be extracted from the digital 
optical encoder by extrapolating polynomial fitting through 
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previous collected time stamps [4]. This method is effective 
based on the condition that the encoder reading at each time 
stamp is accurate. However, in a digital encoder, the mapping 
from the true position to the measured position at each time 
stamp varies, depending on the initial position of LRDE, 
which will be discussed later in detail.  

When LRDE has to be used as a position sensor in the 
control system, it is usually modeled as quantizer [5]-[8]. The 
quantizer model treats the initial position of the LRDE (called 
offset angle in this paper) as fixed; specifically, the quantizer 
is an odd function and the first quantization step is generated 
when the angular position reaches half of the resolution of the 
encoder. It works fairly well when the actual stroke of the 
angular motion is comfortably large with regard to the 
resolution of the encoder, e.g. angular motion is 10 times as 
large as the resolution of the encoder. For extreme LRDE 
application (i.e. stroke is only a couple of times of resolution 
of encoder), a quantizer model cannot reveal the mechanism 
of LRDE. The offset angle, a random variable in encoder, 
should be taken into account for control applications with 
extreme LRDE, which would be detailed later.  

Extreme LRDE introduces severe nonlinearity into servo 
control systems as a position sensor. For reference of a 
sinusoidal signal, the encoder can only generate very limited 
steps for each direction from which the actual angular motion 
cannot be inferred directly. For example, in the Ros-Drill 
micro-injection, it needs to achieve sinusoidal trajectory 
tracking with a desired amplitude of 0.2 degree and an encoder 
with the resolution of 0.09 degree [9]. This setting allows only 
four steps of encoder reading (i.e. two steps up and two steps 
down), which is regarded as the desired encoder readings. An 
adaptive control mechanism is introduced to serve this 
purpose [10]. However, given the desired encoder readings, 
we still do not know much information about the actual 
angular motion. Specifically, the two important descriptors of 
actual angular motion, namely amplitude and bias, cannot be 
determined. The main contribution of this paper is to shed 
light on the characteristics and dynamics of actual motion 
which can be inferred from encoder readings. That is, although 
extreme LRDE is not capable of faithfully representing the 
actual motion in the servo control system, more information 
about these two descriptors can still be extracted for better 
insight into actual motion.  

The paper is organized as follows. In Section II, modeling 
of extreme LRDE is introduced by comparison with a 
quantizer. Also, the SIMULINK model with LRDE is 
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presented, which would be used for simulation later. Section 
III presents the characteristics of descriptors for sinusoidal 
angular motion from both amplitude and bias perspectives. 
Finally, conclusions about characteristics of extreme LRDE 
are given.  

 

 

Fig. 1 Explanation of Encoder 

II. EXTREME LRDE IN A CONTROL SYSTEM 

A. Introduction of Offset Angle 

Fig. 1 gives brief description of the principle of an optical 
incremental encoder, where  is the resolution of encoder. 
The small circle in Fig. 1 indicates the position of the light 
source. The angular position of encoder   is defined as the 
absolute angular displacement of light source relative to the 
point in the disk which coincides with the position of the light 
source when the encoder is still. When the disk is still, 0  
is named ‘zero’ position of  .  

We now present an argument on a crucial component of the 
extreme LRDE. Where a  is the encoder offset angle, which is 
the angular motion needed for the first encoder pulse to 
register (see Fig. 1), “ a ” can be taken as a backlash dead-zone 
during which the encoder does not respond. Clearly it is an 
unknown and completely random quantity which is bounded, 

 a0 , and its probability distribution is assumed to be 
uniform. That is, from the starting position 0 , the encoder 
does not register any reading until a  degree of rotation (in 

counterclockwise sense) or a  degree (in clockwise sense) 
is completed (see Fig. 1). In Fig. 2, we further depict the 
sensing ability of the encoder on a hypothetical oscillation  . 
Let us express   as:  

 

