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 
Abstract—The choice of applicable analysis methods in safety or 

systems engineering depends on the depth of knowledge about a 
system, and on the respective lifecycle phase. However, the analysis 
method chain still shows gaps as it should support system analysis 
during the lifecycle of a system from a rough concept in pre-project 
phase until end-of-life. This paper’s goal is to discuss an analysis 
method, the VISSE Shell Model Analysis (VISMA) method, which 
aims at closing the gap in the early system lifecycle phases, like the 
conceptual or pre-project phase, or the project start phase. It was 
originally developed to aid in the definition of the system boundary 
of electronic system parts, like e.g. a control unit for a pump motor. 
Furthermore, it can be also applied to non-electronic system parts. 
The VISMA method is a graphical sketch-like method that stratifies a 
system and its parts in inner and outer shells, like the layers of an 
onion. It analyses a system in a two-step approach, from the 
innermost to the outermost components followed by the reverse 
direction. To ensure a complete view of a system and its 
environment, the VISMA should be performed by (multifunctional) 
development teams. To introduce the method, a set of rules and 
guidelines has been defined in order to enable a proper shell build-up. 
In the first step, the innermost system, named system under 
consideration (SUC), is selected, which is the focus of the subsequent 
analysis. Then, its directly adjacent components, responsible for 
providing input to and receiving output from the SUC, are identified. 
These components are the content of the first shell around the SUC. 
Next, the input and output components to the components in the first 
shell are identified and form the second shell around the first one. 
Continuing this way, shell by shell is added with its respective parts 
until the border of the complete system (external border) is reached. 
Last, two external shells are added to complete the system view, the 
environment and the use case shell. This system view is also stored 
for future use. In the second step, the shells are examined in the 
reverse direction (outside to inside) in order to remove superfluous 
components or subsystems. Input chains to the SUC, as well as 
output chains from the SUC are described graphically via arrows, to 
highlight functional chains through the system. As a result, this 
method offers a clear and graphical description and overview of a 
system, its main parts and environment; however, the focus still 
remains on a specific SUC. It helps to identify the interfaces and 
interfacing components of the SUC, as well as important external 
interfaces of the overall system. It supports the identification of the 
first internal and external hazard causes and causal chains. 
Additionally, the method promotes a holistic picture and cross-
functional understanding of a system, its contributing parts, internal 
relationships and possible dangers within a multidisciplinary 
development team. 
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I. INTRODUCTION 

YSTEMS engineering in general, and especially safety 
engineering, uses a variety of different analysis methods in 

order to ensure the correct functioning and safety of a system. 
Some of these methods are even used iteratively, integrating 
the growing knowledge about a system as development 
proceeds. However, these analysis methods are bound to a 
specific phase in the engineering lifecycle w.r.t. to their first 
usage, which is depending on what minimal depth of 
knowledge about the system is necessary to apply that 
respective method. 

Fig. 1 shows the “hazard filter” [1, ch. 4.2], exemplarily 
filled with single methods according to the lifecycle phases of 
a system. The more a system development advances, the more 
sophisticated the necessary analysis methods become. These 
methods need deeper details about the system in order to 
produce meaningful results. Especially the classical (safety) 
analysis methods (e.g. FMEA, FTA, HAZOP) need detailed 
knowledge about a system [2] (p. 27). Only the early method 
types during conceptual design can be applied with a low level 
of system detail knowledge [1, ch. 4.3.1]. 

In order to apply an analysis method to a system correctly, 
it is necessary to first understand its basic requirements and 
design [1, ch. 5.2.2], and to have clearly defined system 
boundaries [1, p. 20]. Without those boundaries, the system 
cannot be distinguished exactly from its environment. It also 
becomes difficult to define the scope of analyses. 

System engineering and system safety should look at all 
aspects of a system as an integrated whole, rather than looking 
at individual components in isolation from the system [1, 
p. 4]. This is often termed holistic approach and is also 
advocated in [2, p. 19]. Though, most, if not all, of the 
analysis methods applicable at an early lifecycle stage (some 
of which are also listed in Fig. 1) exhibit at least one of the 
following shortcomings: 
1) Not following a structured and systematic approach (e.g. 

brainstorming) 
2) Not defining the system boundaries (e.g. PHL, PHA) 
3) Not defining a system structure (e.g. HAZOP) 
4) Not supporting a holistic view (e.g. FMEA, checklists) 

But when analyzing a (sub-)system-to-be-built at a very 
early stage (e.g. during concept phase), it is almost inevitable 
to come across the need for a structured method that aides in 
defining the overall system boundaries and its environment, 
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but also allows to focus upon the specific (sub-)system as it is 
embedded in the overall system.  

