
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:3, 2017

379

Hierarchical Checkpoint Protocol in Data Grids
Rahma Souli-Jbali, Minyar Sassi Hidri, Rahma Ben Ayed

Abstract—Grid of computing nodes has emerged as a
representative means of connecting distributed computers or
resources scattered all over the world for the purpose of computing
and distributed storage. Since fault tolerance becomes complex due
to the availability of resources in decentralized grid environment,
it can be used in connection with replication in data grids. The
objective of our work is to present fault tolerance in data grids
with data replication-driven model based on clustering. The
performance of the protocol is evaluated with Omnet++ simulator.
The computational results show the efficiency of our protocol in
terms of recovery time and the number of process in rollbacks.

Keywords—Data grids, fault tolerance, chandy-lamport, clustering.

I. INTRODUCTION

DATA grid provides services for supporting the discovery

of resources and enables computing in heterogeneous

storage resource.

Since complex scientific problems in science and

engineering run for a long time, it becomes important

to make them resistant to failures in the underlying hardware

and infrastructure. The computation cannot complete if any

node failure encountered. Therefore, fault tolerance has

become necessity.

The loss of a node in the grid can have influence on the

operation of the grid system and cause losses replicas of a

given that exist on these nodes. In this context, fault tolerance

becomes an obligation to ensure the proper functioning of the

distributed system.

Several methods have been proposed to handle failures in a

widely distributed system such as grid computing [1]-[3]. We

mention essentially:

• Replication (masking): It uses multiple copies of the

same component or process on different machines.

Therefore, when a component has failed with the

failure, it may be masked by one of the copies.

The problem of this method is how to maintain a

strong consistency between the copies. There are various

replication strategies: Active [4]-[6], passive [4]-[6],

semi-active [5]-[7] and coordinator/cohorts [7]. All

replication mechanisms rely on the first two replication

techniques.

• The rear cover: A recovery point is a set of elements

such as memory status which allows it to restart process

in the event of a node failure [1]-[3].

Approaches based on replication are well suited for fault

tolerance to protect the data. But in the case of failure nodes

based-solutions, backups checkpoints seem smarter.

Rahma Souli-Jbali, Minyar Sassi Hidri and Rahma Ben Ayed are with
the University of Tunis El Manar Ecole Nationale d’Ingénieurs de Tunis
BP. 37, Le Belvédère 1002, Tunis, Tunisia (e-mail: rahma.souli@enit.rnu.tn,
minyar.sassi@enit.rnu.tn, rahma.benayed@enit.rnu.tn).

Recently, we proposed to combine data replication and job

scheduling while using MapReduce-driven clustering to place

replicas in grid. With the proposed strategy, scheduling is

computed using information provided by the replicas which

are established based on information provided by the scheduler

[8]. The simulation and experiment results demonstrate that

the clustering-driven replication strategy can reduce the data

access time, the job scheduling time and the number of active

sites for replication according jobs’ frequency and databases’

size.

In this paper, we present a hierarchical checkpoint protocol

in data grids with data replication-driven model based on

clustering. So, in case of breakdown, the impact of error

would remain confined in the nodes of the same cluster. The

fault tolerance protocol combined two pessimistic-based ones:

the log-based protocol founded on the transmitter applied to

the inter-clusters’ messages and the generalization founded

on both the not blocking transmitter and the coordinated

checkpointing of Chandy-Lamport [9].

The rest of the paper is organized as follows: In Section II,

we present the different mechanisms of hierarchical recovery.

Section III presents a new fault tolerance technology. Section

IV presents the computational results made to validate the

proposed protocol. Section V concludes the paper and presents

a preview of future work.

II. RELATED WORK

Logging techniques require a periodic backup of the local

process conditions, and recording all messages received after

establishing local checkpoints on a stable support.

In the case of process failure, it is restarted from the

last checkpoint, and all messages received after the latter

are returned in FIFO (First In first Out) order. All logging

techniques require that the state of a process recoverable

always compatible with the state of other processes. They

must also ensure that no orphan processes, which make

the calculation of the global state incoherent [6]. However,

these rear covers protocols are not completely suitable

for all types of grids. Indeed, each protocol has more

advantages than another, depending on the application and

environment. So, we focused our analysis on hierarchical

protocols in correspondence with the hierarchical architecture

of computing grids and supported on these rear cover

protocols.

