
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:4, 2017

429


Abstract—The job-shop scheduling problem (JSSP) is an

important decision facing those involved in the fields of industry,
economics and management. This problem is a class of
combinational optimization problem known as the NP-hard problem.
JSSPs deal with a set of machines and a set of jobs with various
predetermined routes through the machines, where the objective is to
assemble a schedule of jobs that minimizes certain criteria such as
makespan, maximum lateness, and total weighted tardiness. Over the
past several decades, interest in meta-heuristic approaches to address
JSSPs has increased due to the ability of these approaches to generate
solutions which are better than those generated from heuristics alone.
This article provides the classification, constraints and objective
functions imposed on JSSPs that are available in the literature.

Keywords—Job-shop scheduling, classification, constraints,
objective functions.

I. INTRODUCTION

HE ability to make timely, effective decisions is one of
the most important issues faced in manufacturing; slow or

poor decisions increase production costs. Thus, good and
timely decisions based on optimal scheduling of the
production process with regards to limited available resources
constitute a key factor in the efficient control of production.
The JSSP is a NP-hard problem [1]. From the mid-50s
onwards, many researchers have been interested in expanding
the theoretical models of the JSSP and have introduced
algorithms to solve them. Among these, some have tried to
review, categorize and analyse the various methodologies
applied to the JSSP. The fundamental work that first reviewed
the proposed methodologies for the JSSP was by [2]. Later,
[3] revisited the JSSP as one of the production scheduling
problems. Nearly two decades later, [4] reviewed exact
methods and hybrid techniques as iterated local search
algorithms. They developed guidelines on the features that
should be included to make a suitable job-shop scheduling
system. Thereafter, several other researchers reviewed and
analysed available methodologies for the JSSP. This paper
aims to pay particular attention on a review on the
classification, constraints and objective functions of the JSSP
that are available in the literature.

The remainder of the paper is organized as follows: Section
II presents the classification of JSSPs. Section III describes the

M. Abdolrazzagh-Nezhad is with the Department of Computer

Engineering, Faculty of Engineering, Bozorgmehr University of Qaenat,
Qaen, South-Khorasan, Iran.

S. Abdullah is with the Data Mining and Optimisation Research Group
(DMO), Center for Artificial Intelligence Technology, Universiti Kebangsaan
Malaysia, 43600 UKM, Bangi Selangor, Malaysia (e-mail:
salwani@ukm.edu.my).

various constraints and objective functions imposed on JSSPs
followed by a brief summary in section IV.

II. CLASSIFICATION OF JSSP

Although JSSPs have overlapping characteristics, they can
be classified with respect to several facets. The job arrival
process, the inventory policy, duration time processing and job
attributes are the most widely used among those facets. Based
on the literature, there are 14 classes of JSSP (Fig. 1):
Deterministic JSSP, flexible JSSP, static JSSP, dynamic JSSP,
periodic JSSP, cyclic JSSP, pre-emptive JSSP, no-wait JSSP,
just-in-time JSSP, large-scale JSSP, re-entrant JSSP, assembly
JSSP, stochastic JSSP, and fuzzy JSSP.

The deterministic/crisp JSSP [5] is a popular type of
JSSP. The deterministic JSSP consists of n jobs to be
processed on m machines. Each job should be processed on all
machines and consists of a chain or complex of operations,
which have to be scheduled in a predetermined given order.
Each operation has to be processed on a given machine for an
uninterrupted processing time period and no operation may be
pre-empted. The deterministic JSSP occurs when the
operations of jobs, processing times of operations and
availability of machines are given by a crisp value. This JSSP
is different from scheduling problems under uncertainty such
as the stochastic JSSP and fuzzy JSSP that have imprecise
parameters.

The flexible JSSP is an extension of the crisp JSSP and it
allows an operation to be processed by one machine out of a
set of candidate machines. The problem consists of two sub-
problems: assigning each operation to a machine (routing
problem) and sequencing the assigned operations on the
machines (sequencing problem), such that a feasible schedule
optimization is achieved for given objectives. So, the flexible
JSSP includes an extra problem; the assignment of operations
to machines. The flexible JSSP has recently gained the
attention of many researchers [6]-[8].

