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Numerical Example of Aperiodic Diffraction
Grating

Youssef Khmou, Said Safi, Miloud Frikel

Abstract—Diffraction grating is periodic module used in many
engineering fields, its geometrical conception gives interesting
properties of diffraction and interferences, a uniform and periodic
diffraction grating consists of a number of identical apertures that are
equally spaced, in this case, the amplitude of intensity distribution
in the far field region is generally modulated by diffraction pattern
of single aperture. In this paper, we study the case of aperiodic
diffraction grating with identical rectangular apertures where theirs
coordinates are modeled by square root function, we elaborate a
computer simulation comparatively to the periodic array with same
length and we discuss the numerical results.

Keywords—Diffraction grating, interferences, amplitude
modulation, laser.

I. INTRODUCTION

D IFFRACTION occurs to waves when they encounter

obstacles or slits whose dimensions are comparable to

the wavelength [1]-[3]. This property is common to all types

of waves such as x rays, electromagnetic and acoustical ones.

Starting from the position of the slit, the diffraction pattern

in the far field is generally the Fourier transform of the slit’s

geometry.

The analysis of the diffraction pattern shows that, if we

take two points from the slit, constructive interferences occur

when the path difference between the two punctual sources

is multiple of the wavelength, a simple example is the Bragg

diffraction law where this relation enables the characterization

of the crystal’s structure [4]. An interesting effect takes place

when the aperture is an array of slits which is known as

diffraction grating [3]-[5], it is periodic structure of slits that,

in general, have the same dimensions (width and height)

and uniform spacing. Diffraction grating is used in many

engineering fields such as electronics materials. When a planar

wave is diffracted, the intensity profile in far field region

has many characteristics. The resolution becomes sharper due

to the presence of multiple slits, the central peak becomes

narrower with large array and the intensity distrubution is

modulated by single aperture diffraction pattern. This effect

is also the same in antennas [6], given an array of multiple

and identical antennas which are equally separated (in general

the distance is half the wavelength), the total radiation pattern

is simply the radiation pattern of single antenna multiplied by

the array factor, which is the sum of the phase contributions

from all antennas. If the distance between the apertures in

the diffraction grating is not uniform, the intensity profile of
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the diffraction is affected. For example, we may notice the

variation of half maximum beam width of the central peak, the

amplitude modulation may also change and other properties

such as the ratio of the first peak over the second one.

The purpose of this paper is to examine the intensity pattern

of diffraction grating whose distance between consecutive slits

is not uniform or simply the non periodic diffraction grating,

we treat the problem in one dimension, we compare the

intensity distributions of the periodic diffraction grating and

that of the non periodic array where they both have the same

length, the obtained results are based on computer simulation

using Fraunhofer approximation [7].

In the next section we present the general framework of

the problem and we explicit the theoretical expression of the

intensity distribution for uniform diffraction grating. Next, we

present the proposed model of the non periodic array. In the

third section, we perform some computer simulations where

we compare some characteristics of the periodic and aperiodic

diffraction gratings.

II. THEORY

We start this section by studying the diffraction pattern of

single rectangular slit characterized by width a and height b, let

us consider the position of the slit as the reference of Cartesian

coordinates (x,y,z) as presented in Fig. 1.

b

x

a

z

�E(t)

Fig. 1 Plane wave diffraction by rectangular aperture (b � a)

A plane monochromatic wave [8], polarized in z direction,

is given by:

E(t) = E0e
j(ωt−ϕ) (1)

where E0 is the amplitude of the wave in V/m, ω = 2πν and

ν is the frequency in Hz, given the speed of wave c � 3×108

m/s, the wavelength is λ = cν−1, E(t) satisfies the equation

of propagation (see appendix).



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:10, No:12, 2016

715

To simplify the problem, we consider that ϕ = 0 and

b � a which reduces the problem to one dimensional system.

