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Abstract—Oxytocin is a nine-amino acid peptide synthesized in

the paraventricular nucleus (PVN) and supraoptic nucleus (SON) of
the hypothalamus. Oxytocin promotes contraction of the uterus
during birth and milk ejection during breast feeding. Although
oxytocin receptors are found predominantly in the breasts and uterus
of females, many tissues and organs express oxytocin receptors,
including the pituitary, heart, kidney, thymus, vascular endothelium,
adipocytes, osteoblasts, adrenal gland, pancreatic islets, and many
cell lines. On the other hand, in pancreatic islets, oxytocin receptors
are expressed in both α-cells and β-cells with stronger expression in
α- cells. However, to our knowledge there are no reports yet about
the effect of oxytocin on cytosolic calcium reaction on α and β-cell.
This study aims to investigate the effect of oxytocin on α-cells and β-
cells and its oscillation pattern. Islet of Langerhans from wild type
mice were isolated by collagenase digestion. Isolated and dissociated
single cells either α-cells or β-cells on coverslips were mounted in an
open chamber and superfused in HKRB. Cytosolic concentration
([Ca2+]i) in single cells were measured by fura-2 microfluorimetry.
After measurement of [Ca2+]i, α-cells were identified by subsequent
immunocytochemical staining using an anti-glucagon antiserum. In
β-cells, the [Ca2+]i increase in response to oxytocin was observed
only under 8.3 mM glucose condition, whereas in α-cells, [Ca2+]i an
increase induced by oxytocin was observed in both 2.8 mM and 8.3
mM glucose. The oscillation incidence was induced more frequently
in β-cells compared to α-cells. In conclusion, the present study
demonstrated that oxytocin directly interacts with both α-cells and β-
cells and induces increase of [Ca2+]i and its specific patterns.

Keywords—α-cells, β-cells, cytosolic calcium concentration,
oscillation, oxytocin.

I. INTRODUCTION

XYTOCIN (Oxt) is released peripherally after being
shuttled to the pituitary [1], and promotes mammalian

labor and lactation [2]. Furthermore, Oxt is also plays
important role to regulate feeding behavior and body weight
[3]-[6], as well as social behavior [7] including trust [8] and
mother-infant bonding [9]. A previous study placed Oxt in the
anorexigenic circuit from the PVN to the NTS of brain stem in
rats [10].

We have previously shown that subchronic peripheral Oxt
treatment through a subcutaneously (sc) implanted osmotic
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minipump reduces hyperphagia and obesity in high fat diet
(HFD)-fed obese mice [6], and that the Oxt administered via
IP and nasal routes similarly reduce hyperphagia [11]. Zhang
et al. recently reported that nasal administration of Oxt
decreases body weight in obese subjects [12]. Ott et al.
showed that nasal Oxt treatment reduces reward-driven food
intake [13]. Nasal administration of Oxt was also recently
shown to improve social behavior in autism [14].

It has been reported that the release of islet hormones is
regulated by the paracrine effects [15]; insulin inhibits
glucagon release and glucagon potentiates insulin release [16],
[17]. However, direct action of Oxt on islet α-cells and β-cells
remain to be elucidated. The present study aimed to clarify
whether Oxt directly interacts with and active -cells and β-
cells. This was achieved by studying direct action of Oxt on
cytosolic free Ca2+ concentration ([Ca2+]i) in single islet cells.

II. MATERIAL AND METHODS

A. Animal
Male wild-type C57BL/6J mice 10-12 weeks old were

housed in accordance with our institutional guidelines and
with the Japanese Physiological Society’s guidelines for
animal care.

B. Preparation of Pancreatic Islets and Single Islet Cells
Mice were anesthetized by pentobarbital (ip) at dosage 80

mg/kg. Collagenase at 1.05 mg/ml (Sigma-Aldrich) was
dissolved in 5 mmol/l Ca2+ containing HEPES-added Krebs-
Ringer bicarbonate buffer (HKRB) solution and injected into
the common bile duct. The HKRB solution consist of 129
mmol NaCl, 5 mmol/l NaHCO3, 4.7 mmol/l KCl, 1.2 mmol/l
KH2PO4, 2 mmol/l CaCl2, 1.2 mmol/l MgSO4, and 10 mmol/l
HEPES, at pH 7.4 with NaOH. HKRB was added with 0.1%
BSA. The pancreas was dissected out and incubated at 37°C
for 16 minutes. Islets were collected and dispersed into single
cells in Ca2+ -free HKRB and maintained in short-term culture
up to 2 days (37°C). It is important to keep the atmosphere of
5% CO2 and 95% air in Eagle’s minimal essential medium
(5.6 mmol/l glucose supplemented with 10% fetal bovine
serum, 100 U/ml penicillin, and 100 μg/ml streptomycin [18]

C.Measurements of [Ca2+]i in Mice Single α-Cells and β-
Cells

Single cells of α-cells or β-cells on coverslips were
superfused in HKRB. [Ca2+]i in single cells were measured by
fura-2 microfluorimetry with wavelength at 340/380 nm and
emission at 510 nm using a cooled charge-coupled device
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camera. The ratio image was produced on an AquaCosmos
system (Hamamatsu Photonics, Hamamatsu, Japan).