 

 

 

Fig. 1 The “Hazard Filter”  
 

II. THE BASIC IDEA  

A. Motivation 

The Vienna Institute for Safety and Systems Engineering 
(VISSE) conducted several support activities for safety 
analyses of new systems under development in different 
domains and industries over the past seven years. For this 
purpose, the systems in question had to be understood in great 
detail, mainly by conducting interviews with domain experts, 
developers and members of the project teams. 

At first, classical building block diagrams were used to 
depict the static build-up of the systems-to-be-analyzed. For 
dynamic behavior, description state diagram methods were 
used. But the more people were interviewed about a specific 
system, the more different and often divergent viewpoints 
were encountered, especially about the boundaries of the 
system. There were even ambiguities about the newly intended 
functioning of the system and its components. This resulted in 
quite some confusion and showed the need for a method that 
supports and emphasizes the understanding of a system as a 
whole, and the definition of its boundaries and environment. 
Such a method should be applicable already at a very early 
project stage with only cursory knowledge on the system itself 
and the overall system it is embedded into. It should facilitate 
a description of the components and their relationships within 
the overall system. It should foster awareness of possible 
environmental influences which may vary due to different 
usage scenarios. This method should serve as an entry point 
for further system and/or safety analyses; the focus on the 
However, looking into different descriptions [4]-[6] and 
collections [1], [3], [7] of analysis methods, no method was 
found that would satisfy the above mentioned needs. This 

suggested that there exists a method gap. 

B. Methodical Background 

As stated in [2, ch. 2.3], when developing a (safety critical) 
system, understanding of the system, its environment, its 
workings, its failure modes, etc., is crucial. The main obstacle 
in this context is the ever-increasing complexity of newly 
developed systems. Reference [2] claims that “[simplicity] is 
the only real way to ensure understanding, or 
understandability, of the systems being produced.” This 
simplicity can be achieved by use of appropriate structure. 
This is why VISMA uses the concept of simplification by 
focusing on one element of interest, called the SUC and its 
interactions with other system elements. This way, 
“unnecessary” details are omitted, thus limiting the efforts for 
modelling while still allowing purposeful input to subsequent 
analyses. 

Additionally, structuring is achieved by placing the 
different elements of the overall system into different layers, 
the so-called “shells.” These layers are arranged in a 
concentric manner in such a way that an onionskin-like model 
is generated. Furthermore, the structure gets enhanced via 
depiction of the relationships of the different components via 
arrows, thus defining also their basic interfaces. 

A preliminary version of VISMA was defined and 
described in [8], and used as basis for the method described in 
this paper. 

C. Goals of the Method 

Since the basic idea for the method was to support the 
build-up and structure of and within a system, its boundaries 
and the influencing factors, the main goals of the method are:  
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1) Definition of a system’s external boundary 
2) Depicting the intended inner structure of a system and the 

relationship between its components  
3) Consideration of environmental influences 
4) Definition and consideration of use cases, usage scenarios 

and situations 
5) Applicability at a very early lifecycle phase, e.g. pre-

concept or early concept phase 
Additional goals were identified during development of the 

VISMA method, in order to support, and provide input to, 
subsequent analysis methods: 
1) Definition and consideration of the top level functions 
2) Listing and considering the modes of the components and 

their influences on functions 
3) Listing of communication transfers in between the 

components and defining their interfaces 
4) Supporting the discovery and definition of preliminary 

hazards 
5) Providing a holistic picture of the system 

III. THE VISMA METHOD  

A. Prerequisites 

As the VISMA should be applicable at a very early lifecycle 
stage, little input is required: 
1) Basic idea or rough concept of the overall system 
2) Selection of the SUC itself 
3) Basic functional requirements of the SUC. 

