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Abstract—This paper presents a home-based robot-rehabilitation
instrument, called ”MAGNI1 Dynamics”, that utilized a vision-based
kinematic/dynamic module and an adaptive haptic feedback
controller. The system is expected to provide personalized
rehabilitation by adjusting its resistive and supportive behavior
according to a fuzzy intelligence controller that acts as an inference
system, which correlates the user’s performance to different stiffness
factors. The vision module uses the Kinect’s skeletal tracking to
monitor the user’s effort in an unobtrusive and safe way, by estimating
the torque that affects the user’s arm. The system’s torque estimations
are justified by capturing electromyographic data from primitive
hand motions (Shoulder Abduction and Shoulder Forward Flexion).
Moreover, we present and analyze how the Barrett WAM generates
a force-field with a haptic controller to support or challenge the
users. Experiments show that by shifting the proportional value,
that corresponds to different stiffness factors of the haptic path, can
potentially help the user to improve his/her motor skills. Finally,
potential areas for future research are discussed, that address how
a rehabilitation robotic framework may include multisensing data, to
improve the user’s recovery process.

Keywords—Human-robot interaction, kinect, kinematics,
dynamics, haptic control, rehabilitation robotics, artificial
intelligence.

I. INTRODUCTION

A job or traffic accident, a misfortune even or an

unforeseen stroke can lead to brain or musculoskeletal

injuries, that impact motor and cognitive functions. Modern
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1MAGNI is the God of strength in Norse mythology

physical rehabilitation has proven to be instrumental in

the ability to partially or fully heal patients with impaired

motor capabilities. During the last two decades, the use

of robotic instruments for upper-limb rehabilitation has

increased as robot-based rehabilitation provides an accurate

evaluation of motor recovery and automates simple tasks

that burden caregivers. Nowadays, as the number of people

that require physical rehabilitation has increased, the need

has arisen to create low-cost home-based robotic instruments

that are simple, acceptable and provide easy monitoring,

smart assessment, and adaptable training [1]. However, an

element that is poorly designed in the current rehabilitation

robotics systems is the incorporation of the user in the robot’s

control loop, to provide personalized and adaptable training.

To achieve that we present an accurate and safe motion

analysis system that does not rely on wearable sensors [2].

The system estimates the user’s force/torque state which can

be used as a visual feedback to the robot’s control loop

system. Moreover, the system can be used by physicians and

occupational therapists to monitor the physical state of the

patient’s upper-limb, while performing repetitive exercises. To

prove the intellectual merit of the algorithm, we validate our

previous kinematic and dynamic estimation system [3] by

utilizing electromyographic signals from the Delsys [4] device

and by correlating the electromyographic values with torque

estimations.

Due to the increasing number of senior patients that require

physical rehabilitation, there is a growing need for therapist

and nurses that are able to provide home-based assistance and

training. In our work, we proposed to automate the physical

rehabilitation by building a robotic system that introduces

home-based robotic instruments. In Fig. 1, we envision a

home-based rehabilitation system that consists of a robotic

arm, a monitor system, such as a depth camera, and a virtual

reality exergame system that displays instructions, as well as

allows communication with the therapists.

In the field of rehabilitation robotics, there are two

types of robots developed for upper extremity exercises, the

end-effector and the powered exoskeletons devices [5]. The

end-effector robots were the first devices to be implemented

and tested in stroke rehabilitation research due to their

straightforward design. On the other hand, the powered

exoskeletons carry the distinct advantage of enabling both

accurate measurements of the torques that affect each joint,

as well as the precise recording and monitoring of motion
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Fig. 1 Proposed home-based robotic rehabilitation system

trajectories in joint space [6]. Unfortunately, the powered

exoskeletons constrain the user’s range of motion due to their

complex configuration. In our work, we utilize the Barrett

WAM manipulator [20] for its advanced mechanical structure

and high haptic resolution in conjunction with the Kinect

skeleton tracker [21] to achieve highly dynamic adaptation,

force feedback and torque sensing to deliver an unobtrusive,

safe and guided physical therapy system.
As seen from Fig. 1, the system is consisted of the following

components: The RGBD camera sensor that provides skeletal

tracking information, which is fed into the proposed vision

system. Note that this system is thoroughly analyzed in our

past work [3], [23]. Furthermore, the estimated torque (τe) of

the user is passed to a fuzzy controller. The fuzzy controller

acts as a high intelligence system that shifts the gains (KP ) of

the haptic controller, according to some abstract rules that have

been defined by the therapist in a linguistic manner, and the

performance of the user. As a result, the fuzzy intelligence

system adjusts the control input signal (τr) of the robot to

provide adaptive/assistive training.

