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Sensitivity Analysis during the Optimization
Process Using Genetic Algorithms

M. A. Rubio, A. Urquia

Abstract—Genetic algorithms (GA) are applied to the solution
of high-dimensional optimization problems. Additionally, sensitivity
analysis (SA) is usually carried out to determine the effect on optimal
solutions of changes in parameter values of the objective function.
These two analyses (i.e., optimization and sensitivity analysis)
are computationally intensive when applied to high-dimensional
functions. The approach presented in this paper consists in performing
the SA during the GA execution, by statistically analyzing the data
obtained of running the GA. The advantage is that in this case
SA does not involve making additional evaluations of the objective
function and, consequently, this proposed approach requires less
computational effort than conducting optimization and SA in two
consecutive steps.

Keywords—Optimization, sensitivity, genetic algorithms, model
calibration.

I. INTRODUCTION

OPTIMIZATION problems arise in many technical,

economic and scientific projects [1]–[3]. In general, an

optimization problem requires finding a setting �x ∈ M of

free parameters of the system under consideration, such that

a certain quality criterion f : M → �, called the objective
function, is minimized (or, equivalently, maximized) [4]–[7].

The solution to this global optimization problem requires

finding a vector �x∗ such that ∀�x ∈ M : f (�x) ≥ f (�x∗) = f∗.

Any solution of the problem is represented by an array

of time-independent variables, �x = (p1, . . . , pN ), called free
parameters, M is the search domain and f is the objective

function f : M → �.

Genetic algorithms (GA) have been successfully applied to

the solution of model calibration problems [8]. The general

evolutionary algorithm described in [5]–[7] is used to illustrate

the application of GA to model calibration.

Algorithm 1 :

t := 0;

initialize P (t);

evaluate P (t);

while not terminate do

P ′(t) := variation [P (t)];

evaluate [P ′(t)];
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P (t+ 1) := select [P ′(t) ∪Q];

t := t+ 1;

od

The algorithm starts with an initial population, which

may be randomly selected from the search space. P (t) =
{�x1(t), . . . , �xμ(t)} denotes a population of μ individuals at

generation t. Each individual of the population corresponds

to a particular value of the free parameters, �xk(t) =
(p1,k(t), . . . , pN,k(t)), and is a candidate solution to the

problem. pi,k(t) denotes the value that the i-th free parameter

has in the k-th individual at the generation t. The number

of free parameters is N . If binary coding is employed, free

parameter values are represented by binary words of length n
bits.

Each member of the population is evaluated replacing in

the model the parameter values associated to this member

and simulating the model. The objective function is used to

assess the fitness of the simulated response to the experimental

data. An offspring population P ′(t) of size λ is generated

by means of variation operators (e.g., recombination and

mutation) from the population P (t). The offspring individuals

are then evaluated and selection based on these fitness values

is performed. Q is a special set of individuals that might be

considered for selection (e.g., Q = P (t) or Q = ∅).

As each individual evaluation implies performing a

problem evaluation, the application of this technique to high

dimensionality problems may be an extremely time-consuming

process. For this reason, some strategies have been proposed to

reduce the order of the model before solving the optimization

problem. For instance, GA are used in [9] to reduce the

number of free parameters in a dynamic model that describes

a large reaction network. In [10] the GA was applied to

reduce the search space of the classification processes. The

use of sensitivity analysis (SA) techniques is reported in

[11]–[13]. SA was combined with GA in order to improve

the optimization process [14], [15]. SA is applied in [16] to

reduce the number of free parameters in an electrochemical

model, prior to its calibration using GA.

Other authors have proposed combining local SA and GA,

in order to improve the robustness of the GA [17]. Local SA

using parallel layer perceptron has been employed in [18] to

improve the local search process of the GA.

The SA estimates the effect of free parameter variation

on the objective function. Those free parameters whose

variation has an small effect on the objective function value

might be removed from the optimization problem. Then, the

objective function might be simplified in order to reduce the
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computational effort.