B. Basic Concepts of VISMA 

The VISMA represents the structural and functional 
relationship between the SUC and its surrounding systems 
graphically as an interconnected structure, organized into a 
series of concentric stratums, or "shells". The elements of the 
structure depict the individual elements of a larger system 
which communicate with one other to execute functions. In 
addition, relevant influences from the environment and usage 
scenarios complement the view. A complete structure 
represents a system in its environment and is termed a shell 
model (SM) for the system. 

 

 

Fig. 2 Elements of the VISMA 
 

Fig. 2 depicts the elements of VISMA. A component is a 
part of a larger system and can be clearly delineated (e. g. a 
dedicated HW element, such as a sensor or actuator). Each 
component is identified by an arbitrary component identifier 
(such as a name or numerical ID) that must be unique over the 
shell model. 

The SUC is as a special kind of component and exists 
exactly once in a shell model - hence a unique symbol is 

reserved for it. Definition of and assignment of an identifier to 
the SUC forms the initial step in creating a shell model. 

In addition to the SUC, a shell model can contain an 
arbitrary number of regular (i.e. non-SUC) components, or 
even none at all. The regular components form the "inner" or 
system environment of the SUC which directly influence or 
depend on its behavior. 

 

 

Fig. 3 Arrows for direct communication and notation for indirect 
influence of component 

 
Direct communication between components is depicted by 

arrows between the component symbols for the exchange of 
messages. Messages include transfer of energy (e.g. 
electricity) or information (e. g. analogue or digital signals) - 
either unidirectional or bidirectional. Additionally, regular 
components can assert an indirect influence on the SUC (e. g. 
via heat or EMI) which is depicted on the component symbol 
by a "fringe" with a suitable label. Fig. 3 shows the arrows for 
direct communication and an indirect influence. 

Components are grouped into the eponymous shells to 
convey further information on the logical or physical structure 
of a system and to facilitate the definition of the analysis 
scope. Shells are (with one exception) depicted as closed 
curves of dashed lines which are aligned in a concentric 
fashion, similar to the layers of an onion. Each shell must 
possess a meaningful identifier placed inside the shell's outline 
which must be unique over the shell model. Therefore, the 
VISMA shells are non-empty subsets of components (i.e. each 
shell must contain at least one component) that form a 
hierarchy, starting from the innermost to the outermost shell. 
The meaningful definition of shells is an important aspect in 
the construction of a shell model and directly influences its 
readability and usefulness. 

C. Defining Shells 

After selection of the SUC, all components that directly 
communicate with the SUC have to be identified. This 
includes: 
- Components that provide input to the SUC (e. g. sensors, 

user input elements like buttons) 
- Components that receive output of the SUC (e. g. 

actuators, user output elements like displays) 
- Components that communicate in a bidirectional way with 

the SUC (e. g. clients, servers) 
Each of the identified components directly impacts or is 

impacted by the SUC and is termed an Adjacent Component 
(AC) of the SUC. The SUC and its ACs are grouped into a 
shell which is used as the innermost shell of the shell 
hierarchy as the shell model is further developed. As the ACs 
are situated at a "hop distance" of 0 from the view point of the 
SUC, this initial shell is termed the zero shell (Z-shell). A 
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well-formed shell model must contain exactly one Z-shell 
which must consist of only the SUC and its ACs linked by 
respective communication arrows. 

 

 

Fig. 4 Example of a zero shell depicting a Programmable Logic 
Controller (PLC) and its ACs 

 
Fig. 4 shows a typical example of a Z-shell with a generic 

PLC as the SUC together with its surrounding components as 
the ACs. Note the bidirectional communication to the 
component "Communication Bus", which is defined as an AC 
even though it could physically extend from the SUC by quite 
a distance. 

After definition of the Z-shell, further analysis might 
identify components that provide input or receive output from 
the ACs of the SUC, i.e. communicate only indirectly with the 
SUC. These "next order components" are placed outside the Z-
Shell and are grouped together into a new shell that fully 
encloses the Z-shell. This outer shell (O-shell) of order one 
(O1-shell) therefore contains only components with a distance 
of one hop from the SUC. 

 

 

Fig. 5 Adding the first O-shell with indirectly communicating 
components 

 
Fig. 5 shows how the running example of the PLC is 

extended by an O1-shell containing components that 
provide/receive indirect input (Sensor) or output (Actuator) 
to/from the SUC. Note that some ACs might not have a 
corresponding component in the O1-shell. 