D.Immunocytochemistry and Identification of Single Islet α-
Cells

Single islet of α-cells were identified by
immunocytochemical staining using an anti-glucagon
antiserum after measurement of [Ca2+]i. The cells on the
coverslip were fixed with 4% paraformaldehyde overnight.
They were washed with PBS and then treated with H202 3%
for 10 min. After 10 min, cells were washed with PBS and
treated with 10% normal goat serum and 1% BSA in PBS for
30 min. Glucagon antibodies (final dilution, 1:2000) were
used as primary antibody. Cells were treated with glucagon
antibody for 6 hours, followed by incubation with biotinylated

anti-mouse IgG (Vector laboratories, Inc., Burlingame, CA)
for 40 min and then with avidin-biotin complex for 40 min.
After application of Diaminobenzidine (DAB), the reaction
was stopped with PBS.

Correlation of the [Ca2+]i and immunocytochemical data
was carried out as previously reported [19] ; the phase contrast
photographs of islet cells on coverslips in the microscope field
taken at the end of [Ca2+]i measurement were compared with
the photographs of islet cells on coverslips after
immunocytochemical staining. [Ca2+]i data were obtained only
from the immunocytochemically identified α-cells.

E. Incidence of Oscillation
Oscillation were calculated if the cells showed ≥ three times

repetition of [Ca2+]i increases after administration of Oxt.

Fig. 1 Oxt induces [Ca2+]i increases in α-cells and β-cells. Oxt induces [Ca2+]i increases in α-cells in both 2.8 and 8.3 mM glucose in (A) single
response and (B) oscillation response. In β-cells, Oxt induced [Ca2+]i increases only at 8.3 mM glucose in (C) single response and (D)

oscillation response
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III. RESULTS

A. Oxt Induces [Ca2+]i Increases in α-Cells and β-Cells
Administration of Oxt (10 nM) induced increases in [Ca2+]i

in α-cells at both basal glucose concentration of 2.8 mM and
stimulatory glucose concentration of 8.3 mM. Oxt induced
[Ca2+]i increases in an oscillatory pattern in 2 of 9 single α-
cells at both 2.8 mM and 8.3 mM glucose (Figs. 1 (A) and
(B)).

In β-cells, Oxt induced [Ca2+]i increases only at 8.3 mM
glucose but not at 2.8 mM glucose. Under 8.3 mM glucose
Oxt induced [Ca2+]i increases in an oscillatory pattern in 8 of
13 single β-cells (Figs. 1 (C) and (D)).

B. Oscillation Patterns Induced by Oxt on α-Cells and β-
Cells

The peak amplitude of [Ca2+]i increases in α-cells was not
significantly different between 2.8 mM and 8.3 mM glucose.
The number of cells which showed [Ca2+]i oscillation after
administration of Oxt was greater in β-cells than α-cells (Fig.
2 (C)). The AUC (area under the curve) of [Ca2+]i increases in
response to Oxt was not different between 2.8 mM glucose
and 8.3 mM glucose in α-cells, and between α-cells and β-
cells at 8.3 mM glucose.

Fig. 2 Oscillation patterns induced by Oxt on α-cells and β-cells. (A) All α-cells responded to 10 nM Oxt at both 2.8 mM and 8.3 mM glucose
concentration while in β-cells only at 8.3 mM glucose. (B) The peak amplitude of [Ca2+]i increases in α-cells were not significantly different

between 2.8 mM and 8.3 mM glucose. (C) The number of cells which showed oscillation after administration of Oxt was greater in β-cells than
that of α-cells. (D) The area under the curve (AUC) of [Ca2+]i increases in response to Oxt had no significant difference between 2.8 mM

glucose and 8.3 mM glucose concentration in α-cells, and also was not significantly different when compared to AUC under 8.3 mM glucose
concentration in β-cells
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IV. DISCUSSION

The present study demonstrated that both α-cells and β-cells
respond to application of Oxt and show increase of [Ca2+]i. In
α-cells, the [Ca2+]i increase in response to Oxt was observed in
both basal (2.8 mM) and stimulatory (8.3 mM) glucose
concentration, whereas in β-cells, [Ca2+]i increase induced by
Oxt was observed only at stimulatory glucose concentration.
This result may be reflecting the secretory patterns of α-cells
and β-cells. In β-cells, insulin secretion occurs only in high
glucose condition. However, in α-cells, glucagon secretion
occurs in two peaks, low and high glucose concentration [20].
The patterns of its secretion and Oxt induced [Ca2+]i increase
were similar. Therefore, it is possible that Oxt potentiates the
[Ca2+]i increase when cells are under glucose concentration
which promotes their contents to be released.

The fact that oscillation incidence was induced more
frequently in β-cells compared to α-cells may also be
explained by the glucose condition. Glucagon secretion from
islets is high at low glucose concentration and suppressed by
increasing glucose concentrations. Its maximal inhibition of
glucagon secretion is observed around 7 mM glucose
condition [21]. Under high glucose condition, insulin is
released and then inhibited glucagon secretion [17]. However,
8.3 mM glucose is enough to induce maximum secretion of
insulin from β-cells. Therefore, the fact that β-cells showed
more oscillation of calcium increase in response to Oxt
compared to that of α-cell may be reflecting the secretion
capacity of its contents in each cell type.

In conclusion, the present study demonstrated that Oxt has a
direct effect on α-cells and β-cells.
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