Several researchers proposed hierarchical fault tolerance

techniques based on rear cover protocols including:

• Coordinated Hierarchical Recovery point (CHC): It

is designed for networks like the Internet. Experimental

studies have been done on a network consisting of four

clusters of eight knots. They assume that the cluster nodes

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:3, 2017

380

are safe, and connected via a broadband network equal

to 10 Mbps and the network speed between clusters is

equal to 1Mbps [10]. Only one fault occurs at a time

and no fault occurs during recovery. They distinguish,

during a session establishment checkpoint, three roles

between different processes: Initiator, Leader, Follower.

The initiator is a process that initiates a checkpoint

backup session. The leader is a process chosen in each

cluster and coordinates activities within the cluster, in

agreement with the Offeror process instructions. The

follower is a process that represents the rest of the

processes, they follow the instructions of their leader.

This protocol takes place in two steps:

– The implementation of the coordinated limited to

the cluster checkpoint algorithm. The processes are

blocked and saved a consistent global state during

this step.

– The implementation of of a coordinated checkpoint,

but the leaders are the only participants, with the

initiator that acts as a coordinator.

• Hierarchical Causal Logging (HCL): This protocol uses

a proxy network that stores in the cache the retrieved

information. While ensuring the benefits of the standard

causal protocol logging, it adds the benefit of proxies

exponentially reduces the size of data to follow in the

causality footsteps [11].

The authors have also shown that the use of proxies

significantly reduces the overhead bandwidth led by

causal information.

• Hybrid Protocol (HP): It is designed for applications

by code coupling. The protocol combines a technique

coordinated dump checkpoint within a cluster and a

point protocol recovery induced communication between

clusters [12]. Unlike hierarchical protocols described

above, the new protocol supports mistakes simultaneous.

Experimental studies have shown that if we limit the

inter-cluster communications, it limits the number of

checkpoints forced. Therefore, it is necessary to adjust

the period of retention between non forced checkpoints

for an application whose communications are intense.

It is also demanding much set the frequency to trigger

the garbage collector (expensive network congestion) and

storage cost.

• Process Group (PG): It uses log-based messages

mechanisms. Unlike checkpointing protocols that require

all processes to go back, logging protocols avoid

the overall restoration replaying messages offending

processes only [13]. The backup logging introduces a

premium on memory because each message exchanged

must be registered in a stable. This is why the authors

proposed a new strategy based on an organization

of group process that reduces memory usage during

execution without fault. Each cluster represents a unit in

recovering and saving messages.

The principle is that only the inter-clusters’ messages are

stored in the log, while only for intra-cluster messages

determinants are kept to determine their order of receipt

in case of failure. In this case, only the fault process and

other processes in the same group running the recovery

procedure [14]. The inter-clusters’ messages are simply

replayed since they are stored in stable storage. This

system represents a significant improvement over the

frequent access to a stable support for saving messages

in the log.

In [15], they used the same process for clusters

and provides a new rear cover protocol combining

a checkpoint coordinated within clusters and message

logging mechanism based on the issuer between clusters.

In [6], they established a comparative study that was used

to select two protocols adapted to the grid architecture:

• Intra-cluster: The coordinated backup protocol
non-blocking for Chandy and Lamport This protocol

works under the assumption of FIFO while using

markers. Indeed, at the time of backup checkpoints,

each process safeguards its local state and sends on all

output channels for a marker that other neighbors are

informed process checkpoint actualization. All processes

that receive this message for the first time recorded his

state and broadcasts the marker by continuing in the same

way [9].

• Inter-cluster: The pessimistic logging based
on Johnson transmitter (PL): There are three

message-logging categories: Optimistic, pessimistic and

causal. In optimistic protocol (OL), the author supposed

that the logging of a message on reliable support will

be complete before a failure occurs. In fact, during the

execution of the process, the determinants of messages

are stored in volatile memory, before being saved

periodically on stable support. The storage of stable

memory is asynchronous. Induced latency is then very

low. But, a failure may occur before the messages are

saved on stable storage support. It is clear that this leads

to a loss of information stored in volatile memory of the

process down and to an orphaned the messages sent by

this process.

The pessimistic technique was designed on the

assumption that a failure may occur after any

non-deterministic event. The determinant of each

message is recorded stable support before interacting with

the system. When a process writes a non-deterministic

event in a stable, it does not continue the execution until

after receiving an acknowledgment. In this technique,

you can always retrieve the status of each process This

characteristic has three main advantages:

– Sending messages to the outside by the process can

be performed without using a special protocol.

– In case of failure, the process relaunched at the most

recent checkpoint, and replay the messages stored in

the log.