The principle of identifying indirect senders/receivers and 
adding them by means of outer shells can be repeated an 

arbitrary number of times. This results in a hierarchy of shells 
with increasing order, where a higher-order shell encloses all 
shells of smaller order. The amount of O-shells to add is a 
matter of judgement by the constructor of the shell model and, 
in general, depends mainly on the complexity of the analyzed 
system and the intended scope of the analysis. After adding 
the last O-shell, this outermost O-shell is designated as the 
border of the system and is termed the system border shell (S-
shell). To facilitate visual recognition, the border of the S-shell 
is drawn with a solid line. 

 

 

Fig. 6 Adding a second O-shell (O2-shell) as the S-shell of the 
example system 

 
Fig. 6 shows the addition of a second O-shell (O2-shell) 

with a component "Operator" representing the user interacting 
over the user interface elements with the SUC. As the 
construction should end at this point, the O2-shell is marked as 
S-shell by its solid line. Of particular note is that the 
"Operator" communicates directly with two ACs, effectively 
"skipping" the O1-shell. The order of an O-shell should 
therefore not be conflated with the "hop order" of its 
components. Note however, that only O-shells might be 
skipped in this way - direct communication between the SUC 
and a component of an O-shell is not allowed. 

D. Further Shells 

The shells contained within the system border describe the 
structure of the analyzed system and can be considered as an 
"internal" environment for the SUC. Information on the 
environment external to the system is added via two 
specialized shells. 

The environment shell (E-shell) surrounds the S-shell and 
contains elements that represent environmental influences that 
might plausibly affect the SUC or regular components. A 
typical example is the influence of high or low temperature on 
the performance of electronic components. Environmental 
influences differ from the indirect influences exerted by 
regular components in that they originate from outside the 
system and are not limited to E/E/PE-related phenomena. Each 
environmental influence is identified by a suitable identifier 
(e. g. "heat", "moisture", “vibration”). 
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The use case shell (U-shell) surrounds the E-shell and 
contains use case elements that represent usage scenarios or 
situations of the system and the SUC. The intention is to 

define a set of disjoint "profiles" for further analyses, which 
can be used to analyze the SUC under different circumstances 
(e.g. low vs. high demand). 

 

 

Fig. 7 Complete PLC example with added E-shell and U-shell 
 

A complete shell model for the running example is depicted 
in Fig. 7. Note that no communication arrows originate or end 
at elements of the E- and U-shell. 

E. Complementary Information 

The information conveyed by the elements of a shell model 
is, in general, not enough to fully understand the workings of a 
system. This is deliberate in order to avoid overloading the 
graphical depiction. However, for a thorough understanding of 
the system, additional information is necessary. Specifically, 
the following complementary data should be specified for a 
shell model: 
- For each component, including the SUC, a description of 

the component's purpose in the system and its interfaces 
for direct communication 

- For each regular component with indirect influences, a 
description of each indirect influence asserted by the 
component and detailed constraints (e. g. exact thresholds 
for temperature, EM field strength, etc.) 

- For each communication arrow, the set of messages that 
can be exchanged between the communicating 
components 

- For the Z-shell and each O-shell, a description of the 
shell's meaning (i.e. the criterion for choosing this shell) 

- For each environmental influence, detailed constraints 
similar to the indirect influences 

- For each use case, a description of the use case focusing 

on important influences on the system and SUC (e. g. 
expected demand rate) 

The formal representation of the complementary 
information is not prescribed by VISMA. One possibility is to 
use a "data dictionary" - basically a set of simple tables with 
references to the elements of a shell model. An excerpt of a 
data dictionary for the running example can be found in the 
appendix. It is suggested to use a configuration management 
system for maintaining a shell model and its associated data 
dictionary. 

F. Derivation of System Functions 

A shell model is a static depiction of a system's structure. 
However, it is possible to describe the dynamic behavior from 
the relationships between communicating components. This 
allows further analyses of a system's intended and, more 
importantly, unintended behavior. 

A system function (or simply, function) is defined as an 
alternating sequence of components and unidirectional 
communications between them. The most basic function 
consists of one component, the sender, communicating some 
energy or information to another component, the receiver. 
Obviously, only components linked by a communication 
arrow in the shell model can be part of a function and the 
communication must match the direction and definition of the 
arrow. The communication between sender and receiver can 
consist of a non-empty subset of messages defined for the 
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communication arrow. By prefixing a proper message subset 
with a ‘!’, the subset consisting of the set difference between 
the given subset and the complete set of messages for this 
arrow can be stated for convenience. In addition, a ‘*’ symbol 
represents the complete set of messages. 

