
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:3, 2017

399

Efficient Filtering of Graph Based Data Using
Graph Partitioning

Nileshkumar Vaishnav, Aditya Tatu

Abstract—An algebraic framework for processing graph signals
axiomatically designates the graph adjacency matrix as the shift
operator. In this setup, we often encounter a problem wherein we
know the filtered output and the filter coefficients, and need to
find out the input graph signal. Solution to this problem using
direct approach requires O(N3) operations, where N is the number
of vertices in graph. In this paper, we adapt the spectral graph
partitioning method for partitioning of graphs and use it to reduce
the computational cost of the filtering problem. We use the example
of denoising of the temperature data to illustrate the efficacy of the
approach.

Keywords—Graph signal processing, graph partitioning, inverse
filtering on graphs, algebraic signal processing.

I. INTRODUCTION

PROCESSING of data such as weather data, seismic

activity data, sensor networks data, social network data,

transportation data requires the data to be represented in form

of signals on graphs. Given the large scope of applications,

analysis and processing of signals on graph is important

and it has become an emerging field of research in discrete

signal processing domain [1]. Signals on graph contrast itself

from the signals taken from uniform sampling schemes (e.g.

speech/audio signals sampled at uniform sample-rate, image

with pixels placed in uniform Cartesian grid,) in that the

signals on graph usually come from a nonuniform grid. In

graph signals, there is no natural ordering of the signal values,

rather the inter-relations between vertices are important, which

are captured in the graph adjacency matrix. Defining concepts

such as shift, Fourier transform and convolution for such

signals is not trivial and diverges greatly from similar concepts

defined for uniform signals.

Formally, a graph is a collection of vertices with a given

relation structure between the vertices. A graph G is denoted

as (V, A), where V is the set of vertices {v1, ..., vN} and

A is the graph adjacency matrix which provides the relation

structure between the set of vertices. For matrix A, each

element ai,j is the weight connecting vertex vj to vertex

vi. For an unweighted graph, the adjacency matrix A has

binary entries. For an undirected graph, A is symmetric.

Traditionally, spectral properties of graphs with symmetric

adjacency matrices are derived using graph Laplacian. Graph

Laplacian is defined as L = D − A, where D is a diagonal

matrix with di,i being the sum of edge-weights connecting

vertex vi. A recent approach [2] indicates that the spectral

Nileshkumar Vaishnav is with the Information and Communication
Technology Department, DA-IICT, Gandhinagar, India (e-mail:
201121007@daiict.ac.in).

analysis of graph signals can also be carried out effectively

using the graph adjacency matrix. This allows us to work

with signals on directed graphs, which is not possible with

Graph Laplaician based approach. It is pertinent to note

here that the early research on graph and graph Laplacian

focused on deriving topological properties of graphs such as

connectedness and the number of connected components. The

present focus of research is on how the properties of graph

affects the graph signals and how to effectively process the

same.
In graph Laplacian based signal processing, the study of

eigenvalues and eigenvectors of graph Laplacian is called

Spectral Graph Theory [3]. The graph Fourier transform is

defined by the eigenvector matrix of graph-Laplacian. This is

derived using analogy from 1-D signals, where the Fourier

transform is an expansion of a signal in terms of eigenvectors

of 1-D Laplacian. Hammond [4] defines wavelet transform

for graph signals using the aforementioned graph Fourier

transform. Convolution, filtering, translation and modulation

of graph signals are defined using the graph Fourier transform.

A limitation of the graph-Laplacian based approach is that it

works only if the graph is undirected.
In another line of work, algebraic signal processing theory

for LSI systems is developed by Puschel [5], [6]. Sandryhaila

extends the work of ASP for graph based signal processing

and introduced the algebraic model for graph signals and

filters in [2], [7]–[9]. In this model, both the graph filters

and graph signals are mapped to polynomials while the

adjacency matrix plays the role of the shift operator. Using

this model, concepts of graph Fourier transform, convolution,

filtering, modulation and translation are defined on polynomial

mappings of the graph signals and filters. An advantage of

graph signal processing based on adjacency matrix is that the

graph need not be undirected.
In this paper, we explain the inverse filtering problem in

the framework of algebraic graph signal processing. We also

discuss some existing methods to solve the problem, their

advantages and limitations. We propose that graph partitioning

is a viable solution to remove the limitations posed by other

methods. We adapt the spectral graph partitioning method to

achieve partitioning of directed graphs and apply the same for

denoising of temperature data.