A screen is placed at distance L from the slit where the

Fraunhofer condition is verified by:

L � 2a2

λ
(2)

In this case of far field [9], [10], the radius of propagation

r varies slowly, taking two rays r and r2 from two points

in the slit to a common point x on the screen, we have the

approximation r−1 � r−1
2 . The resulting electric field from

diffraction is given by:

E(t) =
E0

r
ej(ωt−kr)

∫ a
2

− a
2

e−jkx sin(θ)dx (3)

=
E0a

r
ej(ωt−kr)sinc

(πax
λL

)
where sin(θ) � tan(θ) = x/L using the approximation of

small angle θ, k = 2π/λ is the wave number and sinc(x) =
sin(x)/x is the unnormalized sinc function with maximum

value sinc(0) = 1.

We consider a diffraction grating of N identical slits with

the same dimensions b � a and uniform inter-element

distance d, the total diffracted electric field is the sum of the

contributions from all apertures, the field E(t) is given by the

linear superposition:

E(t) =

N∑
n=1

En(t) (4)

Developing the above equation yields to the following

expression:

E(t) =
E0a

r
ej(ωt−kr)sinc

(πax
λL

)N−1∑
n=0

e−jknd sin(θ) (5)

Rearranging the right-hand side of the above equation using

the sum of the geometric series, we obtain the following result:

E(t) =
E0a

r
ej(ωt−kr)sinc

(πax
λL

)
ejβ

sin
(
Nπxd
λL

)
sin

(
πxd
λL

) (6)

where the constant ejβ is given as:

β =
πxd(N − 1)

λL
(7)

Studying the diffraction pattern of E(t) is performed over

a time period T , the intensity distribution I(x) is proportional

to the first order correlation function as:

I(x) =
1

2
ε0c 〈E(t)E∗(t)〉 = ε0c

2T

∫ t+T
2

t−T
2

E(t)E∗(t)dt (8)

= I0sinc
2
(πax
λL

)(sin
(
Nπxd
λL

)
sin

(
πxd
λL

)
)2

where I0 = ε0cE
2
0a

2/2r2 in W/m2, ε0 � 8.85 × 10−12 F/m

is the permittivity and (.)∗ is the conjugate operator. The

maximum intensity at the origin x = 0 is given by:

lim
x→0

I(x) = I0N
2 (9)

The diffraction resolution becomes sharper when the

number of the apertures N increases. I(x), in this case, is

modulated by single slit diffraction pattern of width a where

the intensity of the diffracted wave is I0N
2.

The contribution, in this paper, consists of studying the

intensity distribution of diffraction grating where the spacing

between the apertures is not uniform, we consider a case where

the distance is modeled by square root function with fixed

boundary conditions. It is assumed that the distance between

two consecutive apertures is the length between theirs centers.

The length of the uniform array where d � a is given by the

relation:

l = (N − 1)d+ a (10)

Let us consider a vector D ∈ R
N×1 that represents the

coordinates of the apertures as:

D =

⎛
⎜⎜⎜⎜⎜⎝

0
d
2d
...

(N − 1)d

⎞
⎟⎟⎟⎟⎟⎠ (11)

The length of the non periodic array is also l, with the same

characteristics (a,b,N ) except the coordinates of the apertures,

the vector of coordinates is modeled by square root function.

Given a vector u ∈ R
N×1 with components:

u = αD =

⎛
⎜⎜⎜⎜⎜⎝

0
(N − 1)d2

2(N − 1)d2

...

(N − 1)2d2

⎞
⎟⎟⎟⎟⎟⎠ (12)

The new vector D′ ∈ R
N×1 that is the square root of u is

given by:

D′ =
√
u =

⎛
⎜⎜⎜⎜⎜⎝

0√
(N − 1)d

2
√
(N − 1)d

...