When the SA is performed before solving the optimization

problem, global SA methods (e.g., scatter plots and Monte

Carlo [12], [13]) need to be applied to inspect the complete

search space, which implies evaluating a large number of

population members. This process may also be extremely

time-consuming for high dimensionality problems.

The method presented in this paper, that consists in

combining the SA and the GA, is aimed to reduce the

computational cost. The global SA at the beginning, and the

local SA when the GA is converging to the optimum, are

performed during the execution of the GA, using the data

obtained of running the GA. Simplification of the objective

function at different levels of locality is supported.

II. GENETIC ALGORITHM AND SENSITIVITY ANALYSIS

The presented algorithm (see Algorithm 2) is aimed to solve

the model calibration problem described in Section I. Based on

Algorithm 1, Algorithm 2 contains an additional step, P ′(t) :=
GA-SA [P (t)], in which the SA is performed.

Algorithm 2 :

t := 0;

initialize P (t);

evaluate P (t);

while not terminate do

P ′(t) := GA-SA [P (t)];

P ′′(t) := variation [P ′(t)];
evaluate [P ′′(t)];
P (t+ 1) := select [P ′′(t) ∪Q];

t := t+ 1;

od

A. Initial Population

Algorithm 2 starts with an initial population composed

of μ individuals, P (0) = {�x1(0), . . . , �xμ(0)}. The initial

values of any free parameter pi (i.e., {pi,1(0), . . . , pi,μ(0)}) are

independent variates, uniformly distributed over the parameter

range. As will be discussed in Section II-B, this initialization

procedure is the basis for the presented SA method.

B. The Idea behind the Sensitivity Analysis Procedure

The Schema Theorem states that the number of

representatives of the schema H in the population at

t+1, m(H, t+1), can be estimated from (1), where m(H, t)
is the number of representatives at t, f(H) is the average

fitness of the schema and f is the average fitness of the

population.

m(H, t+ 1) = m(H, t)
f(H)

f
(1)

Without loss of generality, let’s suppose that the parameter

values are represented by n-bit words. Individuals are defined

by strings of n · N bits, where N is the number of free

parameters. The Hpi=b schema, with b a n-bit number,

represents all individuals of the search space that satisfy

pi = b. The schema order (i.e., the number of fixed positions)

is n. The search space region defined by Hpi=b contains

2n·(N−1) individuals.

If the objective function is insensitive to the free parameter

pi, then f(Hpi=b) = f . This implies m(Hpi=b, t + 1) =
m(Hpi=b, t). Consequently, the distribution of the values

{pi,1(t), . . . , pi,μ(t)} will not change in time. As the values of

pi in the initial population are uniformly distributed over the

parameter range, the values of pi will be uniformly distributed

in successive generations.

On the contrary, if the objective function is sensitive to

the free parameter pi, then the average fitness of Hpi=b

depends on the value of b. Schemata with fitness values above

the population average will receive an increasing number of

samples in the next generation, while schemata with fitness

values below the population average will receive a decreasing

number of samples. Consequently, the distribution of pi values,

{pi,1(t), . . . , pi,μ(t)}, will depart from the initial uniform

distribution as the GA progresses.

III. SOME METHODS FOR SENSITIVITY ANALYSIS IN

GA-SA

As discussed in the previous section, the goal of the

sensitivity analysis (SA) is to ascertain how well the parameter

values resemble uniform random variates. A variety of

methods can be used to this end, including the empirical tests

for random number generators. Five methods are discussed

in this section: Kolmogorov-Smirnov, chi-square, histogram

bin size, deviation from the generation optimum and variance

analysis. Different implementations of the Algorithm 2,

supporting these methods in the GA-SA step, have been

programmed and applied to solve three different optimization

problems. The GA executions are analyzed to compare the

performance of the five methods.

A. Kolmogorov-Smirnov Test

Kolmogorov-Smirnov (K-S) tests [19] compare an empirical

distribution function with the distribution function of the

hypothesized distribution. In this application, the i-th free

parameter values at generation t, {pi,1(t), . . . , pi,μ(t)} need

to be transformed from the parameter search range into the

unity interval, [0, 1]. Let {p̃1, . . . , p̃μ} be the transformed

values. The K-S test is used to compare the empirical

distribution function of these transformed values with the

uniform distribution U(0,1).