)(sin 012 ttAA b                                                     (1a) 
 

where f 2  and A and f  are amplitude and frequency 

of the harmonic wave, respectively, and 0t  is the initial time 

shift, as indicated in Fig. 2. The offset angle in encoder 
 

 a0                                                                            (1b) 
 

bA 12  is defined as the bias of the harmonic wave where, 1A  

and 2A are the upper and lower amplitude of  , respectively 

and we have: 
 

2
21

12
AA

A b


                                                                   (2) 

 
Furthermore, we define the complete peak-to-peak stroke as 

2112 AAA   and we have AA 212  . 12A  and bA 12 are two 

most important descriptors of sinusoidal angular motion. 
In Fig. 2, the piece-wise continuous curve represents the 

rotational motion being sensed by the encoder and the encoder 
reading is denoted as enc . The peak-to-peak angular stroke of 

enc  is named encA , which is 4  in Fig. 2.  

The encoder can only trigger when   reaches at angular 
displacements of a , a2 , …, am  clockwise and 

a , a , …, am  )1( counterclockwise, as indicated 

in Fig. 2. Therefore, the detection of the angular position may 
vary, i.e., the encoder may sense the same   differently, 
depending on the encoder offset angle a .  

 

 

Fig. 2 Oscillation motion  read by encoder;  a0 is the random offset angle) 
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B. Comparison of Extreme LRDE and Quantizer 

The characteristics of a linear quantizer and that of extreme 
LRDE are shown in Figs. 3 (a) and (b), respectively. For both 
quantizer and encoder, for all continuous input  , the output 

enc  can be only equal to discrete values 0 ,  , 2 , etc. 

However, the quantizer model triggers the first step when 
2  and the characteristic of the quantizer enjoys the 

property of odd symmetry with respect to origin; whereas, as 
described previously, the encoder model triggers the first step 
when a  or a , where  a0 . If the resolution 
of the encoder is high compared to the total stroke, such an 
offset angle in the encoder would not cause a noticeable 
difference in sensing the motion, and we can use the quantizer 
to model an encoder with high resolution. However, if the 
resolution of the encoder is low compared to the stroke, the 
quantizer model cannot reveal the mechanism of the encoder 
and the offset angle in the encoder should be taken into 
account. In essence, the linear quantizer model is a special 
case for an encoder model in which 2a . In the following 

analysis, this offset encoder will be taken into account to 
unveil the important characteristics of actual angular motion. 

C. SIMULNK Model  

The encoder model with the resolution   and offset angle 
a  can be simulated in MATLAB/SIMULINK. To better 
explain the modeling of the encoder, the hypothetical 
oscillation ( ) in Fig. 2 is divided into four parts, labeled as 
(i), (ii), (iii) and (iv), respectively. They correspond to 
different portions of   as follows: 

 

00)(

00)(

00)(

00)(
















andiv

andiii

andii

andi

                                               (3) 

 

 

Fig. 3 (a) Linear quantizer characteristic 
 

 

Fig. 3 (b) Encoder characteristic 
 
Fig. 4 (a) shows the SIMULINK block for the encoder 

model. Four subsystems are built for detection of four 
different portions of   and the output of each subsystem is 
times of being triggered, labeled as Out1, Out2, Out3 and 
Out4, respectively. The combination of these four outputs, 
labeled as ‘Out’ is the number of steps in the encoder, and 
hence, enc can be obtained by multiplying the resolution of 

encoder ( ) and ‘Out’, as indicated in Fig. 4 (a). Specifically, 
Fig. 4 (b) shows the SIMULINK block for the detection of 
part (i) of  . It consists of logic operation blocks and 
counters, simulating each triggered condition of the encoder 
for part (i) of  , depending on the initial angular offset, a  as 
described in Fig. 2. The counter will count up by one once the 
condition of the logic operation is satisfied. The subsystems 
for others are similar except for the triggered conditions.  

Fig. 5 shows the SIMULINK model for a typical position 
control system with PID control logic, which utilizes this 
encoder modeling method, where d  is the sinusoidal 

reference signal. The encoder block in Fig. 4 converts the 
continuous angular motion of the pipette,  , into the 
discretization and holds it. 