– Recovery is easy, since the effects of failure are

limited only to the failed process.

The main drawback of this technique is the timing

that causes degradation in system performance. Several

methods have been established to minimize the timings

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:3, 2017

381

as the approach proposed in [16].

III. HIERARCHICAL CHECKPOINT AND LOG-BASED

PROTOCOL IN DATA GRIDS

One of the main goals of our work is to present a model of

checkpoint in data grids.

A. Problem Statement and Model Overview

We present a protocol which combines two very known

algorithms and used in the distributed systems: the pessimistic

log-based protocol founded on transmitter [16] and the

coordinated checkpointing of Chandy-Lamport (CL) [9].

Since applications were installed in the distributed systems

communicate by passage of messages or the main actor is the

process which exchanges messages by using two procedures

at least (send and receive). Our study focused on these two

types of application.

We are going to make, first of all, a detailed description of

our protocol.

In [6], the author made a comparative study of all possible

combinations between both algorithms of Chandy-Lamport

and the pessimistic log-based protocol founded on transmitter

in hierarchic architectures. In the first combination, called

Message Logging Message Logging, a pessimistic log-based

protocol is used to save inter-clusters’ and intra-cluster

messages. In the second combination, called Message Logging
Chandy-Lamport, the pessimistic log-based protocol founded

on Johnson’s transmitter [16] is used to inter-clusters’

messages and the protocol of not blocking coordinated

maintenance of Chandy and Lamport (CL) [9] is used to

intra-cluster messages.

The results of experiments presented in [6] showed that the

combination Message Logging Message Logging is adapted

to not very communicating applications. The combination

Message Logging Chandy-Lamport gives a better performance

for the applications of broadcasting exchanging a big number

of messages. However, they are strongly communicating

applications, the system save only the inter-cluster messages

with the pessimistic log-based protocol.

Our protocol is inspired of jobs of [6] who offers a new

protocol of hierarchical adaptive checkpoint protocols based

on the combination Message Logging Chandy-Lamport (see

Fig. 1).

We use the pessimistic log-based protocol founded on the

transmitter which is applied to inter-clusters’ messages. In

intra-clusters, the pessimistic log-based protocol founded on

the not blocking transmitter and the coordinated checkpointing

of Chandy-Lamport are folded up according to the messages’

frequency.

As this protocol is based on the regrouping of nodes in

cluster, for fault process, we believe to reproducing the same

model inside clusters by applying a clustering algorithm for

the training of clusters during the execution of applications.

In case of breakdown, the impact of error therefore, would

remain confined in the nodes of the same cluster.

Fig. 1 Hierarchical checkpoint protocol in Data Grids

B. Notations

To better present the formal approach to our model, the

following notations are used:

• pi: the ith process.

• cInPi: state of the input channel of the ith process.

• cOutPi: state of the output channel of the ith process.

• numSeq: number of sequences relating to a process

incremented in every reception of message by this

process.

• idClust: the cluster identifier.

• idP: the process identifier.

• PRep: binary indicator to indicate if the process made a

checkpoint.

• ListMsg: array of messages sent by process.

• Memvolatil: array of messages not yet saved.

• nbMsgclusti : number of messages exchanged in the ith

cluster.

• dateEmissMsg: sending date of the message.

• dateRecepMsg: receiving date of the message.

• f reqmsgs: frequency of intra-cluster messages.

• T Xsauv: time after saving a state of process.

• FreqExPRep: frequency of the non-blocking coordinated

checkpoint protocol execution.

• MaxNbMsgEmi: threshold of the number of sent

messages.

• FreqMaxIntraMsg: threshold of the frequency of

intra-clusters’ messages.

• JP: pessimistic log-based protocol founded on the

transmitter.

• CL: Chandy-Lamport protocol.

• MsgRec: message of the checkpoint request in case of

breakdown.

• MsgCtrl: message sent by a process to inform the other

processes to perform a checkpoint.

• msg: exchanged message.

• ack: acknowledgement message.

• act: acquittal message.

• MCi: center of the the ith cluster.

• idPtc: identifier of the last carry out intra-cluster protocol.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:3, 2017

382

The objective of our protocol is not only to reduce the cost

of the pessimistic log-based protocol during execution without

error, but also to control a too long procedure of checkpoint

in case of breakdown.