II. ALGEBRAIC MODEL FOR GRAPHS

This section presents some important results related to

algebraic approach to graphs and defines a signal model for

the same. Detailed discussion on the results along with proofs

can be found in [2], [9].

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:3, 2017

400

Let G = (V, A) be the given graph, where V is the ordered

set of vertices and A is the related adjacency matrix. Let the

vertices be denoted as vi, i = 1, ..., N . Let the value at vertex

vi be si. Then the graph signal s̄ is given by,

s̄ = (s1, s2, ..., sN)T ∈ C
N

A matrix H ∈ C
N×N represents a linear transform (or filter)

that operates on a given graph signal. The adjacency matrix A
is designated as the shift operator. A graph filter H is called

shift-invariant iff H commutes with A. Proposition 12.4.1

in [10] provides an important result related to commutative

matrices. The result is reproduced here as Proposition 1.

Proposition 1. Given N × N matrices H and A such that

HA = AH , then H can be represented as a polynomial in A
provided that the characteristic and minimal polynomials of

the matrix A are identical. We can write H = p(A), where

p(x) is a polynomial of degree at most N − 1.

A. Algebraic Model

We assume that the matrix A has a set of N distinct

eigenvalues λ0, ...λN−1; which implies that its characteristic

and minimal polynomials are identical.1 The algebraic model

for signal processing is denoted by (A,M,Φ), where A is

the algebra of filters, M is A-module of signals and Φ is an

isomorphic transform which generalizes the z − transform.

Fourier Transform: Given the Jordan Normal Form of A to

be V JV −1, the matrix V −1 defines graph Fourier transform.

The spectrum of the signal s̄ is computed as V −1s̄. Since the

eigenvalues of A are assumed to be distinct, the spectrum can

also be given by (s(λ0), ..., s(λN−1)).
Filters: Let A = C[x]/pA(x), where C[x]/pA(x) is

the set of polynomials in x with multiplication defined as

modulo-pA(x) and pA(x) is the characteristic polynomial of

A. Let F be the space of filters. Using Proposition 1, a

shift-invariant filter H can be represented as a polynomial in

A, i.e. H = h(A), where h(x) is a polynomial of degree at

most N − 1. If A �→ x, then H = h(A) �→ h(x). In general,

a filter with L taps (h0, ...hL−1) can be written as

H = h0A
0 + h1A

1 + ...+ hL−1A
L−1

Signals: The signal space S is isomorphic to an A −
module M given by M = C[x]/pA(x) = {s(x)|s(x) =∑N−1

n=0 snbn(x)} where s = (s0, ..., sN−1) �→ s(x). The

isomorphism that maps the signal space S to the module

M is called the graph z-transform. With proper ordering of

eigenvalues and eigenvectors, following equation holds true;

which can be used to compute the coefficients of s(x).

(s(λi))
N−1
i=0 = V −1s̄

Filtering: If signal s̄ �→ s(x) is filtered by H �→ h(x), then

filtered signal s̃ = Hs̄ �→ s̃(x) is given by,

s̃(x) = h(x)s(x) mod pA(x)

1The algebraic model described in the paper is applicable even if A has
repeated eigenvalues. The assumption is made solely to simplify the discussion
of key concepts.

Frequency Ordering: Frequency ordering is defined using

the total variation (TV) of graph signals, denoted by TVG,

and defined as TVG(s) = ‖s − Anorms‖1, where Anorm =
1

|λmax|A is the normalized shift operator and |λmax| is

the maximum of the absolute eigenvalues of matrix A.

Normalization of A avoids the attenuation/amplification of

the signal while shifting. Larger value of TVG(s) indicates

presence of higher frequency content in the signal. Frequency

ordering provides the framework to define concepts such as

low and high frequencies and as a consequence, filters with

desired response can be designed. For details on filter design,

refer [8].

