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 
Abstract—This paper concerns with the problem of deep learning 

parameters tuning using a genetic algorithm (GA) in order to improve 
the performance of deep learning (DL) method. We present a GA 
based DL method for robot object recognition and grasping. GA is 
used to optimize the DL parameters in learning procedure in term of 
the fitness function that is good enough. After finishing the evolution 
process, we receive the optimal number of DL parameters. To evaluate 
the performance of our method, we consider the object recognition and 
robot grasping tasks. Experimental results show that our method is 
efficient for robot object recognition and grasping. 
 

Keywords—Deep learning, genetic algorithm, object recognition, 
robot grasping. 

I. INTRODUCTION 

L is a vastly growing research field. It tries to mimic the 
human brain. For example, the feature hierarchies in the 

human visual cortex represent the objects at the different level 
of abstraction. The more abstract features go up in the 
hierarchy; the objects become more visible to the human. DL 
works in the same way as our human brain organizes ideas in 
hierarchical fashion. The objective of DL is to bring the 
machine learning research to Artificial Intelligence. 

DL research was started by Hinton et al. [1] in 2006. After 
then, many researchers are working to improve the 
performance of DL. DL has many parameters which have 
influence on performance. For this reason, recently researchers 
are working to integrate evolutionary programming with DL. 
Some research works are already presented. The first effort was 
done by Lamos-Sweeney [2]. He integrated GA with a 
multilayer DL network for data compression and object 
classification. He showed that his proposed method enhanced 
the flexibility and reduced the computational burden of the 
algorithm. Levy et al. [3] proposed a hybrid approach to 
integrating GA and deep restricted Boltzmann machines 
(RBMs) for painter classification problem. They extracted 
features using generic image processing function and deep 
RBMs. Tirumala [4] studied the evolutionary computation (EC) 
implantation possibility with the deep architectures. He argued 
EC could solve the Deep Neural Networks (DBNs) overfitting 
problem. David and Greental [5] proposed a GA-assisted 
method for a deep autoencoder to improve the performance and 
produced a sparser neural network. Verbancsics and Harguess 
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[6] investigated a neuro-evolution (NE) based DL method. 
They applied the Hypercube-based NeuroEvolution of 
Augmenting Topologies (HyperNEAT) to training a feature 
extractor process in backward propagation learning. Shao et al. 
[7] developed an evolutionary learning methodology based on 
multiobjective genetic programming (MOGP) for image 
classification. It generated domain-adaptive global feature 
descriptor automatically. 

DL has demonstrated state-of-art performance on robotic 
applications. There have been many works presented for robot 
real-time object recognition and grasping [8]-[13]. The goal is 
that robots can learn through the interaction with the 
environment and the human subjects. It reduces the stress of 
human subjects in various home style and industrial tasks. 

In this paper, we present an evolutionary learning method 
that combined GA and Deep Belief Neural Networks (DBNNs) 
for robot object recognition and grasping. This method 
optimizes the DBNN parameters, such as the number of hidden 
units, the number of epochs, learning rates and momentum in 
learning procedures of the hidden layers. It reduces the error 
rate and network training time of object recognition. The 
objects are recognized in the different orientation, positions, 
and lighting conditions using optimized DBNN method, after 
then the robot picks up the recognized objects and places in a 
predefined position. 

This paper is organized as follows. In Section II, combined 
GA and DBNN are described. In Section III, GA parameters 
and results are presented. In Section IV, the experimental 
results of optimized DBNN for robot object recognition and 
grasping are shown. In Section V, we conclude and mention the 
future works. 

II. COMBINED GA WITH DEEP BELIEF NEURAL NETWORK 

(GADBNN) 

The problem with DBNN is that the DBNN parameters need 
to set before the training begins. Although there are no any 
fixed rules how to set these parameters, these parameters have 
influenced on the success of the training. By combining GA 
with Deep Belief Neural Network (GADBNN), the DBNN 
parameters are optimized using GA. The flowchart of 
GADBNN is shown in Fig. 1. 

A. Structure of Deep Belief Neural Network (DBNN) 

A DBNN is a probabilistic generative model, which is 
constructed by a stack of RBMs. An RBM consists of a visible 
layer and a hidden layer, or a hidden layer and another hidden 
layer. In RBM, the neurons of each layer are completely 
connected with the neurons of another layer, but the neurons of 
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the same layer are not internally connected with each other. 
RBMs are stacked on the top of each other to build a DBNN. 
DBNN extracts feature in the hierarchical fashion, where lower 
level features form higher levels features. 

The energy function between visible layer and hidden layer 
},{ hv  in RBM is given as follows: 
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where vn is the number of visible units, hn is the number of 

hidden units, a is the bias term for visible units, b is the bias 
term for hidden units, w is the weights between visible and 

hidden units, v is the visible units with }1,0{v , and h is the 

hidden units with }1,0{h . 