JSSPs based on the job arrival process are classified into
two categories: the static JSSP and the dynamic JSSP. In the
static JSSP [9], a finite set of jobs, including a predefined
order of precedence of operations for each job, needs to be
processed on a finite set of machines. At the beginning of the
static JSSP, all jobs are released and all machines are
available. Each machine can process only one operation at a
time, and each job cannot be operated simultaneously by more
than one machine. The problem does not have any unexpected
events or machine breakdown during the scheduling process.
It should be noted that deterministic JSSP and static JSSP
differ from each other; if the JSSP classification is based on

Job Shop Scheduling: Classification, Constraints and
Objective Functions

Majid Abdolrazzagh-Nezhad, Salwani Abdullah

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:4, 2017

430

time parameters, then deterministic, fuzzy and stochastic
JSSPs can be created, whereas if the JSSP categories based on

the job arrival process, then static and dynamic JSSPs can be
obtained.

Fig. 1 Fourteen classes of JSSP

The dynamic JSSP contains a set of machines and jobs of

various types that arrive continuously over time in a random
manner. Each job consists of a specific set of operations that
should be performed in a specified order (routing) on the
machines and involves a certain amount of processing time. In
the deterministic JSSP, a job leaves one machine and proceeds
on its route to another machine for the next operation only to
find other jobs already waiting for the machine to complete its
current task [10]; thus, the deterministic JSSP becomes a
queuing system. The dynamic JSSP essentially involves
deciding the order or priority of the jobs waiting to be
processed by each machine to achieve the desired objectives.
Scheduling rules or dispatching rules are applied for this
purpose. These rules are accepted in industry because of their
ease of implementation, satisfactory performance, low
computation requirement, and flexibility to incorporate
domain knowledge and expertise [10]. The dynamic JSSP has
also recently has attracted the interest of many researchers
[11]-[13].

The periodic JSSP is employed to schedule a finite set of
jobs in each single working shift, where all shifts have similar
operations, as well as the same scheduling. The periodic JSSP
assigns operations to time slots with the maximum length of T,
on corresponding machines. In this problem, some periodic
events are repeated subject to certain constraints. Also, every
constraint in a given set of periodic interval constraints is
associated with a pair of events confined by a lower bound and
an upper bound [14], [15].

The cyclic JSSP [16], [17] consists of a set of operations
that are to be repeated in a process an indefinite number of
times. In this problem, the primary objective function is to
minimize the period length. The cyclic JSSP occurs in
domains in which the sequences of jobs are repeated. The

problem is generally studied in two different ways: with and
without resource constraints [18].

The pre-emptive JSSP [19] includes pre-emption
constraints. These constraints imply that:

“…it is not necessary to keep a job on a machine, once
started, until its completion. The scheduler is allowed to
interrupt the processing of [a] job (pre-empt) at any
point in time and put a different job on the machine
instead. The amount of processing a pre-empted job
already has received is not lost. When a pre-empted job
is afterwards put back on the machine (or on another
machine in the case of parallel machines), it only needs
the machine for its remaining processing time” [5: p. 16].

The no-wait JSSP [20] applies to the following
situation:

 “Jobs are not allowed to wait between two successive
machines. This implies that the starting time of a job at
the first machine has to be delayed to ensure that the job
can go through the flow shop without having to wait for
any machine” [5: p. 17].
The just-in-time JSSP [21] is also devoted to the solving

the earliness-tardiness type of JSSP because both the early
completion time of jobs (which results in the requirement for
storage) and the tardy completion time of jobs are penalized.
In this problem, a due date for each operation and two penalty
coefficients to penalize the early or tardy completion are
considered.

The large-scale JSSP [22] implies the existence of a large
number of machines and number of jobs. Due to this problem
having a too huge solution space and the need to design
special algorithms to solve it, this problem is considered to be
an independent category of JSSP.

The re-entrant JSSP [23] is an extension of the classic
crisp JSSP, where jobs may visit machines more than once,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:4, 2017

431

i.e., a job may have two or more operations that require the
same machine. The re-entrant JSSP can be summarized as
follows: “Each job may process with certain machines more
than once. Any two consecutive operations of each job cannot
be processed on the same machine. No two machines are
allowed to perform the same operation. The processing times
are independent of the sequence. There is no randomness; all
the data are known and fixed. All jobs are ready for
processing at time zero at which the machines are idle and
immediately available for work. No pre-emption is allowed,
i.e., once an operation is started, it must be completed before
another operation can be started on that machine. Machines
never breakdown and are available throughout the scheduling
period. The technological constraints are known in advance
and immutable. There is only one of each type of machine. In-
process inventory is allowed” [24: p. 1198].

