
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:4, 2017

429

 

 

 
Abstract—The job-shop scheduling problem (JSSP) is an 

important decision facing those involved in the fields of industry, 
economics and management. This problem is a class of 
combinational optimization problem known as the NP-hard problem. 
JSSPs deal with a set of machines and a set of jobs with various 
predetermined routes through the machines, where the objective is to 
assemble a schedule of jobs that minimizes certain criteria such as 
makespan, maximum lateness, and total weighted tardiness. Over the 
past several decades, interest in meta-heuristic approaches to address 
JSSPs has increased due to the ability of these approaches to generate 
solutions which are better than those generated from heuristics alone. 
This article provides the classification, constraints and objective 
functions imposed on JSSPs that are available in the literature. 
 

Keywords—Job-shop scheduling, classification, constraints, 
objective functions. 

I. INTRODUCTION 

HE ability to make timely, effective decisions is one of 
the most important issues faced in manufacturing; slow or 

poor decisions increase production costs. Thus, good and 
timely decisions based on optimal scheduling of the 
production process with regards to limited available resources 
constitute a key factor in the efficient control of production. 
The JSSP is a NP-hard problem [1]. From the mid-50s 
onwards, many researchers have been interested in expanding 
the theoretical models of the JSSP and have introduced 
algorithms to solve them. Among these, some have tried to 
review, categorize and analyse the various methodologies 
applied to the JSSP. The fundamental work that first reviewed 
the proposed methodologies for the JSSP was by [2]. Later, 
[3] revisited the JSSP as one of the production scheduling 
problems. Nearly two decades later, [4] reviewed exact 
methods and hybrid techniques as iterated local search 
algorithms. They developed guidelines on the features that 
should be included to make a suitable job-shop scheduling 
system. Thereafter, several other researchers reviewed and 
analysed available methodologies for the JSSP. This paper 
aims to pay particular attention on a review on the 
classification, constraints and objective functions of the JSSP 
that are available in the literature. 

The remainder of the paper is organized as follows: Section 
II presents the classification of JSSPs. Section III describes the 

 
M. Abdolrazzagh-Nezhad is with the Department of Computer 

Engineering, Faculty of Engineering, Bozorgmehr University of Qaenat, 
Qaen, South-Khorasan, Iran. 

S. Abdullah is with the Data Mining and Optimisation Research Group 
(DMO), Center for Artificial Intelligence Technology, Universiti Kebangsaan 
Malaysia, 43600 UKM, Bangi Selangor, Malaysia (e-mail: 
salwani@ukm.edu.my). 

various constraints and objective functions imposed on JSSPs 
followed by a brief summary in section IV. 

II. CLASSIFICATION OF JSSP 

Although JSSPs have overlapping characteristics, they can 
be classified with respect to several facets. The job arrival 
process, the inventory policy, duration time processing and job 
attributes are the most widely used among those facets. Based 
on the literature, there are 14 classes of JSSP (Fig. 1): 
Deterministic JSSP, flexible JSSP, static JSSP, dynamic JSSP, 
periodic JSSP, cyclic JSSP, pre-emptive JSSP, no-wait JSSP, 
just-in-time JSSP, large-scale JSSP, re-entrant JSSP, assembly 
JSSP, stochastic JSSP, and fuzzy JSSP. 

The deterministic/crisp JSSP [5] is a popular type of 
JSSP. The deterministic JSSP consists of n jobs to be 
processed on m machines. Each job should be processed on all 
machines and consists of a chain or complex of operations, 
which have to be scheduled in a predetermined given order. 
Each operation has to be processed on a given machine for an 
uninterrupted processing time period and no operation may be 
pre-empted. The deterministic JSSP occurs when the 
operations of jobs, processing times of operations and 
availability of machines are given by a crisp value. This JSSP 
is different from scheduling problems under uncertainty such 
as the stochastic JSSP and fuzzy JSSP that have imprecise 
parameters. 

The flexible JSSP is an extension of the crisp JSSP and it 
allows an operation to be processed by one machine out of a 
set of candidate machines. The problem consists of two sub-
problems: assigning each operation to a machine (routing 
problem) and sequencing the assigned operations on the 
machines (sequencing problem), such that a feasible schedule 
optimization is achieved for given objectives. So, the flexible 
JSSP includes an extra problem; the assignment of operations 
to machines. The flexible JSSP has recently gained the 
attention of many researchers [6]-[8]. 