We have chosen to fix a threshold of frequency

of intra-cluster messages (FreqMaxIntraMsg) in the

execution of the application. Under a frequency less than

FreqMaxIntraMsg, they are going to apply the combination

of the pessimistic log-based pessimistic log-based and

all messages which are in the grid are saved with their

determiners by using this checkpoint protocol.

To minimize the number of messages which will be used

in case of breakdown, processes make independent points of

checkpoint when the number of broadcast messages reached a

threshold (MaxNbMsgEmi) equal to 50. To pass our protocol

in combination with pessimistic log-based Chandy-Lamport
protocol, it is necessary to fix a threshold to the maximum of

number of messages played again by processes belonging to

the same cluster to degrade the performances of applications.

Experiments allowed to fix this threshold to ten messages

in second (10 msg/s). If the frequency of communications

intra-cluster becomes more than this threshold, the log of

these messages is unlocked. Therefore, to save the states of

processes, it is the Chandy-Lamport protocol that will be used

inside clusters. This protocol will be thrown every one hundred

and twenty second (FreqMaxIntraMsg). Fault can happen

after the execution of the pessimistic log-based protocol

(see PLP procedure) within cluster or after the execution

of the protocol of non-blocking coordinated checkpoint of

Chandy-Lamport (see ICB procedure).

Procedure Pessimistic log-based protocol

Procedure PLP(msg, nbMsgclusti, idClust(Sender),
idClust(Receiver))

{
1 Move msg in the volatile storage
2 Send msg
3 if ((idClust(Sender) = idClust(Receiver) and msg <> ack

and msg <> MsgCtrl))
{

4 nbMsgclusti ⇐ nbMsgclusti +1
5 if (f reqmsgs <= FreqMaxIntraMsg)

{
6 Lock the execution
7 numSeq ⇐ numSeq+1
8 Send act
9 Save msg

}
}

}
End

The protocol carried out is saved in idPtc attribute of the

center node of the cluster. The idPtc takes by default value

”JP”.

To perform a recovery, for (idPtc = ”JP”), it is necessary

to execute the last checkpoint and played again messages

received by processes after this checkpoint in the same order

where they were sent using the numbers of sequences and

determiners (see procedure RRPi).

Procedure Initiate a coordinated backup

Procedure
ICB(f reqmsgs,FreqMaxIntraMsg,T Xsauv,FreqExPRep)

{
1 if ((f reqmsgs > FreqMaxIntraMsg) and

(T Xsauv = FreqExPRep))
{

2 Choose any process
3 Send MsgCtrl to MC

}
}
End

Procedure Reception of a covering request in case of

process i breakdown

Procedure RRPi(process, idPtc)
{

1 if (process = MCi)
{

2 if (idPtc =CL)
{

3 Send MsgRec to other centers of clusters
4 Send MsgRec to process of his cluster

}
5 else

{
6 if (idPtc = JP)

{
7 Send MsgRec to other centers of clusters

}
}

}
8 else

{
9 Send the determiner MCi

10 Send MsgRec by MCi to process which have a
determiner including Pi

}
11 Receive MsgRec by process i
12 if (process <> MCi)

{
13 Execute stateProci
14 Play again the messages contained in memory ofPi
15 Play again the messages defined in determiners

}
}
End

In another way, to save a message msg sent by a

broadcasting process E to receive process R, it is necessary

that E, firstly, keep msg in its volatile storage. And when R
receives this message, it updated the number of sequences

NumSeq, then sends an acknowledgement of receipt ack in E.

In the reception of the message ack by E, E adds NumSeq
in msg and sends an act in receiving process R. Contents

and determiners of inter-clusters and intra-cluster messages

are available at the level of their transmitters and receivers.

In our protocol, all activities within clusters are coordinated

by their centers. In the case of recovery, centers recover the

determiners of messages sent in process or cluster. Then, they

send these determiners in processes who need the recovery. For

idPtc = ”CL”, all processes of the cluster containing process

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:3, 2017

383

breakdown take back their execution in the last saved point

of recovery in last no coordinated checkpoint. The messages

received after the last point of recovery are also played again

similarly than in the first case where idPtc = ”JP”. The

protocol of coordinated checkpoint of Chandy-Lamport works

under the hypothesis of FIFO channels (on a channel all

messages are received in order where they were sent). In the

execution of the system, any process in a cluster can initiate

the calculation of the global state of the system.
Our objective is to save the local status of all messages

which circulate. Therefore, if P1 the originator of the

checkpoint, P1 is going to record the local, state and sends

on all the output channels a MsgCtrl message. If a process

receives MsgCtrl for the first time, it save in its turn its

local state and broadcasts the message. In that case and as

channels are FIFO, the state of the channel of this process is

empty because, process received all messages issued before

the reception of the message MsgCtrl, and messages received

after the message MsgCtrl are not part of the global state.