The assembly JSSP [25] appends an assembly relationship
and lot splitting for the final production. The problem can be
explained as follows: “A job is regarded as ‘completed’ if all
of its operations are finished and it implies that each job is
independent. Usually, a job is a batch of identical items in
which the whole batch cannot be split. This means that the
batch must be wholly transferred from machine to machine
even some items have already been processed. The first
restriction assumes that each job is independent and the
second assumes that each job cannot be split. In reality, these
two restrictions are not always valid. To relax the first
restriction, an assembly stage is attached such that JSSP
becomes an Assembly JSSP. In this connection, each job is an
entity of the Bill-Of-Material (BOM) of all products. The
assembly relationship between different jobs is defined by the
BOMs. If there is no common part, only jobs from the same
BOM can be assembled. In contrast, only common parts from
distinct BOMs may be assembled” [26: p. 983].

The stochastic JSSP [27] consists of parameters that are
initially described in terms of probability distributions. This
problem is an important aspect to address in respect of
manufacturing systems and the extended version of JSSP by
introducing some stochastic processing conditions such as the
probability of machine breakdown, as well as stochastic
processing time in normal exponential and uniform
distributions [28].

The assumption that the duration times of JSSPs in the real-
world have a crisp value is often violated in practice. Since
human-centred factors are incorporated into the JSSP, it may
be more appropriate to consider a fuzzy processing time due to
human-made factors and a fuzzy due date which tolerates a
certain amount of delay in the due date. Therefore, another
newer type of JSSP, the fuzzy JSSP [29] has come to
prominence. The basic characteristics of a fuzzy JSSP are
fuzzy processing time, fuzzy due date, and fuzzy ranking
(fuzzy max). Also, the fuzzy JSSP has three subclasses: fuzzy
JSSP with fuzzy due date, fuzzy JSSP with fuzzy processing
time, and fuzzy JSSP with both fuzzy processing time and
fuzzy due date.

III. CONSTRAINTS AND OBJECTIVE FUNCTIONS

In the classical JSSP [30], there are set of jobs on a set of
machines. The operations of the jobs have to be processed on
the machines a set of constraints. Fig. 2 presents the classic
constraints, extra constraints and the objective functions of the
JSSPs that have been studied in the literature.

A. Classic Constraints of JSSPs

There are three types of constraints: precedence, capacity,
and release and due date. Precedence constraints include
three limitations; each job should be processed through the
sequence of machines in a predetermined order, the machine
orders among different jobs are unconfined and there are no
precedence constraints among the operations of different jobs.
Capacity constraints comprise five restraints; machines are
independent of one another, machines cannot remain idle
while an operation is waiting for processing, each machine can
only mostly handle one operation at a time, each job can be
processed only once on a given machine, and jobs are
independent of each other. Finally, release and due date
constraints contain three restrictions; there is no negative
starting time, the processing time of operations is given a
length, and the processing of each operation must not be
interrupted. Therefore, to satisfy these constraints and to
achieve the objective of a JSSP, the starting time of the
processing operation is considered to be the decision variable
of the JSSP. A schedule is assigned time slots on the machines
for operations by satisfying the problem’s constraints and
finding a sequence of jobs on the machines; the corresponding
schedule should optimize the objective function of the JSSP.
The above classic constraints are the formal constraints that
are considered for the 14 classes of JSSPs discussed in the
previous section; however, there are some extra constraints
that are considered for the deterministic JSSP (crisp JSSP) and
in other types of JSSP.

B. Extra Constraints of JSSPs

The JSSP with multipurpose machines [31] or the JSSP
with unrelated parallel constraints [32] associates each
operation with a subset of machines, from which exactly one
must be chosen to process the operation. Recall that in the
flexible JSSP, the operations may have different processing
times on different machines.

The JSSP with processing alternative [33] is an extended
JSSP that considers machine alternatives for individual
operations and allows jobs to have a partial order of
operations. The extension evolved from JSSP with
multipurpose machines or flexible JSSP into a multimode
JSSP [31] for multi-resource shop scheduling with resource
flexibility [34].

The JSSP with deteriorating jobs [35] means the
processing times of jobs are an increasing function of their
starting time. In most of the research related to scheduling
deteriorating jobs, a simple linear deterioration function is
assumed.