II. RELATED WORK

Joint torques are of main importance for physicians and

occupational therapists to analyze the effects of rehabilitation

and to obtain an indicator of patient’s functional capacity to

perform a motion [7]. A joint’s strength is assessed through

the measurement of the maximal joint torque, which represents

the resultant action of all muscles crossing the joint. Manual

muscle testing (MMT) is a measure of upper and lower

body strength that occupational and physical therapists often

complete as part of a clinical evaluation and to measure

progress in therapy. MMT is a graded scale (typically on

a scale from zero to five) that is used to assess patients

with neurological or orthopedic impairments [8]. A score of

zero indicates that there is not any muscle contraction to five

indicates that strong pressure can be applied. Many issues arise

because MMT can be subjective based on many factors. The

validity and reliability of MMT are dependent upon a variety

of factors including training of the therapist; the patients

diagnosis, pain level, and other physiologic issues; which

muscle is tested; the position of the patient; hand placement

of therapist during testing; and variability between therapists

[9].

The rehabilitation therapists may change the parameters of

the exercise or activities (commonly referred to as grading)

between or during treatment sessions, based on confounding

patient factors such as pain or fatigue [10]. For example, the

therapist may change the number of repetitions, the number

of sets, and/or the amount of resistance given to the patient.

These parameters may remain consistent over time or need

to be changed during each session based on the patients

performance and muscle fatigue. Multiple researchers have

attempted to generate models for muscle fatigue based on

joint torques and muscle contraction levels. For example, the

authors in [11] utilized electromyographic data and derived

an analytical muscle model, taking into account physiological

and anatomical data, to estimate the joints’ torque. This model

helps them to generate joint torques and stiffness values while

the user is interacting with a rehabilitation instrument.

One simple exercise in rehabilitation is to repetitively

follow pre-described trajectories to help users strengthen their

weakened muscles or regain motor control. A haptic path can

be defined as a virtual tunnel that uses force feedback to help

users move through that path or constrain them from deviating

in other directions. The authors in [12] use gait trajectories

to help users while doing exoskeleton gait training on the

treadmill. They proposed a haptic controller designed to be

’assist-as-needed’ system, which can apply suitable forces on

the patient’s leg to help him move on the desired trajectory.

Similarly, in upper limb rehabilitation, [13]-[15] tracking the

performance and progress of the users, can be achieved by

comparing their measured trajectories with the Dynamic Time

Warping (DTW) algorithm [25]. The literature has shown that

haptic feedback/guidance can help the users improve their

tracing abilities by following a prescribed trajectories [16],

[17]. This haptic feedback can be by probing the user’s hand

through the path or by providing perpendicular forces that

prevent the user’s hand to deviate from the desired path.

A considerable amount of research has been conducted

to implement a robotic rehabilitation system that adapts

its behavior according to the patient’s performance and

physiological state. Rajibul et. al. [18], have presented

preliminaries studies in developing a fuzzy logic intelligent

system for autonomous post-stroke upper-limb rehabilitation.

In their work, an intelligent system estimates the muscle

fatigue of the patient and tunes the control parameters
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Fig. 2 Robot-based Rehabilitation system

to generate different haptic effects. Badesa et. al. [19],

have incorporated multisensory data in the control loop to

adaptively and dynamically change in real-time the therapy.

The aforementioned results demonstrate the potential to create

a fuzzy system that adapts the robot’s behavior and delivers

personalized rehabilitation sessions. Similarly, in our work,

we incorporated a fuzzy logic module that controls the haptic

forces which are exerted upon the user.

The following sections of the paper are dedicated to

the thorough analysis and representation of the proposed

intelligent rehabilitation system. In Section III we recap the

algorithm that is used by the proposed vision system and we

justify the correctness of each estimation. Moreover, in Section

IV, we present the developed haptic force-field impedance

controller and we test its application with an chronic stroke

patient and an unimpaired user. Lastly, we provide some future

discussion on how to make this robotic framework capable of

making decisions that would improve the user’s performances

over time.

III. HUMAN ARM KINEMATIC AND DYNAMIC VISION

SYSTEM

A. Algorithm

At this point, we would like to recap our previous work [23]

that used a biomechanical model and the Kinect depth camera

to reconstruct upper-limb kinematics and dynamics in the

joint space. Algorithm 1 presents the steps for the extraction

of the human arm kinematics and dynamics from a Kinect

camera. As an input, the system must capture the person

who is performing the exercise with the Kinect, according to

the configuration that Fig. 3 suggests. Once the trajectory of

the subject’s arm has been captured, the Kinect passes the

cartesian positions of the chest, shoulder, elbow and wrist

frames to the first unit of the system.