Otherwise, the state of the input channel relating to the

broadcasting process of this message MsgCtrl is equal to

messages received between the recording of last local state

and the reception of the message.
The algorithm 1 describes the different steps of our protocol.

IV. COMPUTATIONAL RESULTS

We compare the performance of the proposed protocol with

Chandy-Lambort (CL), the coordinated checkpoint (CHC),

causal (HCL), optimistic logging (OL) and pessimistic logging

protocol (PL) (presented in Section II) in grid environment.
We use the Omnet++ simulator [17]. The cluster is

configured with 50 nodes. For the grid configuration, 50 nodes

were uniformly spread in 5 clusters. The intra-cluster delay is

fixed to 0.1 ms and the inter-cluster delay is fixed to 100

ms. Our tests were carried out with 50 application processes.

Messages between processes were randomly generated.
Fig. 2 shows the grid configuration in OMNeT ++.

Fig. 2 Grid configuration in OMNeT ++

Algorithm 1: Hierarchical checkpoint protocol in Data

Grids (HC)

Require: idClust, msg, f reqmsgs, FreqMaxIntraMsg, nbMsgclust,
numSeq, idP, T Xsauv, FreqExPRep, etatProc.

Ensure: State of process, cInPi, cOutPi, daterep, idPtc
1: Save the determiner of msg by calling PLP(msg, nbMsgclusti,

idClust(Sender), idClust(Receiver)).
2: if msg = ack then
3: Add numSeq to msg
4: Send msg to volatile memory
5: Send act
6: Lock the communication
7: end if
8: Initiate a coordinated checkpoint if the frequency 10 msg > s

by calling ICB(f reqmsgs, FreqMaxIntraMsg, T Xsauv,
FreqExPRep)

9: if msg = MsgRec then
10: Call RRPi(process, idPtc)
11: else
12: if msg = determinant then
13: Send the determiners to Pi
14: end if
15: end if
16: if msg = MsgCtrl then
17: if (process = initiator) and (PRep = False) then
18: Make checkpoint
19: Send msg to MC
20: else
21: if (process <> MC) and (PRep = False) then
22: Make checkpoint
23: Send MsgCtrl to MC
24: end if
25: end if
26: end if
27: if (process = MC) and (PRep = False) then
28: Make checkpoint
29: Broadcast MsgCtrl in cluster
30: end if
31: if (f reqmsgs <= FreqMaxIntraMsg) and

Size(ListMsg)> MaxNbMsgEmi then
32: Make checkpoint
33: end if
34: Make checkpoint
35: Send to volatile memory the state of the process, cInPi, cOutPi,

dateChkpt and the idPtc
36: PRep ⇐ True

A. Recovery Time

The recovery time relies on the number of checkpoints

maintained by the protocol and the number of process in

rollbacks. In coordinated checkpoint protocol (CHC) and

pessimistic logging (PL), recovery is simplified because the

system is rolled back only to the most recent checkpoint.

In fact, if the faulty node has no dependencies with nodes

of other cluster nodes, the fault is confined to the cluster

node’s fault. So all the nodes of the grid do not perform

the recovery procedure. Consequently, if the inter-clusters’

communications are intensive, the recovery time increases in

the case of causal (CL) and optimistic logging (OL) and was

decreased by remarkable way in the case of our hierarchical

checkpoint protocol (HCL) (see Fig. 3).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:3, 2017

384

Fig. 3 Recovery time

B. Number of Processes in Rollbacks

For coordinated checkpoint protocol (CHC), all processes

must resume during recovery. The logging protocol (CL)

reduces the number of rollbacks. This number is minimal

in pessimistic protocol (PL) since only faulty processes need

to be rolled back. For the other logging protocol (OL), this

number depends on the information stored in backups and in

the main memory of correct processes.

For our hierarchical checkpoint protocol (HC), only the

process in the same cluster except the center must resume

during recovery (see Fig. 4).