The JSSP with maintenance activity [36] implies that
each machine is subject to preventive maintenance during the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:4, 2017

432

planning period. The starting times of maintenance activities
are either flexible in a time window or fixed beforehand.
Moreover, two cases of maintenance resource constraint are
considered: sufficient maintenance resource being available or
only one maintenance resource being available.

The JSSP with sequence-dependent setup times [37] or
JSSP with setup times [38] is a JSSP where the magnitude of
the setup strongly depends on both the current and the
immediately processed jobs on a given machine. For example,

this may occur in a painting operation, where different initial
paint colours require different levels of preparation before
being painted over with other paint colours.

The JSSP with availability constraints [39] implies that
one or several machines might cease to be available for
processing jobs after a breakdown or when preventive
maintenance such as washing or control operations is
scheduled.

Fig. 2 Constraints and objective functions of JSSPs

The JSSP with overlapping operations [40] includes a

demand with a value of more than 1 for each job. The demand
determines the quantity of each completed job ordered by a
customer. Based on this assumption, the operations of each job
can be performed based on overlap considerations, where an
operation may be overlapped with others because of its nature.
The overlapping is limited by structural constraints, such as
the dimensions of the box to be packed or the capacity of the
container used to move the pieces from one machine to the
next.

The JSSP with controllable processing time [41] implies
that the processing time of a job can be reduced because
additional resources are assigned to the job. There are
situations where it is possible to compress a job, but this
entails an extra cost. These situations are acceptable only if the
additional cost is compensated by the gains from job
completion at an earlier time.

C. Objective Functions of JSSPs

Minimizing the makespan [42]. In this case, “the
makespan is equivalent to the completion time of the last job
to leave the system. A minimum makespan usually implies a
good utilization of the machine(s)” [5: p. 18].

Minimizing the total weighted completion time [43].
Here “the sum of the weighted completion times of the jobs
gives an indication of the total holding or inventory costs
incurred by the schedule. The sum of the completion times is
in the literature often referred to as the flow time. The total
weighted completion time is then referred to as the weighted
flow time” [5: p. 19].

Minimizing the maximum of lateness [44]. In this case,
because the objective is a function of the due date, the lateness
of job is defined as Li=Ci-di, where Ci and di are the
completion time and due date of job i, respectively. The
lateness of job i is positive when job i is completed late and
negative when it is completed early. The maximum of lateness
calculates the worst violation of the due dates.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:4, 2017

433

Minimizing the total weighted tardiness [45]. The second
objective related to due date is tardiness. The tardiness of job
is defined as Ti=max(Ci-di,0)=max(Li,0). “The difference
between the tardiness and the lateness lies in the fact that the
tardiness never is negative” [5: p. 18]. This objective “is also a
more general cost function than the total weighted completion
time” [5: p. 19].

Minimizing the weighted number of tardy jobs [46] or
minimizing the weighted number of late jobs [47] is the
third objective related to due date. The unit penalty of job i or
the tardy job i is defined as Ui=1 if Ci>di, else Ui=0. So the
weighted number of tardy jobs is calculated by ∑wiUi. This
objective “is not only a measure of academic interest, it is
often an objective in practice as it is a measure that can be
recorded very easily” [5: p. 19].

IV. CONCLUSIONS

This paper reviewed a number of works in the domain of
JSSPs. This review was conducted to bring together for ease
of reference information on the classification, constraints and
objectives of JSSPs that have been applied so far.

ACKNOWLEDGEMENT

This work was supported by the Ministry of Higher
Education, Malaysia FRGS/1/2015/ICT02/UKM/01/2) and the
Universiti Kebangsaan Malaysia (DIP-2012-15 and GP-
K008253).

REFERENCES
[1] Lageweg, B., Lenstra, J., & Kan, A. H. G. R. (1977). Job-shop

scheduling by implicit enumeration. Management Science, 441-450.
[2] Mellor, P. (1966). A review of job shop scheduling. Operations

Research, 161-171.
[3] Graves, S. C. (1981). A review of production scheduling. Operations

Research, 29(4), 646-675.
[4] Jain, A. S., & Meeran, S. (1999). Deterministic job-shop scheduling:

Past, present and future. European Journal of Operational Research,
113(2), 390-434.