JSSPs based on the job arrival process are classified into 
two categories: the static JSSP and the dynamic JSSP. In the 
static JSSP [9], a finite set of jobs, including a predefined 
order of precedence of operations for each job, needs to be 
processed on a finite set of machines. At the beginning of the 
static JSSP, all jobs are released and all machines are 
available. Each machine can process only one operation at a 
time, and each job cannot be operated simultaneously by more 
than one machine. The problem does not have any unexpected 
events or machine breakdown during the scheduling process. 
It should be noted that deterministic JSSP and static JSSP 
differ from each other; if the JSSP classification is based on 
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time parameters, then deterministic, fuzzy and stochastic 
JSSPs can be created, whereas if the JSSP categories based on 

the job arrival process, then static and dynamic JSSPs can be 
obtained. 

 

Fig. 1 Fourteen classes of JSSP 

 
The dynamic JSSP contains a set of machines and jobs of 

various types that arrive continuously over time in a random 
manner. Each job consists of a specific set of operations that 
should be performed in a specified order (routing) on the 
machines and involves a certain amount of processing time. In 
the deterministic JSSP, a job leaves one machine and proceeds 
on its route to another machine for the next operation only to 
find other jobs already waiting for the machine to complete its 
current task [10]; thus, the deterministic JSSP becomes a 
queuing system. The dynamic JSSP essentially involves 
deciding the order or priority of the jobs waiting to be 
processed by each machine to achieve the desired objectives. 
Scheduling rules or dispatching rules are applied for this 
purpose. These rules are accepted in industry because of their 
ease of implementation, satisfactory performance, low 
computation requirement, and flexibility to incorporate 
domain knowledge and expertise [10]. The dynamic JSSP has 
also recently has attracted the interest of many researchers 
[11]-[13]. 

The periodic JSSP is employed to schedule a finite set of 
jobs in each single working shift, where all shifts have similar 
operations, as well as the same scheduling. The periodic JSSP 
assigns operations to time slots with the maximum length of T, 
on corresponding machines. In this problem, some periodic 
events are repeated subject to certain constraints. Also, every 
constraint in a given set of periodic interval constraints is 
associated with a pair of events confined by a lower bound and 
an upper bound [14], [15]. 

The cyclic JSSP [16], [17] consists of a set of operations 
that are to be repeated in a process an indefinite number of 
times. In this problem, the primary objective function is to 
minimize the period length. The cyclic JSSP occurs in 
domains in which the sequences of jobs are repeated. The 

problem is generally studied in two different ways: with and 
without resource constraints [18]. 

The pre-emptive JSSP [19] includes pre-emption 
constraints. These constraints imply that: 

“…it is not necessary to keep a job on a machine, once 
started, until its completion. The scheduler is allowed to 
interrupt the processing of [a] job (pre-empt) at any 
point in time and put a different job on the machine 
instead. The amount of processing a pre-empted job 
already has received is not lost. When a pre-empted job 
is afterwards put back on the machine (or on another 
machine in the case of parallel machines), it only needs 
the machine for its remaining processing time” [5: p. 16]. 

The no-wait JSSP [20] applies to the following 
situation: 

 “Jobs are not allowed to wait between two successive 
machines. This implies that the starting time of a job at 
the first machine has to be delayed to ensure that the job 
can go through the flow shop without having to wait for 
any machine” [5: p. 17]. 
The just-in-time JSSP [21] is also devoted to the solving 

the earliness-tardiness type of JSSP because both the early 
completion time of jobs (which results in the requirement for 
storage) and the tardy completion time of jobs are penalized. 
In this problem, a due date for each operation and two penalty 
coefficients to penalize the early or tardy completion are 
considered. 

The large-scale JSSP [22] implies the existence of a large 
number of machines and number of jobs. Due to this problem 
having a too huge solution space and the need to design 
special algorithms to solve it, this problem is considered to be 
an independent category of JSSP. 