In order to specify changes in the status of a component in 
response to communications or as part of a function execution, 
each component is augmented by a mode. To symbolize an 
internal mode change, a dashed arrow is used that links two 
instances of the same component with differing modes.  

Fig. 8 depicts a basic function (a) and an internal mode 
change (b) in a graphical and sequence-based notation, where 
the latter represents a function/mode change as a sequence of 
(component, mode) tuples and {message} subsets. By 
chaining basic functions and mode changes, complete 
functions over the components of a shell model can be 
defined. The component at the start of the chain is termed the 

trigger, the component at the end of the chain is termed the 
terminator of a function. 

 

 

Fig. 8 (a) Basic function and (b) internal mode change in graphical 
and sequence notation 

 

 

Fig. 9 A simple example function for the PLC shell model 
 

 

Fig. 10 Example PLC function with an internal mode change of the SUC 
 

 

Fig. 11 Example PLC function showing path merging/splitting and wildcard mode 
 
Fig. 9 shows a simple example function for the “PLC” shell 

model with the components "Sensor" and "Actuator" as the 
trigger and terminator, respectively. Note that the mode is 
omitted for some components - in this case, the component is 
understood to assume its default mode ("Mode 1", in this case) 
which must be defined for each component. 

A more elaborate example function is depicted in Fig. 10. 
Here, the "PLC" undergoes a mode change in response to a 
communication from the "Central Controller", reverting to the 

original mode afterwards (supposedly after executing the 
command). Note that only the order of function steps can be 
modelled - the real time behavior of functions (such as exact 
timing for communications and mode changes) is out of scope 
of the notation. 

Fig. 11 shows an advanced example of a function with 
parallel paths symbolizing input from and output to more than 
one component. Merging of two or more paths at a component 
implies that all input communications to the component must 
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be present at the same time. Splitting of two or more paths at a 
component does not imply any order, i.e. an indeterministic 
choice is made as to which path is executed first. Parallel 
paths are symbolized in the sequence notation as two or more 
sub-sequences concatenated by '||' with identical first or last 
tuple. 

Note the use of the '*' symbol for the mode of "PLC" prior 
to the mode change - as expected, this wildcard mode states 
that the component can be in an arbitrary mode. 

IV. MODELLING GUIDELINES 

Following the syntactical rules of the VISMA leads to well-
formed shell models but does not guarantee maximum 
readability and suitability for further analyses. In the 
following, a sample of important aspects and advice 
concerning the construction of practically usable shell models 
is given. 

A. Placement of ACs 

In many cases, ACs assume clearly defined roles in their 
communication with the SUC. By consistently placing ACs 
according to their role at certain positions relative to the SUC, 
the amount and ratio of interfaces of the SUC can be easily 
discerned. The following placement is suggested: 
- ACs which only provide input, to the left of the SUC (e. 

g. sensors) 
- ACs which only receive output, to the right of the SUC (e. 

g. actuators) 
- ACs which represent user interface elements, to the top of 

the SUC (e. g. buttons, displays) 
- ACs which communicate bidirectionally with the SUC, to 

the bottom (e. g. busses, networks) 
All examples in this paper follow these rules. 

B. Functional Relevance of Communication 

When adding communication arrows, the choice should be 
guided by the relevance of the communication for subsequent 
analyses based on the shell model. A principle rule is that only 
communication paths that include the SUC should be added. 
This excludes arrows between regular components that are not 
a part of a function where the SUC is involved. An example of 
such an "irrelevant" communication for the "PLC" shell model 
would be an exchange of information purely between the 
"Operator" and the "Central Controller". 

For functions where the SUC is included, the scope of 
communication must be limited to a reasonable amount in 
order to balance completeness of the system view against 
complexity of further analyses. For example, a communication 
between the "Power Supply" and the "Sensor" (which is 
assumed to be an active one) could be added to the "PLC" 
example and the derived function in Fig. 9. This would allow 
an analysis to consider failures of the power supply and its 
consequences on the function. 