[5] Pinedo, M. L. (Ed.). (2012). Scheduling, Theory, Algorithm and
Systems. New York: Springer.

[6] Wang, L., Zhou, G., Xu, Y., Wang, S., & Liu, M. (2012). An effective
artificial bee colony algorithm for the flexible job-shop scheduling
problem. The International Journal of Advanced Manufacturing
Technology, 60(1), 303-315.

[7] Moslehi, G., & Mahnam, M. (2011). A Pareto approach to multi-
objective flexible job-shop scheduling problem using particle swarm
optimization and local search. International Journal of Production
Economics, 129(1), 14-22.

[8] Zhang, G., Gao, L., & Shi, Y. (2011). An effective genetic algorithm for
the flexible job-shop scheduling problem. Expert Systems with
Applications, 38(4), 3563-3573.

[9] Qiu, X., & Lau, H. Y. (2014). An AIS-based hybrid algorithm for static
job shop scheduling problem. Journal of Intelligent Manufacturing,
25(3), 489-503.

[10] Vinod, V., & Sridharan, R. (2011). Simulation modeling and analysis of
due-date assignment methods and scheduling decision rules in a
dynamic job shop production system. International Journal of Production
Economics, 129(1), 127-146.

[11] Adibi, M. A., & Shahrabi, J. (2014). A clustering-based modified
variable neighborhood search algorithm for a dynamic job shop
scheduling problem. The International Journal of Advanced
Manufacturing Technology, 70(9-12), 1955-1961.

[12] Zhang, L., Gao, L., & Li, X. (2013). A hybrid genetic algorithm and
tabu search for a multi-objective dynamic job shop scheduling problem.
International Journal of Production Research, 51(12), 3516-3531.

[13] Nie, L., Gao, L., Li, P., & Li, X. (2012). A GEP-based reactive
scheduling policies constructing approach for dynamic flexible job shop
scheduling problem with job release dates. Journal of intelligent
Manufacturing, 1-12.

[14] Ahmad, F., & Khan, S. A. (2012). Module-based architecture for a
periodic job-shop scheduling problem. Computers & Mathematics with
Applications, 64(1), 1-10.

[15] Jamili, A., Shafia, M., & Tavakkoli-Moghaddam, R. (2011(a)). A
hybridization of simulated annealing and electromagnetism-like
mechanism for a periodic job shop scheduling problem. Expert Systems
with Applications, 38(5), 5895-5901.

[16] Brucker, P., Burke, E. K., & Groenemeyer, S. (2012a). A mixed integer
programming model for the cyclic job-shop problem with transportation.
Discrete applied mathematics, 160(13-14), 1924-1935.

[17] Brucker, P., Burke, E. K., & Groenemeyer, S. (2012b). A branch and
bound algorithm for the cyclic job-shop problem with transportation.
Computers & Operations Research, 39(12), 3200-3214.

[18] Brucker, P., & Kampmeyer, T. (2008). A general model for cyclic
machine scheduling problems. Discrete applied mathematics, 156(13),
2561-2572.

[19] Ebadi, A., & Moslehi, G. (2012). Mathematical models for preemptive
shop scheduling problems. Computers & Operations Research, 39(7),
1605-1614.

[20] Schuster, C. J., & Framinan, J. M. (2003). Approximative procedures for
no-wait job shop scheduling. Operations Research Letters, 31(4), 308-
318.

[21] Baptiste, P., Flamini, M., & Sourd, F. (2008). Lagrangian bounds for
just-in-time job-shop scheduling. Computers & Operations Research,
35(3), 906-915.

[22] Zhang, R., & Wu, C. (2010). A hybrid approach to large-scale job shop
scheduling. Applied intelligence, 32(1), 47-59.

[23] Topaloglu, S., & Kilincli, G. (2009). A modified shifting bottleneck
heuristic for the reentrant job shop scheduling problem with makespan
minimization. The International Journal of Advanced Manufacturing
Technology, 44(7), 781-794.

[24] Pan, J. C. H., & Chen, J. S. (2005). Mixed binary integer programming
formulations for the reentrant job shop scheduling problem. Computers
& Operations Research, 32(5), 1197-1212.

[25] Wong, T., & Ngan, S. (2013). A comparison of hybrid genetic algorithm
and hybrid particle swarm optimization to minimize makespan for
assembly job shop. Applied Soft Computing, 13(3), 1391-1399.

