
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:11, No:3, 2017

629


Abstract—This paper concerns with the problem of deep learning

parameters tuning using a genetic algorithm (GA) in order to improve
the performance of deep learning (DL) method. We present a GA
based DL method for robot object recognition and grasping. GA is
used to optimize the DL parameters in learning procedure in term of
the fitness function that is good enough. After finishing the evolution
process, we receive the optimal number of DL parameters. To evaluate
the performance of our method, we consider the object recognition and
robot grasping tasks. Experimental results show that our method is
efficient for robot object recognition and grasping.

Keywords—Deep learning, genetic algorithm, object recognition,
robot grasping.

I. INTRODUCTION

L is a vastly growing research field. It tries to mimic the
human brain. For example, the feature hierarchies in the

human visual cortex represent the objects at the different level
of abstraction. The more abstract features go up in the
hierarchy; the objects become more visible to the human. DL
works in the same way as our human brain organizes ideas in
hierarchical fashion. The objective of DL is to bring the
machine learning research to Artificial Intelligence.

DL research was started by Hinton et al. [1] in 2006. After
then, many researchers are working to improve the
performance of DL. DL has many parameters which have
influence on performance. For this reason, recently researchers
are working to integrate evolutionary programming with DL.
Some research works are already presented. The first effort was
done by Lamos-Sweeney [2]. He integrated GA with a
multilayer DL network for data compression and object
classification. He showed that his proposed method enhanced
the flexibility and reduced the computational burden of the
algorithm. Levy et al. [3] proposed a hybrid approach to
integrating GA and deep restricted Boltzmann machines
(RBMs) for painter classification problem. They extracted
features using generic image processing function and deep
RBMs. Tirumala [4] studied the evolutionary computation (EC)
implantation possibility with the deep architectures. He argued
EC could solve the Deep Neural Networks (DBNs) overfitting
problem. David and Greental [5] proposed a GA-assisted
method for a deep autoencoder to improve the performance and
produced a sparser neural network. Verbancsics and Harguess

Delowar Hossain is with the Graduate School of Science and Engineering

for Education, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
(e-mail: delowar.hossain.38@hosei.ac.jp).

Genci Capi is with the Department of Mechanical Engineering, Hosei
University, Tokyo 184-8584, Japan (corresponding author, phone:
+81-42-387-6148, fax: +81-42-387-6148, e-mail: capi@hosei.ac.jp).

[6] investigated a neuro-evolution (NE) based DL method.
They applied the Hypercube-based NeuroEvolution of
Augmenting Topologies (HyperNEAT) to training a feature
extractor process in backward propagation learning. Shao et al.
[7] developed an evolutionary learning methodology based on
multiobjective genetic programming (MOGP) for image
classification. It generated domain-adaptive global feature
descriptor automatically.

DL has demonstrated state-of-art performance on robotic
applications. There have been many works presented for robot
real-time object recognition and grasping [8]-[13]. The goal is
that robots can learn through the interaction with the
environment and the human subjects. It reduces the stress of
human subjects in various home style and industrial tasks.

In this paper, we present an evolutionary learning method
that combined GA and Deep Belief Neural Networks (DBNNs)
for robot object recognition and grasping. This method
optimizes the DBNN parameters, such as the number of hidden
units, the number of epochs, learning rates and momentum in
learning procedures of the hidden layers. It reduces the error
rate and network training time of object recognition. The
objects are recognized in the different orientation, positions,
and lighting conditions using optimized DBNN method, after
then the robot picks up the recognized objects and places in a
predefined position.

This paper is organized as follows. In Section II, combined
GA and DBNN are described. In Section III, GA parameters
and results are presented. In Section IV, the experimental
results of optimized DBNN for robot object recognition and
grasping are shown. In Section V, we conclude and mention the
future works.

II. COMBINED GA WITH DEEP BELIEF NEURAL NETWORK

(GADBNN)

The problem with DBNN is that the DBNN parameters need
to set before the training begins. Although there are no any
fixed rules how to set these parameters, these parameters have
influenced on the success of the training. By combining GA
with Deep Belief Neural Network (GADBNN), the DBNN
parameters are optimized using GA. The flowchart of
GADBNN is shown in Fig. 1.

A. Structure of Deep Belief Neural Network (DBNN)

A DBNN is a probabilistic generative model, which is
constructed by a stack of RBMs. An RBM consists of a visible
layer and a hidden layer, or a hidden layer and another hidden
layer. In RBM, the neurons of each layer are completely
connected with the neurons of another layer, but the neurons of

Genetic Algorithm Based Deep Learning Parameters
Tuning for Robot Object Recognition and Grasping

Delowar Hossain, Genci Capi

D

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:11, No:3, 2017

630

the same layer are not internally connected with each other.
RBMs are stacked on the top of each other to build a DBNN.
DBNN extracts feature in the hierarchical fashion, where lower
level features form higher levels features.

