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Abstract—The purpose of this paper is to show a relation 

between CR structure and F-structure satisfying polynomial equation. 
In this paper, we have checked the significance of CR structure and 
F-structure on Integrability conditions and Nijenhuis tensor. It was 
proved that all the properties of Integrability conditions and 
Nijenhuis tensor are satisfied by CR structures and F-structure 
satisfying polynomial equation. 
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I. INTRODUCTION 

HE study of F structure and CR structure is done by many 
mathematicians. In this paper the study of these structures 

are considered with polynomial equations, the study of 
Integrability and Nijenhuis Tensor is also extended to 
polynomial equation. Yano [1] initiated the study of F 
structure. Nikie [8] and Das [9] further studied the properties 
of F structure. 

Let F be a non zero tensor field of type (1,1) and of class C∞ 
dimensional manifold M such that 

 
	 	 … . 	 	 	0   (1) 

 
where n is a fixed positive integer greater than or equal to 1. 
Such a structure on M is called an F-structure. If the rank of F 
is constant and r=F(r), then M is called an F structure 
manifold of degree n. 

Let us define the operator on M as: 
 

l =
⋯….

       (2) 

 

m = I + 
⋯…. 	

    (3) 

 
where I denotes the identify operator on M. 
Theorem 1. Let M be an F( ,	 ,…	 ) structure manifold 
satisfying (1) then  
a) l + m = I  
b) l2 = l 
c) m2= m 
d) l.m = 0 
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Proof.  
a) l + m = I 

l + m = 
⋯…. 	+ I 

+	 ⋯…. 	
= I 

⇒l + m = I      (4) 
 

b)  
⋯….

 

*
⋯….

= 

∗
⋯….

	 ⋯…. 	=  

⇒ 	      (5) 
 

c)  

	
⋯….

	∗

⋯….

2
⋯….

⋯….

2 ⋯….

2 ⋯….

2 ⋯….

⋯….

⋯….
 = m 

So      (6) 
 

d) l.m = l. (I-l) 
= l -  = l - l  ⟹	l.m = 0    (7) 

 

For F  0 satisfying (1) there exist complimentary 
distributions Dl & Dm corresponding to the projection operator 
l & m respectively. If Rank F = constant and r = r(F). Then, 
dim Dl = r and Dm =n – r. 
Theorem 2. We have- 
a) (I) lF =Fl = F, 

(II) mF = Fm = 0 

b) (I) 
⋯…. 	

*m = 0 
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(II) 
⋯…. 	

*l = - l 

Proof. 
a) (I) lF = Fl = F 

lF = 
⋯…. ∗ = 

⋯…. 	
= F 

So  lF = Fl = F      (8) 
 

(II) mF = Fm = 0 

mF = 
⋯….

*F=	

⋯….
= F + (-F)= 0 

So mF = Fm = 0     (9) 
 

b) (I)
⋯…. 	

*m = 0 

= -F * m = 0      (10) 
 

(II)
⋯…. 	

*l  

= -F* l = - F     (11) 
 

Thus, F acts on Dl as an almost complex structure and on 
Dm as a null operator. 

II. NIJENHIUS TENSOR 

The Nijenhius tensor N(X,Y) of F satisfying (1) in M is 
expressed as follows for every vector field X,Y on M. 
  

N (X,Y) = [FX, FY] − F[FX, Y] − F[X, FY]+ F 2 [X,Y] (12) 
 
We state the following theorem without proof  

Theorem 3. A necessary & sufficient condition for the f-
structure to be integrable is that N(X,Y)=0 for any vector field 
X & Y on M. 

III. LIE BRACKET 

If X & Y are two vector fields in M then their lie bracket 
[X,Y] is defined by 

 
   [X,Y] = XY – YX    (13) 

IV. CR-STRUCTURE 

A study of differential geometry of a CR submanifold has 
been initiated in [4]-[7]. Results on general theory of Cauchy 
Riemann manifolds have been obtained by [2]. 

Let M be a differentiable manifold and Tc (M) be its 
complex field on tangent bundle M. A CR-Structure on M is a 
complex sub bundle H of Tc (M) such that ∩ ̅ = 0 & H is 
involutive i.e. for complex vector field & Y in H, [X,Y] is in H. 
In this case we say M is a CR-manifold. 