 

 

Fig. 4 (a) Encoder block 
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Fig. 4 (b) Simulation block for detection of (i) 
 

The output of the encoder block, enc , is the discretized 

reading of the angular motion by the encoder. The simulation 
result in the later section is conducted based on this platform. 

III. CHARACTERISTICS OF DESCRIPTORS OF SINUSOIDAL 

ANGULAR MOTION 

For the servo control system with a sinusoidal reference 
signal, the integral effect in the control system can perform to 

have the encoder reading be symmetric with regard to zero 
position (see Fig. 2). That is, the number of steps in a positive 
and negative direction is the same. For example, in the Ros-
Drill micro-injection application with desired a amplitude of 
0.2 degrees and an encoder with a resolution of 0.09 degrees, 
it can achieve four steps of encoder reading (i.e. two steps up 
and two steps down) by an adaptive PID control mechanism 
[10]. The following section is devoted to analysis of the two 
descriptors after these desired encoder readings are achieved.  

A. Reconstruction of Amplitude from Encoder Readings 

A desired encoder readings to be n2 -step peak-to-peak 
stroke, where n  is 1, 2, .... can only guarantee actual peak-to-
peak stroke of the shaft rotation to be between  )1(n  and 

 )1(n . For example, given the 4-step peak-to-peak stroke, 

actual stroke is not uniquely determined and instead it is 
randomly distributed with a relative stroke error between 0% 
and %5.32  (when  312A ) [9]. 

 

 

Fig. 5 SIMULINK model of the control system with extreme LRDE 
 
It is found that some interesting features from the encoder 

reading can be extracted to determine actual peak-to-peak 
stroke of angular motion [11]. For the desired encoder reading 
of two steps up and down, the actual peak-to-peak stroke can 
be calculated as: 

 

)cos()cos(

6

21
12 ww

A
 


                                               (4) 

 

where 12w  and 22w  are the width of dwell time when enc  

stays at peak encoder registrations, i.e. a2  and a . 
Assuming we encounter 4  peak-to-peak stroke consistently, 
we can conjure up the corresponding 12A , which is un-

measurable by simply observing the dwell periods at the peak 
encoder registrations, 1w  and 2w . This construction of 

amplitude from the encoder readings enables amplitude 
control with extreme LRDE. This formulation changes the 
treatment considerably, namely, we will simply monitor these 
two quantities at each cycle and implement a control law 
which will make them equal. Actual stroke is now uniquely 
determined from the encoder readings, which essentially 
converts the stochastic stroke control problem into a 
deterministic one. 

B. Boundary of Bias 

Bias is another important descriptor for sinusoidal angular 
motion. From Fig. 2, to have an encoder read n2  steps from 
peak-to-peak (i.e.  nAenc 2 ), the following are the 

sufficient and necessary conditions of the upper amplitude 
( 1A ) and lower amplitude ( 2A ). For 1A , 

 

 )1(1 naAna                                             (5a) 
 

and for 2A , 
 

 naAna 2)1(                                                 (5b) 
 

by summing (5a) and (5b) we can obtain the necessary 
condition for  nAenc 2 , 
 

 )12()12( 12 nAn                                                 (6) 
 

or actual stroke ( 12A ) , where  )12()12( 12 nAn , 

12A  can be further expressed as: 
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








)12()12(2

)12(2)12(

1212

1212

nAnAnfor

nAnAnfor
    (7) 

 

where   is the absolute deviation of 12A  from its nearest odd 

integer multiple of   and  0 . Furthermore, for the 

simplicity of expression, let us define bA 12  as: 
 

2

2
12

a
A b


                                                                    (8) 

 
Note that the offset angle is a uniformly distributed random 

variable between 0 and  . Hence, bA 12  is a uniformly 

distributed random variable between 2  and 2 . 