The energy function between visible layer and hidden layer
},{ hv in RBM is given as follows:


 


hvv h n

j
jj

n

i
ii

n

i

n

j
ijji hbvawbahvE

111 1

),((1)

where vn is the number of visible units, hn is the number of

hidden units, a is the bias term for visible units, b is the bias
term for hidden units, w is the weights between visible and

hidden units, v is the visible units with }1,0{v , and h is the

hidden units with }1,0{h .

The structure of our DBNN is shown in Fig. 2. It consists of a
visible layer, three hidden layers, and an output layer. The
optimal number of hidden units in the three layers was found by
applying GA [14]. Visible units are set to the activation
probabilities; on the other hand, hidden units are set to the
binary values. We use two types of sampling method, such as
Contrastive Divergence (CD) and Persistent Contrastive
Divergence (PCD). The first hidden layer is sampled by PCD
because PCD explores the entire searching domain for the input
features. It is much better in representing the log-likelihood of
the pixels. The second and third hidden layers are sampled
using CD because CD explores the better near the input images.
CD is not aware of spurious modes of the input images and
better for extracting features. For this reason, we combine CD
and PCD sampling methods and it outperforms for object
recognition purpose.

Fig. 1 Flowchart of combined GA and DBNN

Backpropagation error derivatives are used to reduce the

discrepancies between the original features and its
reconstruction for fine-tuning weights in order to better object

recognition. It refers the whole procedure encompassing the
calculation of the gradient and uses in stochastic gradient
descent. We use softmax function for classifying objects.
Backpropagation will terminate, if it satisfies one of the
following conditions: (1) reach to best performance, i.e. mean
square error (MSE), (2) reach to maximum epoch number, i.e.
200, (3) reach to minimum gradient value, or (4) reach to
maximum validation checks, i.e. 6.

Fig. 2 Structure of our DBNN

A. Genetic Algorithm (GA)

GA is the heuristic search algorithm based on the natural
evolutionary ideas. It is the best way to solve a problem that has
little information to know. It is a very general algorithm and
suitable for any search space. GA takes advantages of historical
information for searching of better solution among the search
space. The basic technique is to design an evolution process to
simulate the survival of the fittest among individuals for
solving a problem in generations.

The evolution process of DBNN is shown in Fig. 1. In
GADBNN, the GA is used to find the optimal number of
DBNN parameters, such as the number of hidden units, the
number of epochs, learning rates and momentum in learning
procedures for hidden layers. DBNN information is encoded in
the genome of the GA. Initially, the random number of
individuals is generated. Then, the number of DBNN
parameters is evaluated and ranked. After then, the fitness
function is evaluated. If the convergence criteria are not
satisfied, then crossover and mutation creates new individuals
and replaces the worst members of population. If the
convergence criteria are satisfied, then evolution process is
terminated, and the optimal number of DBNN parameters is
generated.

III. GA PARAMETERS

In this paper, we are deployed a real-valued GA [14], which
generates better solutions with respect to the quality of the
solution. It uses real values as parameters of the chromosome in
populations. It is implemented with the selection, crossover and

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:11, No:3, 2017

631

mutation operators.
The GA function and parameters are mentioned in Table I.

Population is divided into four subpopulations, and each
subpopulation uses different mutation rates. Migration is
selected based on the number and size of the subpopulations.
Crossover probability is same for all subpopulations. The total
number of individuals is 100, and the maximum number of
generation is 30. The best subpopulation has received the
resources, and worst individuals are removed from less
successful generations.

TABLE I
GA FUNCTIONS AND PARAMETERS

Function Name Parameters

Number of subpopulations 4

Initial number of individuals (subpopulation) 25, 25, 25, 25

Crossover probability 0.8

Mutation rate (subpopulation) 0.1, 0.03, 0.01, 0.003

Isolation time 10 generations

Migration rate 10%

Results on screen Every 1 generation

Competition rate 10%

Termination 30 generations

The fitness function is defined as to minimize the error rate

and minimize the network training time in order to optimize the
number of hidden units, the number of epochs, learning rates
and momentum in hidden layers. The fitness function used in
our implementation is shown as follows:

40

)(
)(100 DBPBBP

ABPBBP

TT
EEFitness


 (2)

where BBPE is the total number of misclassification divided

by the total number of test data before backpropagation, ABPE

is the total number of misclassification divided by total number
of test data after backpropagation, BBPT is the network

training time in second before fine-tuned operation using
backpropagation,

DBPT is the network training time in second

during fine-tuned operation using backpropagation operation.