The structure of our DBNN is shown in Fig. 2. It consists of a 
visible layer, three hidden layers, and an output layer. The 
optimal number of hidden units in the three layers was found by 
applying GA [14]. Visible units are set to the activation 
probabilities; on the other hand, hidden units are set to the 
binary values. We use two types of sampling method, such as 
Contrastive Divergence (CD) and Persistent Contrastive 
Divergence (PCD). The first hidden layer is sampled by PCD 
because PCD explores the entire searching domain for the input 
features. It is much better in representing the log-likelihood of 
the pixels. The second and third hidden layers are sampled 
using CD because CD explores the better near the input images. 
CD is not aware of spurious modes of the input images and 
better for extracting features. For this reason, we combine CD 
and PCD sampling methods and it outperforms for object 
recognition purpose. 

 

 

Fig. 1 Flowchart of combined GA and DBNN 
 
Backpropagation error derivatives are used to reduce the 

discrepancies between the original features and its 
reconstruction for fine-tuning weights in order to better object 

recognition. It refers the whole procedure encompassing the 
calculation of the gradient and uses in stochastic gradient 
descent. We use softmax function for classifying objects. 
Backpropagation will terminate, if it satisfies one of the 
following conditions: (1) reach to best performance, i.e. mean 
square error (MSE), (2) reach to maximum epoch number, i.e. 
200, (3) reach to minimum gradient value, or (4) reach to 
maximum validation checks, i.e. 6. 

 

 

Fig. 2 Structure of our DBNN 

A. Genetic Algorithm (GA) 

GA is the heuristic search algorithm based on the natural 
evolutionary ideas. It is the best way to solve a problem that has 
little information to know. It is a very general algorithm and 
suitable for any search space. GA takes advantages of historical 
information for searching of better solution among the search 
space. The basic technique is to design an evolution process to 
simulate the survival of the fittest among individuals for 
solving a problem in generations. 

The evolution process of DBNN is shown in Fig. 1. In 
GADBNN, the GA is used to find the optimal number of 
DBNN parameters, such as the number of hidden units, the 
number of epochs, learning rates and momentum in learning 
procedures for hidden layers. DBNN information is encoded in 
the genome of the GA. Initially, the random number of 
individuals is generated. Then, the number of DBNN 
parameters is evaluated and ranked. After then, the fitness 
function is evaluated. If the convergence criteria are not 
satisfied, then crossover and mutation creates new individuals 
and replaces the worst members of population. If the 
convergence criteria are satisfied, then evolution process is 
terminated, and the optimal number of DBNN parameters is 
generated. 

III. GA PARAMETERS 

In this paper, we are deployed a real-valued GA [14], which 
generates better solutions with respect to the quality of the 
solution. It uses real values as parameters of the chromosome in 
populations. It is implemented with the selection, crossover and 
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mutation operators. 
The GA function and parameters are mentioned in Table I. 

Population is divided into four subpopulations, and each 
subpopulation uses different mutation rates. Migration is 
selected based on the number and size of the subpopulations. 
Crossover probability is same for all subpopulations. The total 
number of individuals is 100, and the maximum number of 
generation is 30. The best subpopulation has received the 
resources, and worst individuals are removed from less 
successful generations. 

TABLE I 
GA FUNCTIONS AND PARAMETERS 

Function Name Parameters 

Number of subpopulations 4 

Initial number of individuals (subpopulation) 25, 25, 25, 25 

Crossover probability 0.8 

Mutation rate (subpopulation) 0.1, 0.03, 0.01, 0.003 

Isolation time 10 generations 

Migration rate 10% 

Results on screen Every 1 generation 

Competition rate 10% 

Termination 30 generations 

 
The fitness function is defined as to minimize the error rate 

and minimize the network training time in order to optimize the 
number of hidden units, the number of epochs, learning rates 
and momentum in hidden layers. The fitness function used in 
our implementation is shown as follows: 
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where BBPE  is the total number of misclassification divided 

by the total number of test data before backpropagation, ABPE  

is the total number of misclassification divided by total number 
of test data after backpropagation, BBPT  is the network 

training time in second before fine-tuned operation using 
backpropagation, 

DBPT  is the network training time in second 

during fine-tuned operation using backpropagation operation. 
 

 

Fig. 3 Best objective values per subpopulation 

IV. EXPERIMENTAL RESULTS 

In this section, we describe the experiment and results of our 
approach. We divide the experimental results into two sections: 
(1) Experimental result for GA based Deep Belief Neural 
Network (GADBNN), (2) Experimental result for Optimized 
DBNN for robot object recognition and grasping. 