The K-S test statistic, Dμ, is the largest vertical distance

between the empirical and the hypothesized distribution

functions. In this application, it can be computed by

calculating

D+
μ = max

1≤k≤μ

{
k

μ
− p̃k

}
(2)

D−
μ = max

1≤k≤μ

{
p̃k − k − 1

μ

}
(3)
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and finally letting

Dμ = max
{
D+

μ , D
−
μ

}
(4)

The null hypothesis is rejected if Dμ exceeds the value of

the test critical point, dμ,1−α, where α is the specified level

of the test.

B. Chi-Square Test

The chi-square test [20] can be used to check whether

the values of the i-th free parameter at generation t,
{pi,1(t), . . . , pi,μ(t)}, appear to be uniformly distributed. The

parameter values need to be transformed from the parameter

search range into the unity interval. The [0, 1] interval is

divided into Nbin subintervals of equal length. For m =
1, . . . , Nbin, let sm be the number of values that are in the

m-th subinterval, and let

χ2 =
Nbin

μ

Nbin∑
m=1

(
sm − μ

Nbin

)2

(5)

Then for large μ, χ2 will have an approximate chi-square

distribution with Nbin − 1 degrees of freedom, under the null

hypothesis that the free parameter values, normalized to the

unity interval, are independent, identically distributed U(0,1)

random variables.

C. Histogram Bin Size

Histograms show what proportion of data falls into each

interval of the parameter range. Many methods have been

proposed for selecting the bin size of the histogram. According

to the method described in [21], the optimum bin size is the

value of Δ that minimizes c(Δ) in (6).

c(Δ)i =
2 · si(t)− μ · χ2

i (t)

Δ2
(6)

If the data are independent variates distributed U(0, R), then

χ2
i (t)

∼= 0, si(t) = μ/Nbin and Δ = R/Nbin, where μ is the

number of data. Equation (7) is obtained replacing these values

in (6).

c(Nbin) =
2 · μ ·Nbin

R2
(7)

The minimum value of c(Nbin) in (7) corresponds to

Nbin = 1 or, equivalently, to Δ = R. The optimum number

of bins for independent variates obtained from a uniform

distribution U(0, R) is one and the minimum value of c is

given by (8).

cmin =
2 · μ
R2

(8)

This result can be used to quantify the departure of a data set

from the uniform distribution. The optimum number of bins is

calculated for the data set, minimizing c(Δ) in (6). The larger

the difference between the calculated minimum and 2 · μ/R2,

the larger the departure of the data distribution from U(0, R).

D. Deviation from the Generation Optimum

The individual with the best fitness of the population P (t)
is represented as �x∗(t). His parameter values are represented

as �x∗(t) = (p∗1(t), . . . , p
∗
N (t)). The average distance of the

population members with respect to the individual with best

fitness can be calculated, for each parameter p∗i , from (9). This

statistical indicator is used to establish a comparison among

the sensitivity to different parameters. This method does not

provide a reference value for the uniform distribution.

di(t) =
1

μ

μ∑
k:1

|p∗i (t)− pi,k(t)| for i : 1, . . . , N (9)

E. Variance Analysis

The normalized standard deviation of a random variable

is defined as its standard deviation divided by its range.

An estimation of the normalized standard deviation of each

parameter pi(t) can be calculated at time t from the data

{pi,1(t), . . . , pi,μ(t)}. This calculated value can be compared

with 1/
√
12, which is the normalized standard deviation of

a uniform distribution U(a, b). A drawback of this method

is that it can erroneously indicate that the objective function

is insensitive to a parameter, when in fact it is sensitive.

This is the case if the parameter values are grouped around

the minimums of a symmetric objective function and the

calculated normalized standard deviation is close to the

reference value for the uniform distribution, i.e., 1/
√
12.

F. Comparison of the Five Methods

The three objective functions described below will be used

to evaluate the five methods for sensitivity analysis discussed

in Sections III-A-III-E.