Fig. 3 Best objective values per subpopulation

IV. EXPERIMENTAL RESULTS

In this section, we describe the experiment and results of our
approach. We divide the experimental results into two sections:
(1) Experimental result for GA based Deep Belief Neural
Network (GADBNN), (2) Experimental result for Optimized
DBNN for robot object recognition and grasping.

A. Experimental Results for GADBNN

In order to optimize DBNN parameters, we build a database,
which consists of 1200 train images of six different types of
objects (200 images of each object) and 600 test images of 100
images of each object. This training and test images were taken
randomly in different oriental, positions, and lighting
conditions in our experimental environment to make our system
robust. In our dataset, all images are grayscale images.

Fig. 4 Objective values of all individuals of generations

In order to evaluate GADBNN performance, we plot the best

objective value per subpopulation in Fig. 3. Four
subpopulations (sp1, sp2, sp3, sp4 where sps are the
subpopulations) are mentioned with four different colors. The
best object value is mentioned by bold red color. In addition,
objective values of individuals through all generation during
evolution process are shown in Fig. 4. The fitness value was
started from 13.6250. In first four generations, the strategy
applied in subpopulation 2 is successful. On the fifth
generation, strategy 4 is successful. From six to nine
generations, strategy 1 is successful. The individual’s
convergence is most successful in the tenth generation and
objective value is 8.52528. At the end of the optimization (tenth
generation), the strategy applied on subpopulation 4 is the most
successful. The individual’s convergences were terminated on
24th generation.

B. Experimental Results for Object Recognition and Robot
Grasping

In order to demonstrate the performance of optimized DBNN
parameters, we consider the object recognition and robot
grasping tasks. For this purpose, we build an image dataset that
is consisted of 1200 images (200 images of each object) of six

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:11, No:3, 2017

632

robot graspable objects in different orientations, positions, and
lighting conditions in our experimental environment.

1. Object Recognition Results

When a user requests for an object by clicking on Graphical
User Interface (GUI), then a snapshot is taken by USB camera
(shown in Fig. 6). This snapshot is converted to the grayscale
image. We apply a morphological structuring element
operation, and all existing objects in the environment are
extracted and separated based on the center of the objects of the
size of 28x28 pixels. In the visible layer, 784 neurons are used
as input. From optimized DBNN, we found 650, 413, and 555
neurons of hidden units, 100, 88, and 184 neurons of epochs in
three hidden layers. Learning rate for first hidden layer was
0.084859 and 0.1664 for second and third hidden layers.
Momentum values of first five epochs in each hidden layer are
0.28644, 0.28088, 0.15208, 0.55015, and 0.0258 in order to
make learning procedures more efficient. Momentum value for
the remaining epochs in each hidden layer is 0. After passing
through the three hidden layers, DBNN generates six
probability values as output, because we trained optimized
DBNN with six different types of object. Each probability
belongs to each object. The highest probability value is
considered the recognized object. If the highest probability
value is smaller than the threshold value (0.7), then we consider
that the requested object does not exist in the experimental

environment. For example, the blue screwdriver is used as input
of DBNN, as outputs, DBNN generates six probability values,
such as 0.0001, 0.0028, 0.0037, 0.9999, 0.0000, and 0.0000
(shown in Fig. 5). From this result, the maximum probability is
0.9999, which belongs to the fourth object that we defined as
the blue screwdriver. At the same way, other objects can be
recognized using optimized DBNN method.

Fig. 5 Object recognition process

Fig. 6 Snapshots of robot object recognition and grasping using optimized DBNN

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:11, No:3, 2017

633

2. Robot Grasping Results

For robot grasping purpose, we used a Programmable
Universal Machine for Assembly (PUMA) robot from Denso
Corporation. It has a gripper that can grasp any objects of the
maximum width of 95 mm. When a user requests for a specific
object, then the requested object is recognized using optimized
DBNN method. The robot finds the grasping position based on
the recognized object. The robot generates a motion trajectory
from the initial position to the object grasping position. After
reaching to the object grasping position, the robot adjusts its
gripper orientation based on the object orientation in order to
grasp objects in different orientations. After grasping the
object, the robot generates another motion from object position
to the predefined object placing position. After placing the
object, the robot returns to the initial position and waits for next
requests from the user. The snapshots of robot object
recognition and grasping process are shown in Fig. 6.

V. CONCLUSIONS AND FUTURE WORKS

The goal of this paper is to propose a method to optimize DL
parameters using evolutionary algorithms. Our proposed
method optimized the DL parameters, such as the number of
hidden units, the number of epochs, learning rates and
momentum of learning procedures in hidden layers. The error
rates and network training time were minimized. We evaluated
our optimized method on real-time object recognition and robot
grasping process. The results showed that our optimized
method outperformed at the assign tasks.