C. Logical versus Structural Definition of Shells 

Shells can be defined in a variety of ways, with the "ideal" 
choice depending on the system and the choice of subsequent 

analyses. Often, the most suitable choice is based on logical 
distance of regular components to the SUC. In this case, an 
outer shell's order is synonymous with the amount of 
components that must be traversed over communication 
arrows in order to reach the SUC. The O1-shell in the "PLC" 
example was defined in this way. 

An alternative to logical order is to define shells according 
to a system's physical layout. In this case, shells of higher 
order contain components which are situated at a further 
physical distance from the SUC. By aligning shells with 
physical demarcations (e. g. containments, fire barriers), 
analyses regarding the impact of environmental influences on 
the system components can be facilitated. 

Both ways of defining shells may also be combined in the 
same shell model. For example, the "Central Controller" could 
be moved to an outer shell of order 3 to symbolize its 
placement in a facility separate from the location of the 
"PLC". Note however, that a suitable AC (usually some kind 
of network) must always be present to link the distant 
component to the SUC. 

V. APPLICATION OF VISMA 

In this chapter, the application of VISMA is shown via an 
explanatory example. For the sake of brevity, the example is 
only shown and formulated partially, but should suffice to 
support understanding. 

The basic idea of the example system is to develop a new, 
motor operated sidestand for motor bikes. Little is known yet 
about the system except for two requirements:  
1. Automatic expansion and retraction can be activated 

via a toggle switch (“rocker switch”) that is mounted on 
the handlebar. 

2. The current status of the motor bike as well as of the 
sidestand shall be delivered via CAN bus messages. 

A. Constructing the Shell Model 

When building up the VISMA system view, first the 
innermost system in focus, the SUC, has to be selected. From 
the above requirements it is easy to deduct that the system will 
contain a small logic unit to control the sidestand, the 
Sidestand Control Unit (SCU). This will serve as SUC for our 
further analysis. Furthermore, external converters and drivers 
are used to keep the SUC small and simple. Two sensors shall 
detect if the sidestand has reached its upper or lower end 
position to make sure that the sidestand is either fully retracted 
or expanded, providing the SUC with the correct information. 
Further considerations for the building up of the system 
resulted in the shell model depicted in Fig. 12. For this shell 
model, the logical distance order is preferred. Note, however, 
that not each component in the S-shell is at a "hop distance" of 
2 from the SUC. This is to emphasize the physical distance 
between the “Vehicle Battery” or “Bike Motor Control Unit” 
and the SUC. The reasoning for this design choice is rather 
simple: those components provide necessary functionality to 
the sidestand sub-system (contained in O1-shell in Fig. 12), but 
are not part of it.  
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Fig. 12 The shell model for the sidestand example 
 

B. Sidestand Functions 

In order to derive the functions, all potential function 
triggers must be identified first. Components at the begin of a 
communication line to the SUC are prime candidates for 
triggers. Looking at Fig. 12, one obvious trigger is the 
component “User (Driver).” 

Fig. 13 shows the corresponding function derivation for the 
“sidestand expansion” function, following the shell model in 
Fig. 12 upon the “Driver Action Down” trigger event (i.e. 
message).  

This function consists of three input paths. On the first path, 
the “User (Driver)” triggers the “Driver Action Down” by 
pressing the “Rocker Switch” to the downward position, 
forcing the “Rocker Switch” to change its mode to “Down 
pressed”. This sends the “ASD” then “DSD” to the SUC. On 
the second path, the “Lower Position Sensor” does not detect 
the position of the sidestand, identified by the “DSN” signal 
(while the “Upper Position Sensor” is irrelevant for this 
function), thus the “Sensor Data Converter” sends “!SPB” 
signal to the SUC. On the third path, the “V0” message is 
transferred from the “Bike Motor Control Unit” via the “CAN 
Bus” to the SUC. The SUC reacts with a mode transition to 
“Expanding” mode which results in the “Sidestand Motor” 
changing its mode to “Left turning.” 

Note that for enabling the mode transition of the SUC all 
three messages must be present at the same time: “ASD”, 
“!SPB” and “V0”. 

Fig. 14 shows a similar function as Fig. 13, but this time the 
trigger is the detection of the upper position by the “Upper 
Position Sensor” (“DSD” signal), which results in the SUC 

switching to “Idle” mode, and the “Sidestand Motor” 
switching to “Stop” mode respectively. Note that the “User 
(Driver)” who initiated the “DAU” earlier, does not release the 
“Rocker Switch” meanwhile, as the “DSU” is still active at the 
SUC input. Note also that the “CAN Bus” status is irrelevant 
in this case. 