(N − 1)d

⎞
⎟⎟⎟⎟⎟⎠ (13)

D′ represents the coordinates of apertures in aperiodic

diffraction grating, D
′
= (d′1 = 0, d′2, ..., d

′
N = α). For two

slits N = 2, we have D = D′ = (0, α), the two arrays are

identical, however for N > 3, the coordinates are different,

for example if we take N = 3 where α = 2(d+a), we obtain

the following values for D:

D =

⎛
⎝ 0

d
2d

⎞
⎠ (14)
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and for D′ we have the values:

D =

⎛
⎝ 0√

2(d)
2(d)

⎞
⎠ (15)

To evaluate the diffraction pattern of the non periodic array,

we calculate the intensity distribution I ′(x) as the following:

I ′(x) = I0sinc
2
(πax
λL

) N∑
n=1

e−jkxd′
n/L

N∑
n=1

ejkxd
′
n/L (16)

We can also remark from the above equation that at the

origin x = 0, the intensity of the central peak is N2I0,

however for x �= 0 the distributions of I ′(x) and I(x) do not

have the same pattern, to illustrate this difference, we present

some numerical results in the next section.

III. NUMERICAL SIMULATION

In this part, we conduct some computer simulations to

compare the intensity distributions of uniform and non

periodic diffraction gratings using monochromatic wave. We

consider a HeNe laser with wavelength λ = 0.633 μm and

initial intensity I0 = 0.04 mW/m2.

In the first part, we take a diffraction grating with N = 20
identical slits characterized by width a = 20 μm, height b � a
and uniform distance d = 400 μm, the length of the array is

l = 0.80 cm. The screen is placed at distance L = 1.2 m from

the array perpendicularly to the optical axis. Fig. 2 illustrates

the intensity distribution I(x).
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Fig. 2 Intensity pattern I(x) of uniform diffraction grating, N = 20

The amplitude of I(x) is modulated by single aperture

diffraction pattern where the width of the central peak is given

by:

Δx =
2Lλ

a
� 7.6cm (17)

In the second part, we compare the two vectors of

coordinates D and D′ described by (11) and (13) respectively,

the result is illustrated in Fig. 3.
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Fig. 3 Coordinates of apertures for periodic and nonperiodic diffraction
gratings, N = 20
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Fig. 4 Consecutive distance of periodic array, N = 20
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Fig. 5 Consecutive distance of aperiodic array, N = 20

For better illustration of the difference between the arrays,

we present the consecutive distances di and d′i in Figs. 4 and

5.

Next, we present, in Figs. 6 and 7, the prototypes of the

arrays where b � a.

In the third part, we implement (16) for the intensity I ′(x)
of the aperiodic array comparatively to the single aperture
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Fig. 6 Prototype of periodic diffraction grating, N = 20
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Fig. 7 Prototype of aperiodic diffraction grating, N = 20

diffraction pattern with intensity N2I0, the result is presented

in Fig. 8. We remark, from I ′(x), that for x �= 0 the intensity

decreases randomly and rapidly, the amplitude of I ′(x) is not

a function of single slit diffraction pattern, which is the case

for the periodic array as illustrated in Fig. 1.
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Fig. 8 Intensity pattern I′(x) of aperiodic diffraction grating, N = 20

The two profiles have the same mean value 〈I〉 = 〈I ′〉 � 0.4
mW/m2; however, they differ in terms of standard deviation

ΔI � 2 mW/m2, ΔI ′ � 0.8 mW/m2. The amount of intensity

in the range F =[−4 cm,4 cm] is the same for both arrays:∫
F

I(x)dx =

∫
F

I ′(x)dx � 2.9× 10−5 (18)

The intensity distributions are partially correlated, the

degree of correlation in this simulation is:

ρ =
〈(I − 〈I〉) (I ′ − 〈I ′〉)〉√
〈(I − 〈I〉)2〉 〈(I ′ − 〈I ′〉)2〉

� 0.22 (19)

Next, we present in Fig. 9, the normalized correlation

function.
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Fig. 9 normalized correlation function 〈I(x)I′(x+ τ)〉

This numerical study gives a multitude of differences of

the intensity distributions, the vector of coordinates D′ that

is modeled by the square root function has an impact on the

envelope of the diffraction pattern.