In future, we will integrate Multi-objective Evolutionary
Algorithms (MOEA) because the coefficients of single object
evolutionary algorithms in the objective function are very
difficult to determine. In addition, we want to consider the
scaling factors of the objects.

REFERENCES
[1] G. Hinton, S. Osindero, and Teh, Y.-W, “A fast learning algorithm for

deep belief nets”, Neural Computation, vol. 18, no. 7, pp. 1527-1554,
2006.

[2] J. Lamos-Sweeney, “Deep learning using genetic algorithms”, Master’s
Thesis, Rochester Institute of Technology, NY, USA, 2012.

[3] E. Levy, O. E. David, and N. S. Netanyahu, “Genetic algorithms and deep
learning for automatic painter classification”, Proceedings of the 2014
Annual Conference on Genetic and Evolutionary Computation, 2014, pp.
1143-1150.

[4] S. S. Tirumala, "Implementation of Evolutionary Algorithms for Deep
Architectures", AIC, pp. 164-171 2014.

[5] O. E. David, and I. Greental, "Genetic algorithms for evolving deep
neural networks", In Proceedings of the Companion Publication of the
2014 Annual Conference on Genetic and Evolutionary Computation, pp.
1451-1452. ACM, 2014.

[6] P. Verbancsics, and Josh Harguess, "Generative neuroevolution for deep
learning", arXiv preprint arXiv:1312.5355 (2013).

[7] L. Shao, L. Liu, and X. Li, “ Feature learning for image classification via
multiobjective genetic programming”, IEEE Transactions on Neural
Networks and Learning Systems, vol. 25, no. 7, pp.1359-1371, 2014.

[8] I. Lenz, H. Lee, and A. Saxena, “Deep Learning for Detecting Robotic
Grasps”, International Journal of Robotics Research, vol. 34, no. 4-5, pp.
705-724, 2015.

[9] L. Pinto, and Gupta, “Supersizing Self-supervision: Learning to Grasp
from 50K Tries and 700 Robot Hours”, arXiv:1509.06825 (cs.LG), 2015.

[10] D. Hossain, and G. Capi, “Application of Deep Belief Neural Network for
Robot Object Recognition and Grasping”, The 2nd IEEJ International

Workshop on Sensing, Actuation, and Motion Control (SAMCON 2016),
Tokyo, Japan, March 2016.

[11] D. Hossain, G. Capi, and M. Jindai, “Object Recognition and Robot
Grasping: A Deep Learning based Approach”, The 34th Annual
Conference of the Robotics Society of Japan (RSJ 2016), Yamagata,
Japan, September 2016.

[12] J. Redmon, and A. Angelova, “Real-Time Grasp Detection Using
Convolutional Neural Networks”, arXiv:1412.3128, 2015.

[13] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, D. “Learning
Hand-Eye Coordination for Robotic Grasping with Deep Learning and
Large-Scale Data Collection”, arXiv:1603.02199, 2016.

[14] G. Capi, and K. Doya, “Evolution of recurrent neural controllers using an
extended parallel genetic algorithm”, Robotics and Autonomous System,
vol. 52, no. 2-3, pp. 148-159, 2005.

Delowar Hossain is working toward the Ph.D. degree at Graduate School of
Science and Engineering for Education, University of Toyama, Japan, also
working as visiting researcher at Hosei University, Japan. He received the B.Sc.
and M.Sc. degrees in Computer Science & Engineering from University of
Rajshahi, Rajshahi, Bangladesh, in 2010 and 2012, respectively. He was a
Lecturer at the Department of Computer Science and Engineering, Dhaka
International University, Dhaka, Bangladesh from 2012 to 2014.

His research interests include the industrial robot, deep learning, artificial
intelligence, computer vision, image processing, intelligent robotics, learning,
and evolution.

Genci Capi received the B.E. degree from Polytechnic University of Tirana, in
1993 and the Ph.D. degree from Yamagata University, in 2002. He was a
Researcher at the Department of Computational Neurobiology, ATR Institute
from 2002 to 2004. In 2004, he joined the Department of System Management,
Fukuoka Institute of Technology, as an Assistant Professor, and in 2006, he was
promoted to Associate Professor. In 2010, he was joined as a Professor at the
Department of Electrical and Electronic Systems Engineering, University of
Toyama, Toyama, Japan. He is currently a Professor at the Department of
Mechanical Engineering, Hosei University, Tokyo, Japan.

His research interests include intelligent robots, BMI, multi-robot systems,
humanoid robots, learning, and evolution.