Let F( ,	 ,…	 ) be an integrable structure satisfying 
(1) of rank r = 2m on M. We define complex sub bundle H of 
Tc (M) by 

 

 H p = {X − √−1 FX, X ∈ χ (Dl)}   (14) 
 
where χ(  is the F(  module for all differentiable sections 
of .  Re(H) = Dl & ∩ ̅ 0, where ̅ denotes the 
complex conjugate. Intigrability conditions on such 
submanifolds have been investigated by [4]. 
Theorem 4. If P & Q are two elements of H then the 
following relation holds 

 
[P, Q] = [X,Y] −[FX, FY] −√−1[X, FY] −√−1 [FX,Y] 

 
Proof. Let us define 
 

P = X −√−1FX 
Q = Y−√−1Y 

 
then by direct calculation & on simplifying, we obtain- 
 

[P,Q] = [X−√−1FX, Y −√−1FY] 
= [X,Y] −√−1 [X,FY] −√−1 [FX,Y] Y – [FX,FY] 
 = [X,Y] – [FX,FY]−√−1 [X,FY] −√−1 [FX,Y]      (15) 

 
Theorem 5. If F(an, an−1.....a2, a1) structure satisfying (1) is 
integrable then we have  
 

⋯…. 	
{[FX*FY]+	 [X*Y]} = l 

{[FX,Y] + [X,FY]} 
 
Proof. From (12) we have, 
 

N(X,Y) = [FX,FY] + F2[X,Y] – F[FX,Y] – F[X,FY] 
 
Since N (X,Y) = 0 we obtain 
 

[FX,FY] + F 2[X,Y] = F[FX,Y] + F[X,FY] 
 

Operating 
⋯….

 

=
⋯…. 	

{[FX,FY] +	 [X,Y]} 

 

= 
⋯…. 	

{F[FX,Y] +	 [X,FY]} 

= 
⋯…. 	

{[FX,Y] +	[X,FY]} 

 

= 
⋯…. 	

{[FX,Y] +	[X,FY]} 

= 
⋯…. 	

{[FX,Y] +	[X,FY]} 

  = l {[FX,Y] + [X,FY]} 
 
This proves the above theorem. 
Theorem 6. The following identities hold 

a) mN(X,Y)= m[FX,FY] 

b) mN[
⋯…. 	

X,Y] 

= m [
⋯…. 	

,FY] 

Proof. 
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a) mN(X,Y) = m{ [FX,FY] + F2[X,Y] – F[FX,Y] – F[X,FY]} 
 

mN (X,Y) = m{[F, F] + F2 [X,Y] − F[FX,Y] − F[X, FY]} 
=m[FX, FY] + m.F.F[X,Y] − mF[FX,Y] − mF[X, FY] = 

m[FX, FY] 
 

⇒mN (X,Y) = m[FX, FY]    (16) 
 

b) mN[
⋯…. 	

X,Y = m 

[
⋯…. 	

,FY] 

 

mN[
⋯…. 	

X,Y]= 

mN[
⋯…. 	

FX,FY]= 

F2[
⋯…. 	

X,Y] – 

F[F
⋯…. 	

X,Y] – 

F[
⋯…. 	

X,FY]} 

 
By the equation mF = 0 = Fm 
 

mN[
⋯…. 	

X,Y]= m 

[
⋯…. 	

,FY]   (17) 

 
Theorem 7. For any two vector field X & Y, the following 
condition are equivalent – 
a) mN (X,Y)=0  
b) m[Fx, Fy] = 0 

c) mN[
⋯…. 	

X, Y] = 0 

d) m[
⋯…. 	

X, FY] = 0 

e) m[
⋯…. 	

X, FY] = 0 

Proof. a) => b) 
 

mN (X,Y) = 0 
 
=>m{[FX, FY] =F2 [X,Y] −F[FX,Y] −F[X, FY]} =0 

=>m[FX, FY] = 0    (18) 
 

[since mF = Fm = 0] 
 

c) ⇒ a) 
 

mN[
⋯…. 	

X, Y] = 0 

 
By (1) 

⋯…. 	
 = -I  

 
==> mN[-X, Y] = 0 

=> mN[X, Y] = 0   (19) 
=>c) =>a) 

d) => b) 
 

m[
⋯…. 	