C. Use of Derived (Sidestand) Functions 

The functional derivations of the VISMA are supporting 
several outputs which are valuable, or even necessary, input to 
further analysis methods. This way, top level functions can be 
identified and described. E.g. for the sidestand example, the 
two functions for “Sidestand Expansion” triggered by the 
“User (Driver),” and for stopping the sidestand triggered by 
reaching the upper position, can be formulated, including their 
logical conditions with respect to the inputs. 

Consideration of possible functional deviations can be 
facilitated this way, which can lead to undesired modes, events 
or situations and may even result in a first list of (functional) 
hazards. E.g. for the expansion function in the sidestand 
example in Fig. 13, a possible functional deviation would be 
the “CAN Bus” always sending “V0” for some reason. This 
results in the hazard that the expansion function could be 
activated by the “User (Driver)” although the vehicle is 
moving. 

The functional descriptions can also form the input to a 
HAZOP analysis. E.g. using the function diagrams of the 
sidestand example, each single component can be subjected to 
a wrong mode change, and each communication could be 
subjected to a wrong message or message set transferred, 
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resulting in the typical deviations in a HAZOP analysis. 
The different components linked throughout the shells can 

support a first structural or functional FMEA, even though at a 
high level, and ease the analysis of the consequences therein 
due to the holistic system view. E.g. in an FMEA of the 
sidestand example, each single component of the Z-shell 
(including the SUC) as in Fig. 12 could be analyzed for the 
causes for and direct consequences of each possible failure 
mode. The effects of the failures can be followed through the 

shell model till a terminator has been reached.  
The undesired events or found hazards can be used for first 

high-level FTAs, if reasonable at this point in the project. E.g. 
the already mentioned hazard for the sidestand example 
(Activation of expansion function by the “User (Driver)” 
although the vehicle is moving) could be starting point for one 
fault tree, in order to look for the possible causes. However, 
the scope of such an FTA is limited to stop at single 
component level. 

 

 

Fig. 13 “Sidestand Expansion” Function 
 

 

Fig. 14 “Sidestand Stop” Function upon reaching upper position 
 

VI. FURTHER CONSIDERATIONS  

A. Benefits of the VISMA Method 

As VISMA is representing a method at a very early 
lifecycle stage, its findings and results can be used as inputs 
for further analysis methods. This way, VISMA closes the 
method gap at this stage, providing input to: 
1. HAZOP Analysis 
2. FMEA  
3. Qualitative FTA, limited to single component level  
4. Further requirements analysis 
5. Use-case and scenario analysis 
6. Further functional analysis 

B. Limitations of the Method 

VISMA only supports qualitative analysis, as quantification 
is infeasible at such an early lifecycle stage. Also, VISMA is 
not suitable for describing or handling parallel structures in the 

sense of redundant solutions. As of now, VISMA is restricted 
to electrical, electronical, and programmable electronic 
(E/E/PE) systems.  

C. Future Prospects 

Application of VISMA to technologies other than E/E/PE 
systems (such as mechanics, hydraulics, and pneumatics) and 
necessary extensions to the method are currently under 
investigation. 

As limitations of “classical” drawing tools became apparent 
during development of the method, a specialized tool that 
implements the method would significantly facilitate the 
application of VISMA. 

APPENDIX 

Figs. 15-26 are excerpts of the data dictionary for the 
example in Fig. 7. 
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Fig. 15 Component list (excerpt) for example in Fig. 7 
 

 

Fig. 16 Shell list for example in Fig. 7 
 

 

Fig. 17 Unidirectional communication (excerpt) for example Fig. 7 
 

 

Fig. 18 Bidirectional communication for example in Fig. 7 
 

 

Fig. 19 Internal indirect influences for example in Fig. 7 
 

 

Fig. 20 Environmental influences for example in Fig. 7 
 

 

Fig. 21 Use cases for example in Fig. 7 
 

 

Fig. 22 Unidirectional communication (excerpt) for example Fig. 12 

Identifier Description Interfaces
PLC (SUC) PLC for machine control Input: Digital In x2, Power In (24Vdc)