A. Experimental Results for GADBNN 

In order to optimize DBNN parameters, we build a database, 
which consists of 1200 train images of six different types of 
objects (200 images of each object) and 600 test images of 100 
images of each object. This training and test images were taken 
randomly in different oriental, positions, and lighting 
conditions in our experimental environment to make our system 
robust. In our dataset, all images are grayscale images. 

 

 

Fig. 4 Objective values of all individuals of generations 
 
In order to evaluate GADBNN performance, we plot the best 

objective value per subpopulation in Fig. 3. Four 
subpopulations (sp1, sp2, sp3, sp4 where sps are the 
subpopulations) are mentioned with four different colors. The 
best object value is mentioned by bold red color. In addition, 
objective values of individuals through all generation during 
evolution process are shown in Fig. 4. The fitness value was 
started from 13.6250. In first four generations, the strategy 
applied in subpopulation 2 is successful. On the fifth 
generation, strategy 4 is successful. From six to nine 
generations, strategy 1 is successful. The individual’s 
convergence is most successful in the tenth generation and 
objective value is 8.52528. At the end of the optimization (tenth 
generation), the strategy applied on subpopulation 4 is the most 
successful. The individual’s convergences were terminated on 
24th generation. 

B. Experimental Results for Object Recognition and Robot 
Grasping 

In order to demonstrate the performance of optimized DBNN 
parameters, we consider the object recognition and robot 
grasping tasks. For this purpose, we build an image dataset that 
is consisted of 1200 images (200 images of each object) of six 
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robot graspable objects in different orientations, positions, and 
lighting conditions in our experimental environment. 

1. Object Recognition Results 

When a user requests for an object by clicking on Graphical 
User Interface (GUI), then a snapshot is taken by USB camera 
(shown in Fig. 6). This snapshot is converted to the grayscale 
image. We apply a morphological structuring element 
operation, and all existing objects in the environment are 
extracted and separated based on the center of the objects of the 
size of 28x28 pixels. In the visible layer, 784 neurons are used 
as input. From optimized DBNN, we found 650, 413, and 555 
neurons of hidden units, 100, 88, and 184 neurons of epochs in 
three hidden layers. Learning rate for first hidden layer was 
0.084859 and 0.1664 for second and third hidden layers. 
Momentum values of first five epochs in each hidden layer are 
0.28644, 0.28088, 0.15208, 0.55015, and 0.0258 in order to 
make learning procedures more efficient. Momentum value for 
the remaining epochs in each hidden layer is 0. After passing 
through the three hidden layers, DBNN generates six 
probability values as output, because we trained optimized 
DBNN with six different types of object. Each probability 
belongs to each object. The highest probability value is 
considered the recognized object. If the highest probability 
value is smaller than the threshold value (0.7), then we consider 
that the requested object does not exist in the experimental 

environment. For example, the blue screwdriver is used as input 
of DBNN, as outputs, DBNN generates six probability values, 
such as 0.0001, 0.0028, 0.0037, 0.9999, 0.0000, and 0.0000 
(shown in Fig. 5). From this result, the maximum probability is 
0.9999, which belongs to the fourth object that we defined as 
the blue screwdriver. At the same way, other objects can be 
recognized using optimized DBNN method. 
 

 

Fig. 5 Object recognition process 

 

 

Fig. 6 Snapshots of robot object recognition and grasping using optimized DBNN 
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2. Robot Grasping Results 

For robot grasping purpose, we used a Programmable 
Universal Machine for Assembly (PUMA) robot from Denso 
Corporation. It has a gripper that can grasp any objects of the 
maximum width of 95 mm. When a user requests for a specific 
object, then the requested object is recognized using optimized 
DBNN method. The robot finds the grasping position based on 
the recognized object. The robot generates a motion trajectory 
from the initial position to the object grasping position. After 
reaching to the object grasping position, the robot adjusts its 
gripper orientation based on the object orientation in order to 
grasp objects in different orientations. After grasping the 
object, the robot generates another motion from object position 
to the predefined object placing position. After placing the 
object, the robot returns to the initial position and waits for next 
requests from the user. The snapshots of robot object 
recognition and grasping process are shown in Fig. 6. 

V. CONCLUSIONS AND FUTURE WORKS 

The goal of this paper is to propose a method to optimize DL 
parameters using evolutionary algorithms. Our proposed 
method optimized the DL parameters, such as the number of 
hidden units, the number of epochs, learning rates and 
momentum of learning procedures in hidden layers. The error 
rates and network training time were minimized. We evaluated 
our optimized method on real-time object recognition and robot 
grasping process. The results showed that our optimized 
method outperformed at the assign tasks. 

In future, we will integrate Multi-objective Evolutionary 
Algorithms (MOEA) because the coefficients of single object 
evolutionary algorithms in the objective function are very 
difficult to determine. In addition, we want to consider the 
scaling factors of the objects. 
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