X, FY] = 0 

⋯…. 	 	= -F 

 
By (1) 

m[-FX, FY] = 0    (20) 
d) => b) 

 
e)=> b) 
 

m[
⋯…. 	

X, FY] = 0 

m[
⋯…. 	

X, FY] = 0 

m[
⋯…. 	

X, FY] = 0 

m[
⋯…. 	

X, FY] = 0 

m[
⋯…. 	

X, FY] = 0 

⋯…. 	
 = -F 

 
⇒m[−FX, FY] = 0[By (1)] 

⇒m[FX, FY] = 0    (21) 
⇒e) ⇒b) 

 
Theorem 8. If Fn acts on Dl as an almost complex structure. 
Then 
 

m[
⋯…. 	

X, FY]= m[-X,FY] = 0 

 
Proof. 

m[
⋯…. 	

X, FY] 

= m[
⋯…. 	

X, FY] 

= m[-FlX, FY]=[−X, Fy] {By (8)} 
 

Theorem 9. For X, Y ∈ x(Dl) we have 
 

l ([X, FY] +[FX, FY]) = [X, FY] +[FX,Y] 
 
Proof.  

l ([X, FY]) +[FX,Y])= l{X. FY – FY.X + FX.Y – Y.FX}  
{By (5)} 

= X. FY – FY.X + FX.Y – Y.FX 
 {By (13)} 

=[X, FY] + [FX,Y] 
 
Theorem 10: The integrable F(an, an−1.....a1) structure 
satisfying (1) on M defines a CR-structure H on it. Such that 
ReH=Dl. 
Proof. From theorem 4 we have, 
 

[P, Q] = [X,Y] −[FX,FY] −√−1[X,FY] −√−1 [FX,Y] 
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l[P, Q] = l[X,Y] − l[FX, FY] −√	 1 ([X, FY] + [FX,Y] 
{By theorem (9)} 
 

=[X,Y] − [FX, FY] - √ -1 ([X, FY] +[FX,Y]= [P, Q] 
{By theorem (4)} 

 

Since l[P, Q] = [P, Q] ⇒ [P, Q]∈x(Dl). Then, F (an, 
an−1.....a1) structure satisfying (1) on M defines a CR-structure. 

V. MORPHISM OF VECTOR BUNDLES 

Let 	be the complementary distribution of Re(H) to TM. 
We define a morphism of vector bundles F: TM →TM given 
by  

 

F (X) = 0∀ X∈ χ ( )such that- 
 

We have  
 

F(X) = ½ √-1 (  
 
where P = X + √-1 Y ε x(HP) and  is the complex of P. 
Corollary 1. If P = X+iY and 	= X-iY belong to  and F(X) 

= √ 1 , 	 √ 1 	 	 	

√ 1  then F(X) = √ 1  = -Y, 	  

	 	 . 

Proof. P = X+ √ 1Y and = X- √ 1Y => 	 , 

	
√

. Since P+  = 2X and P -  = 2√ 1	 . F(X) = F[
	

 

= √ 1 	  from the definition of morphism 
 

	F 	

√
  

 
Theorem 11. If M has a CR-structure H, then we have 

	 	 … . 	 	 	0	and consequently 
, , … . , ) structure satisfying (1) is defined on M 

such that the distribution Dl and Dm coincide with Re(H) and 
 respectively.  

Proof. Suppose M has a CR-structure. Then in view of 
definition of CR manifold & corollary 1 we have-  
 

F(X) = -Y; 
 

operating above equation by-
	 	 ….

	on both 

sides we get 
 

	 	 ….

	 	 ….
  

 
on making use of Corollary 1 the right hand side of the above 
equation becomes 
 

	 	 ….

	
	 	 ….

   

 
which can be written as – 
 

	 	 …. 	 	 	 ….
 (-X) 

= 
	 	 ….

 (X)= 
	 	 ….

 

F(X) =
	 	 ….

 (-Y)= 

	 	 ….
 F(-Y) = 

	 	 ….
 (-X) 

= 
	 	 ….

 (X) 

 
We continue simplifying in this manner n times. We get 
 

	 	 ….
 = -F(X) 

 
On simplifying the above equation we get 

 
	 	 … . 	 	 	0 
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