The re-entrant JSSP [23] is an extension of the classic 
crisp JSSP, where jobs may visit machines more than once, 
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i.e., a job may have two or more operations that require the 
same machine. The re-entrant JSSP can be summarized as 
follows: “Each job may process with certain machines more 
than once. Any two consecutive operations of each job cannot 
be processed on the same machine. No two machines are 
allowed to perform the same operation. The processing times 
are independent of the sequence. There is no randomness; all 
the data are known and fixed. All jobs are ready for 
processing at time zero at which the machines are idle and 
immediately available for work. No pre-emption is allowed, 
i.e., once an operation is started, it must be completed before 
another operation can be started on that machine. Machines 
never breakdown and are available throughout the scheduling 
period. The technological constraints are known in advance 
and immutable. There is only one of each type of machine. In-
process inventory is allowed” [24: p. 1198]. 

The assembly JSSP [25] appends an assembly relationship 
and lot splitting for the final production. The problem can be 
explained as follows: “A job is regarded as ‘completed’ if all 
of its operations are finished and it implies that each job is 
independent. Usually, a job is a batch of identical items in 
which the whole batch cannot be split. This means that the 
batch must be wholly transferred from machine to machine 
even some items have already been processed. The first 
restriction assumes that each job is independent and the 
second assumes that each job cannot be split. In reality, these 
two restrictions are not always valid. To relax the first 
restriction, an assembly stage is attached such that JSSP 
becomes an Assembly JSSP. In this connection, each job is an 
entity of the Bill-Of-Material (BOM) of all products. The 
assembly relationship between different jobs is defined by the 
BOMs. If there is no common part, only jobs from the same 
BOM can be assembled. In contrast, only common parts from 
distinct BOMs may be assembled” [26: p. 983]. 

The stochastic JSSP [27] consists of parameters that are 
initially described in terms of probability distributions. This 
problem is an important aspect to address in respect of 
manufacturing systems and the extended version of JSSP by 
introducing some stochastic processing conditions such as the 
probability of machine breakdown, as well as stochastic 
processing time in normal exponential and uniform 
distributions [28]. 

The assumption that the duration times of JSSPs in the real-
world have a crisp value is often violated in practice. Since 
human-centred factors are incorporated into the JSSP, it may 
be more appropriate to consider a fuzzy processing time due to 
human-made factors and a fuzzy due date which tolerates a 
certain amount of delay in the due date. Therefore, another 
newer type of JSSP, the fuzzy JSSP [29] has come to 
prominence. The basic characteristics of a fuzzy JSSP are 
fuzzy processing time, fuzzy due date, and fuzzy ranking 
(fuzzy max). Also, the fuzzy JSSP has three subclasses: fuzzy 
JSSP with fuzzy due date, fuzzy JSSP with fuzzy processing 
time, and fuzzy JSSP with both fuzzy processing time and 
fuzzy due date. 

III. CONSTRAINTS AND OBJECTIVE FUNCTIONS 

In the classical JSSP [30], there are set of jobs on a set of 
machines. The operations of the jobs have to be processed on 
the machines a set of constraints. Fig. 2 presents the classic 
constraints, extra constraints and the objective functions of the 
JSSPs that have been studied in the literature. 

A. Classic Constraints of JSSPs 

There are three types of constraints: precedence, capacity, 
and release and due date. Precedence constraints include 
three limitations; each job should be processed through the 
sequence of machines in a predetermined order, the machine 
orders among different jobs are unconfined and there are no 
precedence constraints among the operations of different jobs. 
Capacity constraints comprise five restraints; machines are 
independent of one another, machines cannot remain idle 
while an operation is waiting for processing, each machine can 
only mostly handle one operation at a time, each job can be 
processed only once on a given machine, and jobs are 
independent of each other. Finally, release and due date 
constraints contain three restrictions; there is no negative 
starting time, the processing time of operations is given a 
length, and the processing of each operation must not be 
interrupted. Therefore, to satisfy these constraints and to 
achieve the objective of a JSSP, the starting time of the 
processing operation is considered to be the decision variable 
of the JSSP. A schedule is assigned time slots on the machines 
for operations by satisfying the problem’s constraints and 
finding a sequence of jobs on the machines; the corresponding 
schedule should optimize the objective function of the JSSP. 
The above classic constraints are the formal constraints that 
are considered for the 14 classes of JSSPs discussed in the 
previous section; however, there are some extra constraints 
that are considered for the deterministic JSSP (crisp JSSP) and 
in other types of JSSP.  