The system then applies a median filter to the Kinect data

to eliminate any abnormal behavior from the skeleton tracking

algorithm of the Kinect. The result of this module produces

a smooth cartesian trajectory that is used by the Inverse

Kinematics Solver (IK Solver) to provide an estimation of

the angles of the human arm joints. Afterward, the system

produces the first estimation in joint space. In the next

iteration, the system makes sure that all data in joint space are

characterized by a polynomial profile function. This happens

because the motion of all rigid bodies, such as our Kinematic

Model, must be expressed with a polynomial function that

can produce a second, third or even forth derivative (jerk)

[24]. Lastly, as an output, the system provides an estimation

of the torques that affect the subject’s arm with the RNE

method. Interested readers can read our previous work, which

explains in great detail the formulation of the forward and

inverse kinematics equations [3].

Algorithm 1 Steps to calculate human arm dynamics using

Kinect camera system and a robotic arm

1: INPUT1: A sequence {Pt}Nt=1 of frames recordings from Kinect,
where each Pt = (PWt , PEt , PSt , PCt) consists of the cartesian
position of the wrist, elbow, shoulder and chest.

2: INPUT2: Import user height and weight and extract
anthropomorphic data for the human body segments for
the length and mass of the upper and lower section.

3: INPUT3: Add the external forces fB
robot from the robotic arm

that are exerted to the user’s wrist.
4: Reconstruct a raw model from the captured {Pt}Nt=1 frames

according to the proposed kinematic model using the
Homogeneous transformations of our previous work [3].

5: Apply a moving median filter to the raw position data.
6: Utilize the proposed Inverse Kinematics (IK Solver) to generate

an estimation of the joint angles {θr(t)}Nt=1 and r = [1, ..., 4]
7: Apply a higher-order polynomials to the θr(t) in order to fit the

joints estimation θe(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5

to the trajectory sequence (exercise).
8: Generate estimated angles: {θe(t)}Nt=1 and e = [1, ..., 4]
9: Recreate the kinematic model according to the forward kinematic

equations as per [3].
10: Apply the Recursive Newton-Euler [22] dynamics algorithm

(RNE) and propagate the external force fB
robot from the robotic

arm to the user wrist joint.
11: OUTPUT: Export the human arm joint velocity, acceleration and

torque profiles (q, q̇, q̈) for the recorded trajectory sequence with
the applied forces of the robotic arm.

B. Experimental Setup

In order to fully validate that the torque estimation derived

by our biomechanical model is correct, we conducted a series

of experiments that involves primitive arm movements that

isolate the shoulder axis and muscle activations. Fig. 4 shows
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Fig. 3 4 DoF Kinematic Model of the Human Arm

Fig. 4 Muscles to sensor placement

the Delsys sensors placement in the user’s arm and the muscles

area that are associated.

Our initial goal is to correlate the joints’ frame placement,

according to Fig. 3, with the muscles that are triggered and

move the shoulder at each axis. For this reason, sensor 3 has

been placed on the Lateral Deltoid muscle, sensor 4 has been

placed to the Anterior Deltoid muscle area, connecting to the

clavicle, and sensor 1 and 2 were placed to the biceps and

triceps respectively. The exercise that is first chosen is the

shoulder abduction (Fig. 5a). This allows the first frame of

the shoulder to rotate along axis z1 in the positive direction.

The second exercise is the shoulder forward flexion (Fig. 5b)

that allows the second shoulder frame to rotate along axis z2.

From the experimental results, in Fig. 5a, it is obvious

that the first exercise triggers the third sensor more which

correlates the deltoid’s muscle movement. The torque values

of the frame 1 at the beginning are close to 11 N/m and when

the shoulder is fully abducted they reach 36 N/m. For the

frame 2, the absolute torque values increased slightly exactly

like the correspondence muscle contraction (sensor 4).

The second experimental results (Fig. 5b) show the opposite

torque value estimation which corresponds with the muscles’

activation. The torque values of the second frame are increased

from 9 N/m to 34 N/m relatively as sensor 4 jumps. The frame

1 torque values show some discrepancy but this is caused

because of the axis z is crossed while the user is flexing

forward his arm. Also, sensor 3 is reacting to this motion as

the deltoid muscle is triggered slightly. It should be mentioned

that is difficult to isolate the muscle’s activation at the shoulder

as they are wrapped together to help the shoulder’s rotation to

the three axes.