[26] Wong, T., Chan, F. T. S., & Chan, L. (2009). A resource-constrained
assembly job shop scheduling problem with Lot Streaming technique.
Computers & industrial engineering, 57(3), 983-995.

[27] Gu, J., Gu, M., Cao, C., & Gu, X. (2010). A novel competitive co-
evolutionary quantum genetic algorithm for stochastic job shop
scheduling problem. Computers & Operations Research, 37(5), 927-937.

[28] Lei, D. (2012). Co-evolutionary genetic algorithm for fuzzy flexible job
shop scheduling. Applied Soft Computing, 12(8), 2237-2245.

[29] Kuroda, M., & Wang, Z. (1996). Fuzzy job shop scheduling.
International Journal of Production Economics, 44(1), 45-51.

[30] French, S. (1982). Sequencing and scheduling: an introduction to the
mathematics of the job-shop: Ellis Horwood Chichester.

[31] Brucker, P., & Schlie, R. (1990). Job-shop scheduling with multi-
purpose machines. Computing, 45(4), 369-375.

[32] Tavakkoli-Moghaddam, R., Taheri, F., Bazzazi, M., Izadi, M., &
Sassani, F. (2009). Design of a genetic algorithm for bi-objective
unrelated parallel machines scheduling with sequence-dependent setup
times and precedence constraints. Computers & Operations Research,
36(12), 3224-3230.

[33] Kis, T. (2003). Job-shop scheduling with processing alternatives.
European Journal of Operational Research, 151(2), 307-332.

[34] Dauzere-Peres, S., Roux, W., & Lasserre, J. (1998). Multi-resource shop
scheduling with resource flexibility. European Journal of Operational
Research, 107(2), 289-305.

[35] Wang, J. B., & Xia, Z. Q. (2005). Scheduling jobs under decreasing
linear deterioration. Information Processing Letters, 94(2), 63-69.

[36] Li, J. Q., & Pan, Q. (2012). Chemical-reaction optimization for flexible
job-shop scheduling problems with maintenance activity. Applied Soft
Computing, 12(9), 2896-2912.

[37] Bagheri, A., & Zandieh, M. (2011). Bi-criteria flexible job-shop
scheduling with sequence-dependent setup times—Variable

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:4, 2017

434

neighborhood search approach. Journal of Manufacturing Systems,
30(1), 8-15.

[38] Balas, E., Simonetti, N., & Vazacopoulos, A. (2008). Job shop
scheduling with setup times, deadlines and precedence constraints.
Journal of Scheduling, 11(4), 253-262.

[39] Zribi, N., El Kamel, A., & Borne, P. (2008). Minimizing the makespan
for the MPM job-shop with availability constraints. International Journal
of Production Economics, 112(1), 151-160.

[40] Fattahi, P., & Saidi, M. M. (2009(a)). A New Approach in Job Shop
Scheduling: Overlapping Operation. Journal of Industrial Engineering.

[41] Jansen, K., Mastrolilli, M., & Solis-Oba, R. (2005). Approximation
schemes for job shop scheduling problems with controllable processing
times. European Journal of Operational Research, 167(2), 297-319.

[42] Abdolrazzagh-Nezhad, M., & Abdullah, S. (2014). A Robust Intelligent
Construction Procedure for Job-Shop Scheduling. Information
Technology And Control, 43(3), 217-229.

[43] Schulz, A. (1996). Scheduling to minimize total weighted completion
time: Performance guarantees of LP-based heuristics and lower bounds.
Integer Programming and Combinatorial Optimization, 301-315.

[44] McMahon, G., & Florian, M. (1975). On scheduling with ready times
and due dates to minimize maximum lateness. Operations Research,
23(3), 475-482.

[45] Zhang, R., & Wu, C. (2011). A simulated annealing algorithm based on
block properties for the job shop scheduling problem with total weighted
tardiness objective. Computers & Operations Research, 38(5), 854-867.

[46] Chiang, T.-C., & Fu, L.-C. (2008). A rule-centric memetic algorithm to
minimize the number of tardy jobs in the job shop. International Journal
of Production Research, 46(24), 6913-6931.

[47] Sevaux, M., & Dauzere-Peres, S. (2003). Genetic algorithms to
minimize the weighted number of late jobs on a single machine.
European Journal of Operational Research, 151(2), 296-306.