Fig. 4 Number of process in rollbacks

V. CONCLUSION

In this paper, we proposed a fault tolerance model in grid

computing. We first looked for related work on hierarchical

checkpoint protocols, and we have established a comparative

and detailed analysis of different strategies. We concluded that

the combination of different protocols may have an important

performance in grid computing. The pessimistic log-based

protocol founded on the transmitter is applied to inter-clusters

messages. In intra-cluster, the pessimistic log-based protocol

founded on the transmitter and the not blocking coordinated

checkpointing of Chandy-Lamport are folded up according to

the messages’ frequency. Seen that the real target environments

upon which our study relates are widely distributed, it may be

difficult to conduct long-term reproducible experiments in such

context. We have therefore chosen to use a simulator to test our

protocol. Indeed, simulation is a useful way to test solutions

before their validation in a real distributed environment. In

addition, the use of a simulator gives us the possibility to

control all the parameters of the simulated platform, which

may be difficult or impossible in a real platform. Currently,

the proposed model is being deployed in Omnet++. As our

protocol is based on the nodes’ clustering, for a large number

of processes in rollbacks, we can apply the same procedure

in cluster to reduce the number of rollbacks processes. This

opens on one of our future work.

REFERENCES

[1] O. Marin, “The darx framework: Adapting fault tolerance for agent
systems,” Ph.D. dissertation, Université de Have, 2003.

[2] B. Hamid, “Distributed fault-tolerance techniques for local
computations,” Ph.D. dissertation, Université Bordeaux I, 2007.

[3] F. Reichenbach, “Service snmp de dtection de faute pour des systmes
rpartis,” Ph.D. dissertation, Ecole polytechnique de Lausane, 2002.

[4] M. Wiesmann, F. Pedone, and A. Schiper, “A systematic classification
of replicated database protocols based on atomic broadcast,” in 3rd
Europeean Research Seminar on Advances in Distributed Systems, 1999.

[5] X. Besseron, “Tolérance aux fautes et reconfiguration dynamique
pour les applications distribuées à grande échelle,” Ph.D. dissertation,
Université de Grenoble, 2010.

[6] N. M. Ndiaye, “Techniques de gestion des dé faillances dans les grilles
informatiques tolé rantes aux fautes,” Ph.D. dissertation, Université
Pierre et Marie Curie, 2013.

[7] S. Drapeau, “Un canevas adaptable de services de duplication,” Ph.D.
dissertation, Institut National Polytechnique de Grenoble, 2003.

[8] R. Souli-Jbali, M. S. Hidri, and R. B. Ayed, “Dynamic data
replication-driven model in data grids,” in 39th Annual Computer
Software and Applications Conference, COMPSAC Workshops 2015,
Taichung, Taiwan, July 1-5, 2015, 2015, pp. 393–397.

[9] Chandy and Lamport, “Distributed snapshots : Determining global states
of distributed systems,” ACM Transactions on Computer Systems, vol. 3,
no. 1, pp. 63–75, 1985.

[10] H. S.Paul, A. Gupta, and R. Badrinath, “Hierarchical coordinated
checkpointing protocol,” in International Conference on Parallel and
Distributed Computing Systems, 2002, pp. 240–245.

[11] K. Bhatia, K. Marzullo, and L. Alvisi, “Scalable causal message logging
for wide-area environments,” Concurrency and Computation: Practice
and Experience, vol. 15, no. 3, pp. 243–250, 2003.

[12] S. Monnet, C. Morin, and R. Badrinath, “Hybrid checkpointing for
parallel applications in cluster federations,” in 3rd Workshop on
Resiliency in High Performance Computing (Resilience) in Clusters,
Clouds, and Grids, 2004, pp. 773–782.

[13] E. Meneses, C. L. Mendes, and L. V. Kale, “Team based message
logging : Preliminary results,” in 4th IEEE ACM International
Symposium on Cluster Computing and the Grid, 2010.

[14] J.-M. Yang, K. Li, W.-W. Li, and D.-F. Zhang, “Trading off logging
overhead and coordinating overhead to achieve efficient rollback
recovery,” Concurrency and Computation: Practice and Experience,
vol. 21, no. 3, pp. 819–853, 2009.

[15] A. Guermouche, “Nouveaux protocoles de tolrance aux fautes pour les
applications du calcul haute performance,” Ph.D. dissertation, Université
Paris-Sud, 2011.

[16] D. B. Johnson and W. Zwaenepoel, “Sender based message logging,”
in The Seventeenth Annual International Symposium on Fault-Tolerant
Computing, 1987, pp. 14–19.

[17] A. Varga and R. Hornig, “An overview of the omnet++ simulation
environment,” in Proceedings of the 1st International Conference on
Simulation Tools and Techniques for Communications, Networks and
Systems & Workshops, 2008, pp. 60:1–60:10.