B. Extra Constraints of JSSPs 

The JSSP with multipurpose machines [31] or the JSSP 
with unrelated parallel constraints [32] associates each 
operation with a subset of machines, from which exactly one 
must be chosen to process the operation. Recall that in the 
flexible JSSP, the operations may have different processing 
times on different machines. 

The JSSP with processing alternative [33] is an extended 
JSSP that considers machine alternatives for individual 
operations and allows jobs to have a partial order of 
operations. The extension evolved from JSSP with 
multipurpose machines or flexible JSSP into a multimode 
JSSP [31] for multi-resource shop scheduling with resource 
flexibility [34]. 

The JSSP with deteriorating jobs [35] means the 
processing times of jobs are an increasing function of their 
starting time. In most of the research related to scheduling 
deteriorating jobs, a simple linear deterioration function is 
assumed. 

The JSSP with maintenance activity [36] implies that 
each machine is subject to preventive maintenance during the 
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planning period. The starting times of maintenance activities 
are either flexible in a time window or fixed beforehand. 
Moreover, two cases of maintenance resource constraint are 
considered: sufficient maintenance resource being available or 
only one maintenance resource being available. 

The JSSP with sequence-dependent setup times [37] or 
JSSP with setup times [38] is a JSSP where the magnitude of 
the setup strongly depends on both the current and the 
immediately processed jobs on a given machine. For example, 

this may occur in a painting operation, where different initial 
paint colours require different levels of preparation before 
being painted over with other paint colours. 

The JSSP with availability constraints [39] implies that 
one or several machines might cease to be available for 
processing jobs after a breakdown or when preventive 
maintenance such as washing or control operations is 
scheduled.

   

Fig. 2 Constraints and objective functions of JSSPs 

 
The JSSP with overlapping operations [40] includes a 

demand with a value of more than 1 for each job. The demand 
determines the quantity of each completed job ordered by a 
customer. Based on this assumption, the operations of each job 
can be performed based on overlap considerations, where an 
operation may be overlapped with others because of its nature. 
The overlapping is limited by structural constraints, such as 
the dimensions of the box to be packed or the capacity of the 
container used to move the pieces from one machine to the 
next. 

The JSSP with controllable processing time [41] implies 
that the processing time of a job can be reduced because 
additional resources are assigned to the job. There are 
situations where it is possible to compress a job, but this 
entails an extra cost. These situations are acceptable only if the 
additional cost is compensated by the gains from job 
completion at an earlier time. 

 

C. Objective Functions of JSSPs 

Minimizing the makespan [42]. In this case, “the 
makespan is equivalent to the completion time of the last job 
to leave the system. A minimum makespan usually implies a 
good utilization of the machine(s)” [5: p. 18]. 

Minimizing the total weighted completion time [43]. 
Here “the sum of the weighted completion times of the  jobs 
gives an indication of the total holding or inventory costs 
incurred by the schedule. The sum of the completion times is 
in the literature often referred to as the flow time. The total 
weighted completion time is then referred to as the weighted 
flow time” [5: p. 19]. 

Minimizing the maximum of lateness [44]. In this case, 
because the objective is a function of the due date, the lateness 
of job  is defined as Li=Ci-di, where Ci and di are the 
completion time and due date of job i, respectively. The 
lateness of job i is positive when job i is completed late and 
negative when it is completed early. The maximum of lateness 
calculates the worst violation of the due dates. 
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Minimizing the total weighted tardiness [45]. The second 
objective related to due date is tardiness. The tardiness of job  
is defined as Ti=max(Ci-di,0)=max(Li,0). “The difference 
between the tardiness and the lateness lies in the fact that the 
tardiness never is negative” [5: p. 18]. This objective “is also a 
more general cost function than the total weighted completion 
time” [5: p. 19]. 

Minimizing the weighted number of tardy jobs [46] or 
minimizing the weighted number of late jobs [47] is the 
third objective related to due date. The unit penalty of job i or 
the tardy job i is defined as Ui=1 if Ci>di, else Ui=0. So the 
weighted number of tardy jobs is calculated by ∑wiUi. This 
objective “is not only a measure of academic interest, it is 
often an objective in practice as it is a measure that can be 
recorded very easily” [5: p. 19]. 

IV. CONCLUSIONS 

This paper reviewed a number of works in the domain of 
JSSPs. This review was conducted to bring together for ease 
of reference information on the classification, constraints and 
objectives of JSSPs that have been applied so far. 
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