The presented case is based on spatial dimension where

the positions of the apertures have an impact on diffraction

pattern. For temporal dimension, we can interpret the problem

differently, instead of considering single wave and N apertures,

we can study the same effect in time dimension using a

superposition of N waves with different frequencies. Let us

consider a waveform E1(t) that consists of superposition of

N frequencies νi with bandwidth bw = [ν1, νN ] as:

E1(t) =
N∑
i=1

ej2πνit (20)

where the frequencies are uniformly distributed with rate dν
as:

νi+1 = νi + dν (21)

E1(t) is equivalent to periodic diffraction grating in time

dimension, similarly to the aperiodic diffraction grating, we

consider a second waveform E2(t) with the same number of

frequencies N , same bandwidth bw and different values of

frequencies that are distributed according to:

ν′i+1 =
√

νN (νi + dν) (22)
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Characterization of the frequency difference between the

two waveforms can be obtained by ratio χ defined by:

χ =
ν′i+1

νi+1
=

√
νN (νi + dν)

νi + dν
=

√
νN

νi + dν
(23)

The equivalent of diffraction pattern in this case is simply

the correlation function of the waveforms:

f(τ) = 〈E(t)E∗(t+ τ)〉 (24)

Therefore, the correlation functions f1(τ) and f2(τ) do not

have the same properties, similarly to the intensities I(x) and

I ′(x).

IV. CONCLUSION

In this paper, we have presented a geometric conception of

non uniform diffraction grating of identical slits, where the

coordinates of the apertures are modeled by the square root

function, the effect of varying consecutive distance between

the slits has an impact on the intensity distribution. To illustrate

this effect, we have made a numerical comparison between the

proposed and the periodic arrays where they have the same

length. Simulation results demonstrated that the non periodic

geometry changes the envelope of the diffracted intensity

distribution.

V. APPENDIX

The waveform expression given in (1) is a function of the

electric field that depends on time t and y coordinate, it is

obtained by solving the Maxwell equations:

�∇. �E = 0 (25)

�∇. �B = 0 (26)

�∇∧ �E = −∂ �B

∂t
(27)

�∇∧ �B = μ0ε0
∂ �E

∂t
(28)

where �B is the magnetic field and μ0 is the permeability μ0 =
4π × 10−7 H m−1, it is related to the speed of propagation

and permittivity by the equation:

c =
1√
μ0ε0

(29)

The operator �∇ is defined by the relation:

�∇ =
∂

∂x
�ex +

∂

∂y
�ey +

∂

∂z
�ez (30)

The vectorial expression �∇∧ �E, is written as:

�∇∧ �E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂Ez

∂y
− ∂Ey

∂z

∂Ex

∂z
− ∂Ez

∂x

∂Ey

∂x
− ∂Ex

∂y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(31)

Since the field is only dependent on y, using (25) and (26)

we get:

∂Ey

∂y
=

∂By

∂y
= 0 (32)

developing (27) yields to the following result:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Ez

∂y
− ∂Ey

∂z
= −∂Bx

∂t

∂Ex

∂z
− ∂Ez

∂x
= −∂By

∂t

∂Ey

∂x
− ∂Ex

∂y
= −∂Bz

∂t

(33)

Further simplification gives:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Ez

∂y
= −∂Bx

∂t

∂By

∂t
= 0

∂Ex

∂y
=

∂Bz

∂t

(34)

Similarly, (28) is reduced into:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Bz

∂y
= μ0ε0

∂Ex

∂t

∂Ey

∂t
= 0

−∂Bx

∂y
= μ0ε0

∂Ez

∂t

(35)

From (32), (34) and (35) we deduce that Ey = By = 0,

using the first part of (34) and the last part of (35), we get:

− ∂

∂y

∫ −∂Ez

∂y
∂t = μ0ε0

∂Ez

∂t
(36)

Next, the equation of propagation is:

∂2Ez

∂y2
=

1

c2
∂2Ez

∂t2
(37)

where the solution is �E = E0e
j(ωt−ky), since we are interested

in diffraction, to simplify the expressions, we considered that

ϕ = ky = 0.
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