III. INVERSE FILTERING PROBLEM

Consider a graph G = (V, A), where V is the set of vertices

with |V| = N and A is the adjacency matrix. Assume that we

know the output graph signal b̄ of a particular filter H and our

aim is to find the input signal x̄. As we assume that the filter

H is LSI (with respect to shift A), we can write H = h(A).
Hence, the problem of inverse filtering is stated as below.

h(A)x̄ = b̄

We assume that we know the filter h by taps. Solving

the above system of linear equations using a direct approach

has a computational cost of O(N3). This cost is practically

prohibitive for large values of N . However, in many cases the

matrix A is sparse and this sparsity can be used to minimize

the computation cost.

A. The Cost Function
In many cases, a set of signals are required to be filtered

by a set of filters. Let’s call such a processing requirement

as batch processing. In solving the inverse filter for a set of

filters in batch processing mode, the computational cost comes

from three major tasks. The first task is processing of the

adjacency matrix (e.g. diagonalization, solving for eigenvalues,

triangulation). The second task involves processing the filter

h(A) in a form that is suitable for efficient application of

filter. The third and final task involves applying the filter on

a particular instance of the graph signal. We denote the costs

as C1, C2 and C3 respectively.
Consider the example of filtering temperature data based on

a geodesic adjacency matrix. Let’s assume that the temperature

values are corrupted by noise and our aim is to recover

the original signals. In such a case, the adjacency matrix is

identical for processing all instances of signals. If we need

to denoise m number of signals by k number of filters for a

given adjacency matrix, then the total cost C can be expressed

as

C = C1 + kC2 +mkC3
IV. PRESENT APPROACHES AND THEIR COMPUTATIONAL

COSTS

In this section, we overview some existing approaches to

solve the batch filtering problem. We also list down their

advantages and limitations that would explain which of the

methods is more suitable for batch processing given the values

of k and m.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:3, 2017

401

A. Inverse Filtering in Fourier Domain (JNF)

In this approach, the Jordan Normal Form (JNF) of the

adjacency matrix is computed first. Let A = V JV −1, then

a filter h(A) can then be computed as h(J) in the Fourier

domain. Similarly a signal b̄ must be first converted into

Fourier domain as V −1b̄.

h(A)x̄ = b̄

⇒ h(J)V −1x̄ = V −1b̄

The computational costs associated with this approach are

O(N2) for both C2 and C3. However, computing the JNF of

any matrix is not a numerically stable operation. If the matrix

is diagonalizable, such an approach would still outperform

any other approach presented here for non-sparse matrices.

However, this method does not exploit the sparsity (if present)

of A, rather it produces a sparse matrix J which in turn gives

the computational advantage.

B. Inverse Filtering in Schur Form

As computing the JNF of a given adjacency matrix is

numerically unstable, the next best option is to triangularise

the filter. Such an operation can be achieved by using Schur

form of adjacency matrix A, given by A = UTU∗, where U
is a unitary matrix and T is an upper triangular matrix.

By proceeding in the similar fashion as done in JNF, it can

be concluded that the matrix U∗ can be used to put any h(A)
into a triangular form and then the equation can be solved

using the process of back substitution, solving an instance of

signal filtering in O(N2).

C. Converting the Problem into Forward Filtering

In this method, instead of directly solving the inverse filter,

the problem is first converted into a forward filtering one [11].

If we can find a filter g(A) such that h(A)g(A) = I , then

x̄ = g(A)b̄ can be solved in O(KLN) for K-sparse matrix A
and L order filter g(A). However, this approach requires us to

compute filter g(A) by evaluating the inverse filter response at

N points. Such an operation requires O(N3) computations in

the worst case scenario. To avoid this situation, the filter-order

L is fixed and then the g(A) is found using least-squares

approach. However, such an approach is not guaranteed to

result in the desired filter response, while still requiring

O(L2N) operations.