– De Jong’s function (monomodal function with separated

variables) [22].

f1 =
N∑
i:1

Ai · p2i (10)

– Rastringin’s function (multimodal function with separated

variables) [23].

f2 = 10 ·N +
N∑
i:1

Ai · (p2i − 10 · cos(2 · π · pi)) (11)

– Griewangk’s function (multimodal function with

non-separable variables) [24].

f3 = 1 +
1

4000

N∑
i:1

Ai · p2i −
N∏
i:1

cos(
Ai · pi√

i
) (12)

Each objective function has N = 6 free parameters:

{p1, · · · , p6}. The optimization problem consists in finding the

value of these parameters that minimizes the function. The

search range of each free parameters is [−5.12, 5.11].
A sensitivity vector A of six binary components (i.e., of

values {0, 1}) has been included in the functions. It allows
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Fig. 1 Evaluation of sensitivity analysis methods using three objective functions: De Jong’s (f1), Rastringin’s (f2) and Griewangk’s (f3) function. The
evolution over 200 generations of the objective function value is shown in (a)). The objective function sensitivity to the free parameters is evaluated using

the following methods: (b) K-S, (c) chi-square, (d) histogram bin size, (e) deviation from the generation optimum, and (f) variance analysis. Sensitive
parameters (— line): p1, p2 y p4. Insensitive parameters (- - - line): p3, p5 and p6

determining whether the function is sensitive or insensitive

with respect to each parameter. If Ai = 0, the function is

insensitive to pi. On the contrary, if Ai = 1, the function is

sensitive to pi. The sensitivity vector is A = (1, 1, 0, 1, 0, 0).
Therefore, the objective function is sensitive to p1, p2 and p4,

and insensitive to p3, p5 and p6.

The population contains μ = 100 individuals. As the other

individuals are randomly generated, only the 50 individuals

obtained from the cross operation are considered in the

sensitivity analysis.

The evolution over 200 generations of the fitness and the

sensitivity metrics is shown in Fig. 1. Continuous lines are

used to represent the sensitive parameters (p1, p2 and p4), and

dotted lines to represent the insensitive parameters (p3, p5 and

p6).

The K-S and chi-square methods have been successfully

applied to the sensitivity analyses of the three functions. The

variance analysis and the histogram bin size methods are very

effective in the sensibility analysis of only f1 and f2.

The method based on the deviation from the generation

optimum allows identifying the set of sensitive parameters

of f1 and f2. However, this method does not provide

additional information when compared with the variance

analysis method and its interpretation is less straightforward,

given the unavailability of a reference value for the uniform

distribution.

The histogram bin size method allows analyzing correctly

the sensitivity of f3 with respect to the six free parameters.

However, this method has a drawback: the statistical estimator

values are noisy and they need to be filtered for facilitating

their interpretation. The results shown in Fig. 1.d are the mean

mobile, over a forward 10-generation window, of the original

estimator values.

The intrinsic drawback of the variance analysis method,
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Fig. 2 p1 and p2 (white points) at the 100-th population of function f3
(surface) optimization

described in Section III-E, arises during the sensitivity analysis

of f3. To illustrate it, the values of p1 and p2 at the 100-th

population are shown in Fig. 2. The analysis indicates that

f3 is insensitive to p1, which is wrong. The variance of the

p2 values is greater than the uniform distribution variance.

As a result, the method correctly concludes that the objective

function is sensitive to p2.

IV. CONCLUSION

A method that combines optimization using GA, and

SA has been proposed. The method is valid for any GA

that satisfies the following condition: The initial population

is uniformly distributed over the initial search space. The

sensibility analysis is performed during the execution of the

GA, by analyzing the data generated of running the GA. This

SA provides valuable information at different locality levels.

At the beginning of the optimization process, the SA is not

focused in any value of the search space and, consequently, the

SA is global. On the contrary, when the optimization process

is close to finding an optimal, the SA is local around the

optimum.

The advantage of the proposed method is that the sensitivity

analysis does not involve additional evaluations of the

objective function. Therefore, the computational effort may be

significantly smaller than the traditional two-step approach, in

which the sensitivity analysis and the optimization problem

are performed one at a time.
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