Output: Digital Out x2

Bidirectional: RS‐485 interface

ADC External ADC Input: Analog In

Output: Digital Out

DAC External DAC Input: Digital In

Output: Analog Out

Power Supply External switching power supply Input: 230Vac

Output: 24Vdc

Reset Button External, debounced reset button Input: User action

Output: Digital Out

Shell Description
PLC subsystem (Z) PLC inside PLC cabinet

Control system (O1) PLC cabinet plus control elements

Production system (O2, S) Control system plus operator

Unidirectional
Sender Receiver Type Message Set
ADC PLC Digitised measurement value {Digitised measurement value}
Power Supply PLC Supply voltage {No voltage, Arbitrary voltage, Nominal voltage}
Reset Button PLC Reset signal {No Reset, Reset}

Bidirectional
Peer Peer Type Message Set
PLC Comm. Bus Control commands/responses {‘Execute Test‘ Command, ‘Test OK‘ Response, …}
Central Controller Comm. Bus Control commands/responses {‘Execute Test‘ Command, ‘Test OK‘ Response, …}

Component Indirect Influence Description
Power Supply EMI Radiation EMI of switching power supply, 70µV/m@1GHz

Identifier Description
Heat Heat buildup in PLC cabinet due to thermal radiation of nearby machines, 

maximum expected temperature +60°C
Dust Accumulation of metal particles in PLC cabinet from metal-cutting work, 

grain sizes of 50-100µm
EMI Radiation EMI from nearby machines and wireless networks, 

limits acc. to ISO 62061, Annex E
Moisture Moisture buildup in PLC cabinet due to water-based coolant of nearby machines,

expected absolute air humidity in cabinet 10g/m³

Identifier Description
Production Default use case, continuous demand on PLC for control purposes
Maintenance Maintenance of machines, no demand on PLC, MTTR = 1d
Upgrade Upgrade and/or replacement of PLC

Sender Receiver Type Message Set
Sidestand Control Unit Sidestand Control Driver Motor command {Motor Command 'Expand', Motor Command 'Retract', Motor Command 'Stop'}
Upper Position Sensor Sensor Data Converter Sidestand position detection information {Digital Signal 'Detected', Digital Signal 'Not Detected'}
Lower Position Sensor Sensor Data Converter Sidestand position detection information {Digital Signal 'Detected', Digital Signal 'Not Detected'}
Sidestand Control Driver Sidestand Motor Analog motor signal {Motor Signal 'Left', Motor Signal 'Right', Motor Signal 'Stop'}
User (Driver) Rocker Switch Driver action {Driver Action 'Down', Driver Action 'Up', Driver Action 'Neutral'}
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Fig. 23 Bidirectional communication for example in Fig. 12 
 

 

Fig. 24 Component list (excerpt) for example in Fig. 12 
 

 

Fig. 25 Shell list for example in Fig. 12 
 

 

Fig. 26 Use cases for example in Fig. 12 
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Peer Peer Type Message Set
Sidestand Control Unit CAN Bus Vehicle data messages {Velocity=0, …}
Bike Motor Control Unit CAN Bus Vehicle data messages {Velocity=0, …}

Identifier Description Interfaces Modes
Sidestand Control Unit (SUC) Control unit for sidestand control Input: Digital In x2, Power In (5Vdc)

Output: Digital Out

Bidirectional: CAN interface

Expanding
Retracting
Idle 

Rocker Switch 3-position switch (down, up, neutral) Input: User action

Output: Analog Out

Up pressed
Down pressed
Neutral

Upper Position Sensor Limit switch for detecting retraction of sidestand Input: Position

Output: Digital Out
Detection
No detection

Lower Position Sensor Limit switch for detecting expansion of sidestand Input: Position

Output: Digital Out
Detection
No detection

Sidestand Motor Electrical motor driving sidestand expansion or 
retraction

Input: Analog In

Output: Torque

Left turning
Right turning
Stop

Shell Description
Sidestand Control (Z) Control unit plus auxiliary components

Sidestand (O1) Control HW plus external input elements and motor

Motorbike (O2, S) Complete vehicle

Identifier Description
Rolling Vehicle moves, engine running
Riding Vehicle moves, engine not running
Standstill Vehicle doesn't move
Parking Vehicle rests on sidestand