Proposition 1: For a particular 12A , where 

 )12()12( 12 nAn , if and only if the bias of the 

stroke ( bA 12 ) is in the area with the center of bA 12  and the 

radius of 2 , i.e.  
 

22 121212    bbb AAA                                       (9) 
 

the encoder signal is symmetric in the number of steps and 

 nAenc 2 . Especially, if bb AA   1212 , for any stroke, 

where  )12()12( 12 nAn ,  nAenc 2  regardless of 

the offset angle. 
Proof: First, we prove the sufficiency condition. By 
substituting (2) and (8) into (9), (5a) and (5b) can be satisfied. 
Therefore, if (9) is satisfied,  nAenc 2 . 

Next the necessity condition is proven. Without loss of 
generality, let us look at  nAn 2)12( 12 . By 

substituting (7) into (6a), we obtain: 
 

 anAan 1                                                 (10a) 
 

 anAan )1()1( 2                                (10b) 
 

from (10a) and (10b), (9) can be derived. Especially, if 

bb AA   1212 , we can express 1A  and 2A  in terms of 12A : 
 

2)2( 121 aAA                                                       (11a) 
 

2)2( 122 aAA                                                      (11b) 
 
Substituting (11) into (6), we can find that the conditions of 
offset angle for  nAenc 2  are automatically satisfied. This 

implies that if bb AA   1212 , for any 12A , where 

 )12()12( 12 nAn ,  nAenc 2  regardless of the 

offset angle. Therefore bA 12  is considered as “ideal” bias of 

the stroke for a particular offset angle (a).  

From (9) for  nAenc 2 , bias is confined to the boundary 

dictated by ideal bias and  . And the closer 12A  is to its 

nearest odd integer multiple of  , the larger area is bA 12  

allowed to move. As indicated previously, accurate stroke 
control with extreme LRDE can be achieved by reconstruction 
of amplitude from encoder readings. From analysis of the 
boundary of bias, we can actually achieve bias boundary 
control by controlling stroke ( 12A ).  

C. Dynamics of Bias 

Now we obtain the boundary of bias given  nAenc 2 . We 

can further look into the dynamics of bias as follows:  
Proposition 2: Bias oscillates around ideal bias as if a 
restoring force acts on it. Specifically, for  nAenc 2 , if and 

only if bb AA   1212 , encoder signal enc  does npt contain 

the restoring force; else if bb AA   1212 , its restoring force > 

0; else bb AA   1212 , its restoring force < 0. Besides, absolute 

value of restoring force increases with distance of bA 12  away 

from bA 12 . 

Proof: Let us define bE  to measure the deviation of bias of 

stroke ( bA 12 ) from “ideal” bias of angular motion ( bA 12 ). 

That is: 
 

bbb AAE   1212                                                           (12a) 
 

from (9) and (12a), we have:  
 

22   bE                                                              (12b) 
 

For the simplicity of the following analysis, the equivalent 
encoder model is used which leads to the same enc  for 

sensing  , and it is:  
 

tA  sin                                                                     (13a) 
 

and the offset angle in encoder is: 
 

beq Aaa  12                                                                 (13b) 

 
by substituting (13b) and (8) into (12a), (12a) can be reduced 
to:  
 

2

2 
 eq

b

a
E                                                                   (14) 

 
Without loss of generality, let us use 2n  as the example, 

namely encoder reads two steps up and two steps down. Let 

it , where 8...,,1i  represents each triggered time instant in 

one cycle of  , it  can be obtained from (13a). 
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iitA  sin                                                                     (15) 
 

where i  corresponds to encoder values at time instant 

6,5,2,1i  and they are a , a2 , a  and a  for 

2n . From (15), we have: 
 




)(sin 1

At

i

i



 , i=1,2,5,6                                                (16a) 

 

Due to the symmetry of   with respect to 2 t  and 

23 t , we have: 
 

)5.2(2  ifloori tt



, i = 3,4                                          (16b) 

 

)5.6(6
3

 ifloori tt



, i = 7,8                                        (16c) 

 
One period of encoder reading from   can be expressed as: 