While the methods described above may be useful for

various filtering problems, all the three methods suffer from

a severe drawback. They all require the knowledge of

eigenvalues of matrix A, either directly or indirectly. We

know that solving eigenvalue problem requires solving a

polynomial of degree N , which is computationally complex

and numerically unstable for large N . If the matrix A is sparse,

the present professional softwares provide ways to find a few

eigenvalues and associated eigenvectors. However, the number

of eigenvalues that are provided are minuscule compared to N .

In the next section, we look at how we can resolve the issue

by partitioning a graph into two nearly equal sized subgraphs.

V. FILTERING BASED ON GRAPH PARTITIONING

For large number of vertices, efficient implementation of

inverse filtering is impractical, therefore we try to partition

the given graph into multiple small partitions and then attempt

to process the signal into two subgraphs. There is also an

algebraic motivation for partitioning a graph into multiple

subgraphs. We know that A = V JV −1. For simplicity of

discussion, assume that J is a diagonal matrix, then Al =
V J lV −1. The largest permissible power of A is N − 1.

However, the eigenvalues of A do not have identical norms,

and hence J l is dominated by the largest absolute eigenvalue

of A as l grows larger. This means that the higher powers of

A are unnecessary for filtering purpose as they don’t capture

the frequency information at whole spectrum of A. This also

indicates that we can do the desired filtering with lower powers

of A. Partitioning a set into multiple subgraphs automatically

reduces the largest allowable power of a filter, and assists lower

order filter design. Another advantage of graph partitioning

based approach is that the filter H need not be a shift-invariant

filter. We will see later that denoising filter contains terms A
and A∗ and hence it is not necessarily a shift-invariant filter.

Definition 1: Graph Partition. Given a graph G = (V, A),
where V is the set of vertices, if V1,V2, ...,VP are sets of

vertices, where P ≤ |V| = N , such that Vi ∩ Vj = φ, ∀i
= j

and
⋃P

i=1 = V , then V1, ...VP is called partition on graph G.

Our aim is to divide a directed graph into two almost

equal size partition subgraphs. A method called spectral graph
partitioning presented in [12] provides a way to partition

an undirected graph into two almost equal sized partition

subgraphs. Given an undirected graph, the eigenvector

associated with the second eigenvalue (in ascending order

of eigenvalues) of the graph Laplacian is computed. This

eigenvector has all real entries as graph Laplacian is a

positive semi-definite matrix. Let the eigenvector be e2, then

e2 > median(e2) divides the graph into two almost equal

sized partitions. We can also use a custom constant instead of

median(e2) in order to achieve desirable partition. However,

this method requires modifications to be applicable to directed

graphs.

Given a directed graph with large number of vertices, first

compute B = AAT , where AT is the transpose of matrix

A. The matrix B is symmetric and hence we can apply

the spectral graph partitioning on the same. The eigenvector

associated with second eigenvalue of graph Laplacian defined

using adjacency matrix B provides the desired partitioning for

the directed graph under consideration. Other symmetric forms

such as A+AT or ATA can also be used which result in small

variations in output partitions.

A. Experimental Results: Denoising Temperature Data

Temperature data provides a typical example of graph data.

We consider each temperature recording sensor as a vertex

of the graph and each temperature value from that sensor as

the temperature sample. We use the climate data provided by

NOAA (National Oceanic And Atmospheric Administration,

US), which is publicly available. We consider 197 such sensors

hence N = 197. Each graph signal is a vector of length N .

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:3, 2017

402

Fig. 1 Partitioning of graph vertices, where ’*’ and ’+’ indicate two separate
partitions

We consider the US temperature record of a full year (i.e.

365 days) for year 2014. We have kept N as relatively low,

so that the unpartitioned filtering can also be computed and

be compared with the results of partitioned filtering. We add

Gaussian and uniform noise to data and attempt to recover

the signal using denoising filter (I + α(I − A)∗(I − A))−1,

where α is the regularization parameter.2 The partitioning of

the temperature sensor is indicated in Fig. 1.