C. Experimental Analysis

To analyze the electromyographic (EMG) data, the collected

signal was first filtered. Filtering was done in 3 stages: High

Pass filter, Low Pass filter and Notch Filter. A butterworth
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(a) Shoulder Abduction

(b) Shoulder Forward Flexion

Fig. 5 Experimental results for the Shoulder Abduction and Shoulder Forward Flexion Motions

filter was used to design these filters. The corner frequency of

the high-pass filter was 10 Hz while the corner frequency of

the low-pass filter was 500 Hz and the frequency of the notch

filter was 50 Hz. This process removed any noise below 10

Hz, above 500 Hz and at 50 Hz.

After the filtering process, the peaks of the EMG were

found. These peaks were used to find a relationship between

the torque extracted from the Kinect data and the EMG

extracted from the Delsys. We used the inbuilt peak detection

function in MATLAB to detect the peaks. Furthermore, both

the EMG and the torque data were downsampled to 1 HZ,

resulting in one data point per second. This was done for

EMG data too. Peak data at each second was calculated as

the mean of the EMG peaks for 500 ms on either side of the

second mark.

Lastly, the relationship was found by using Kendalls

Rank Correlation method. This is a nonparametric correlation

method. It operates by assigning ranks to each datapoint and

calculating the concordant and the discordant pairs. Consider

a data point in a set, any data point below the considered one

is assumed to be a concordant pair if the rank for the new data

TABLE I
CORRELATION VALUES BETWEEN TORQUE AND ELECTROMYOGRAPHIC

SIGNAL

Exercise Sensor Tau P

Abduction
EMG3 1 5.51E-07
EMG4 -0.82222 3.58E-04

Forward
Flexion

EMG3 -1 4.96E-05
EMG4 1 4.96E-05

point is smaller than the rank for the considered data point. It

is a discordant pair if the rank for the new data point is greater

than the initial data point. Kendalls correlation calculates τ by

using the following formulae:

τ =

∑
D −∑

D
∑

D +
∑

D
(1)

where C are the Concordant Pairs and D are the Discordant

Pairs. This yields a value between -1 and 1 where -1 indicates a

strong negative correlation and ’+1’ indicates a strong positive

correlation. 0 indicates no correlation.

Figs. 6a and 6b show the opposite correlation of the

torque values estimated by our biomechanical model and
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(a) Shoulder Abduction

(b) Shoulder Forward Flexion

Fig. 6 Experimental Analysis for the Shoulder Abduction and Shoulder Forward Flexion Motions
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the electromyographic filtered signal after the analysis. These

results confirm our hypotheses for torque estimation per axes

with the isolated muscle to electromyographic data analysis.

Specifically, in Table I we can see that the correlation values

for the shoulder abduction motion give τ = 1 and τ =
−0.82222 for the EMG3 and EMG4 respectively. This means

that the torque1 value has linear increasing rate such as

the EMG3 signal. On the other hand, torque2 value follows

closely the linear decreasing of the signal. An analogous trend

is observed in the shoulder forward flexion EMG and torque

correlation graph (Fig. 6b), because the increments rates are

opposite. Thus, we can justify the torque values and claim

that our biomechanical model can be used for shoulder torque

estimation in rehabilitation exercises.

IV. HAPTIC PATH

In this work, the robotic arm can help guide the user

to follow a precise trajectory as dictated by previously

recorded exercises done by a physical/occupational therapist.

The user can attempt to perform the prescribed exercise and if

he/she deviates from the prescribed trajectory, an appropriate

correctional force is applied by the robotic arm to guide

him/her back to the correct trajectory. Besides spatial, the

deviation can also be temporal, i.e. the user performs the

exercise much slower or much faster than the therapist. When

either of the two deviation types occurs, an error-correction

force is applied to bring the patients hand position closer to

the prescribed trajectory.

A. Haptic Forces

In order to assist the user to stay close to a prescribed path

in the 3D space, a force-field (Fig. 8a) is rendered from the

given start position pB
start to the end target position pB

end

of the path, as Fig. 8b depicts. If the user deviates from the

given path, a perpendicular force will be applied in order to

push the users arm to stay close to the path. At each moment,

the robot’s end-effector position pB
t searches for the closest

point at the haptic path. The direction and magnitude of the

force in the end-effector position pB
t, is calculated by the

pB
N point and the absolute distance dt respectively.