 





























others

ittt

ittt

ittt

ittt

ii

ii

ii

ii

enc

0

62

7,5

22

4,1

1

1

1

1

                                   (17) 

 

Therefore, the magnitude of DC component of enc  can be 

expressed as: 
 


T

enc dtt
T

c
0

0 )(
1                                                               (18) 

 

by substituting (16) and (17) into (18), 0c  can be rewritten as 
 





N

i

i
eq A

Aac
1 12

1
120 )

2
(sin

1
),,(




                                    (19) 

 

by applying (14) into (19) and knowing that AA 212  , 0c  can 

be expressed in terms of bE , 
 




 


N

i

bi
b A

E
AEc

1 12

1
120 )

2
(sin

1
),,(




                          (20) 

 

where 3,3,1,1 i . Note that ),,( 120 AEc b  is the odd 

symmetry with regard to bE . From (20), we can find:  
 















200

00

020

),,( 120





b

b

b

b

Efor

Efor

Efor

AEc                        (21a) 

and,  
 

0
),,( 120 





b

b

E

AEc
                                                        (21b) 

 

where 22   bE . From (21), it can be concluded that 

if 0bE  (i.e. bb AA   1212 ), induced DC component in  

enc  is zero and its absolute value increases with the 

increasing of bE . QED. 

 

 

Fig. 6 Dynamics of bA 12  relative to bA 12  at  4encA  

 
In a negative feedback control system with sinusoidal 

reference signal, if enc  contains a DC component, due to 

negative feedback effect, the control signal fed into actuator 
contains a DC component but with opposite sign, pushing bias 
of stroke ( bA 12 ) of angular position towards its “ideal” 

position bA 12 by adjusting 1A  and 2A  value. Therefore it 

seems that feedback control serves as a restoring force acting 
on the bA 12 . In other words, feedback effect acts on bA 12  

like a spring, having bA 12  approach “ideal” bias of stroke 

( bA 12 ).    

Fig. 6 shows one simulation example of movement of bias 
from the position control system with extreme LRDE in Fig. 
5. In this example, PID parameters are tuned to have 

 4encA  at first. From Fig. 6, bA 12  oscillates around bA 12 , 

validating the restoring effect on bA 12  ; in this case, 

31.012 A  and correspondingly, 02.02  . In order to have 

 4encA , bA 12  is allowed to move only within 

)02.0,02.0(  relative to bA 12 . Since bA 12  does not move 

beyond this boundary,  4encA  in this example, as observed 

in the simulation. 

IV. CONCLUSIONS 

Offset angle, a random variable between zero and the 
resolution of an encoder, differentiates a model of a low-
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resolution encoder from a quantizer. In this paper, the 
characteristics of a low-resolution encoder for sinusoidal 
trajectory tracking are described in detail. The amplitude and 
bias of the actual angular motion can be inferred from the 
encoder readings, which lead to a much better understanding 
of actual motion in a control application with an extreme low-
resolution encoder. These capabilities enable stroke and bias 
control for a servo control system with extreme LRDE.  

NOMENCLATURE 

   Angular position of pipette holder (deg) 
enc  Angular position sensed by encoder (deg) 
d   Desired harmonic trajectory (deg) 
Ad    Amplitude of d (deg) 
fd    Frequency of d (Hz) 
Δ   Resolution of position sensor (deg) 
a   Encoder offset angle (deg) 
A12  Peak-to-peak angular stroke of  (deg) 
A12-b  Bias of  (deg) 
Aenc  Peak-to-peak angular stroke of enc (deg) 

12A   Average of A12 over some cycles (deg) 

w1(w2) Dwell time when enc  stays at extreme readings (s) 

bA 12  Ideal bias of sinusoidal angular motion (deg) 

  Deviation of 12A  from its nearest odd integer multiple of   

(deg) 

i   Encoder values at triggering instant (deg) 

bE   Deviation of bA 12  from bA 12  (deg) 

0c   Magnitude of DC component of enc  (deg)  
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