TABLE I
AVERAGE RMS ERRORS IN DENOISED TEMPERATURE DATA

Noise Regularization Parameter
0.01 0.1 0.5 1 10

Gaussian U 9.88 8.98 7.06 6.50 12.52
RMS = 10 P 9.87 8.95 7.05 6.58 12.58
Gaussian U 19.77 18.03 13.89 11.99 14.86
RMS = 20 P 19.77 18.04 13.98 12.10 14.95
Uniform U 9.89 9.06 7.32 6.91 12.88
RMS = 10 P 9.89 9.07 7.45 7.10 13.00
Uniform U 19.77 18.00 13.55 11.25 13.03
RMS = 20 P 19.77 17.98 13.54 11.24 12.86

U indicates output for unpartitioned graph, p indicates output for partitioned
graph.

TABLE II
STATISTICAL COMPARISON OF RUNTIME (IN SECONDS) FOR FILTERING

UNDER UNPARTITIONED AND PARTITIONED GRAPHS FOR 100 TRIALS

Unpartitioned Partitioned
Mean 4.05 1.63
Std Deviation 0.3 0.1

From Table I, it can be seen that the denoising based on

partitioned filter performs comparatively to the unpartitioned

filter. Table II shows the runtimes of both the approaches over a

run of 100 trials. From Tables I and II, it can be concluded that

there is a significant improvement in runtime with partitioned

graphs with negligible change in the output. At the same time,

for very large values of N (typically N > 10000), partitioning

2The filter is arrived at by minimizing the cost function ‖x̄− ȳ‖22+α‖x̄−
Ax̄‖22 with respect to x̄. Here, ȳ is the noisy signal.

is the only practical way to proceed, as the matrices associated

with such large N tend to consume too much memory to be

processed without aid of special purpose computers.

VI. CONCLUSION AND FUTURE WORK

We looked at various approaches to solve the inverse

filtering problem for graph signal processing. For processing

graph with large number of vertices, we propose a partition

based filtering method, the efficacy of which is established

using the temperature data denoising. We also demonstrated

how symmetric forms such as AAT can be used to partition

a directed graph using spectral graph partitioning method.

REFERENCES

[1] Pascal Frossard Antonio Ortega David I Shuman, Sunil K. Narang and
Pierre Vandergheynst, “The emerging field of signal processing on
graphs,” IEEE Signal Processing Magazine, pp. 83–98, May 2013.

[2] Jose M. F. Moura Aliaksei Sandryhaila, “Discrete signal processing
on graphs,” IEEE Transactions on Signal Processing, vol. 61, pp.
1644–1656, 2013.

[3] F. R. K. Chung, Spectral Graph Theory, AMS, 1996.
[4] P. Vandergheynst D. K. Hammond and R. Gribonval, “Wavelets on

graphs via spectral graph theory,” J. Appl. Comp. Harm. Anal, vol. 30,
no. 2, pp. 129150, 2011.

[5] Markus Püschel and José M. F. Moura, “Algebraic signal processing
theory: Foundation and 1-D time,” IEEE Transactions on Signal
Processing, vol. 56, no. 8, pp. 3572–3585, 2008.

[6] Markus Püschel and José M. F. Moura, “Algebraic signal processing
theory: 1-D space,” IEEE Transactions on Signal Processing, vol. 56,
no. 8, pp. 3586–3599, 2008.

[7] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on
graphs: Graph fourier transform,” in IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), pp. 6167-6170,
2013.

[8] J. M. F. Moura A. Sandryhaila, “Discrete signal processing on graphs:
Graph filters,” in IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), pp. 6163-6166, 2013.

[9] J. M. F. Moura A. Sandryhaila, “Discrete signal processing on graphs:
Frequency analysis,” IEEE Transactions on Signal Processing, vol. 62,
no. 12, pp. 3042–3054, 2014.

[10] P. Lancaster and M. Tismenetsky, The Theory of Matrices, Academic
Press, 2nd edition, 1985.

[11] Jose M. F. Moura Jelena Kovacevic Siheng Chen, Aliaksei Sandryhaila,
“Signal denoising on graphs via graph filtering,” in IEEE Global
Conference on Signal and Information Processing (GlobalSIP),,
December 2014.

[12] Kang-Pu Paul Liu Alex Pothen, Horst D. Simon, “Partitioning sparse
matrices with eigenvectors of graphs,” Report, NAS Systems Division,
NASA Ames Research Center, 1989.