The haptic path has been reconstructed with the use of an

impedance control mechanism that controls the position of the

robot’s end-effector ( pB
t) at the corresponding trajectory point

( pB
NN ). The impedance control aims to increase or decrease

the compliance (stiffness) of the robot in order to allow the

user to deviate more or less from the predefined trajectory.

This stiffness values (K) constrains the user to the trajectory

and acts as the spring constant. The force generated (ft) is

equivalent to ft = K × dt. The proportional gain (P) that

represents the stiffness of the force-field of the impedance

controller, behaved similarly to the K spring constant value.

By changing the P value we are able to bring the patient’s

hand closer to the therapist’s prerecorded trajectory.

B. Haptic Control

The control chart of the proposed control system can

be found in Fig. 7. The Barrett WAM robot is directly

interacting with patients arm τp. All motion parameters that

associate the kinematics of the robot are measured with

internal sensors. In our case, the measurements are provided

through the Barrett WAM’s Puck sensor that operates in

500 Hz. The forward kinematics of the robot is used to

calculate the actual end-effector position, which is fed into the

visual interface implemented in the Unity 3D game engine.

This provides a visual feedback about the end-effector’s

trajectory as well as the start position pstart and target

position ptarget that defines the haptic path. This information

is used to calculate the nearest neighbor point pNN on

the path and the tangential vector fassist/resist by means

of the end-effector position. The transposed Jacobian JT (q)
is used to calculate the corresponding joint torques τ that

accelerates the robot. Additionally, the compensation model

τcomp which is consisting of the friction, gravity and spring

compensation module, provides the necessary torque to keep

the arm stationary.

C. Haptic Experiments
In order to test the compliance of the impedance controller,

we recruited one chronic stroke patient and we conducted

three experiments with different proportional values. Then,

we analyzed the effects of the haptic controller by using the

Dynamic Time Warping method to derive spatial or temporal

error deviations in the user’s cartesian trajectory. Figs. 9a and

9b illustrates the Cartesian position in the plane during the

haptic path exercise. In particular, the desired trajectory is

shown with red targets to the stroke patient (Virtual Exercise)

(Fig. 2) and is represented by the red line in Fig. 9a. The

stroke patient was instructed to perform each exercise (Haptic

path) with the best of his abilities and try to reach all the red

virtual targets.

D. Haptic Response
Three exercises were performed with the stroke patient with

small breaks of 5 minutes (Fig. 9a). In the first, exercise (A) the

stroke patient was unassisted (P = 50) and his error deviation

was error = 4.9114. At the second execution (B), the stiffness

value of the impedance controller was (P = 100) and the

stroke patient’s error trajectory deviation from the prescribed

path was error = 0.65122. Finally, we increased the robot’s

assistance (C) with (P = 800) and he managed to execute the

exercise correctly (error = 0.22548).
Similar experiments were conducted with an unimpaired

user. In Fig. 9b the user’s performance did not change

drastically as he manages to control the motion of his hand

successfully and his error deviation is getting better as long

the robotic arm constrains him to the prescribed trajectory.

It is clear that when the applied rendered forces constrain the

users to the prerecorded exercises, the error deviation is getting

smaller. This phenomenon implies that patient will be able to

increase hand coordination and improve motor skills with the

passage of time.

V. CONCLUSIONS AND FUTURE WORK

In this work, we presented an unobtrusive home-based

rehabilitation system that consists of an RGBD camera, an
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Fig. 7 Control chart of the impedance haptic path controller implemented in the Barrett WAM robot

(a) Prescribed exercise represented by a haptic path

(b) Prescribed exercise represented by a haptic path

Fig. 8 Prescribed exercise represented by a haptic path
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(a) Stroke patient (b) Unimpaired user

Fig. 9 Error deviation for three difference proportional values: A) P = 50; B) P = 100; C) P = 800

end-effector robotic arm, an intelligent control module that

allows therapists to change the input parameters, and a haptic

controller that adjusts the control input signal of the robot.

Particularly, we validate our previous proposed vision-based

system with electromyographic signals from the Delsys

device for primitive motions. Furthermore, we investigate the

developed haptic controller’s response in exercises performed

with a chronic stroke patient and an unimpaired user.

In the future, we plan to integrate our home-based robotic

rehabilitation system with multisensory data coming from

physiological sensors, such as the Microsoft Band. These data

will estimate the user’s arousal and muscle fatigue in real-time

using a hierarchical fuzzy logic controller. It is estimated

that such a multisensing upper-limb intelligent rehabilitation

system will be able to adapt the robot’s behavior and deliver

personalized rehabilitation sessions.
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