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Abstract—The motion of an axially moving beam with rotating 
prismatic joint with a tip mass on the end is analyzed to investigate 
the nonlinear vibration and dynamic stability of the beam. The beam 
is moving with a harmonic axially and rotating velocity about a 
constant mean velocity. A time-dependent partial differential equation 
and boundary conditions with the aid of the Hamilton principle are 
derived to describe the beam lateral deflection. After the partial 
differential equation is discretized by the Galerkin method, the 
method of multiple scales is applied to obtain analytical solutions. 
Frequency response curves are plotted for the super harmonic 
resonances of the first and the second modes. The effects of non-
linear term and mean velocity are investigated on the steady state 
response of the axially moving beam. The results are validated with 
numerical simulations. 
 

Keywords—Axially moving beam, Galerkin method, non-linear 
vibration, super harmonic resonances. 

I. INTRODUCTION 

XIALLY moving beam with rotating prismatic-joint 
models may be used for many engineering devices, e.g. 

robots applications, telescopic members of loading vehicles, 
space craft antenna, magnetic tape drivers, printers, flexible 
transmission lines, band saws, weaving mechanisms and 
furnace conveyor belts all are classified as axially moving 
beams with rotating prismatic joint. 

There are many researches which have been carried out on 
axially moving systems in literatures. Yuh and Young [1] 
considered a rotational and translational motion beam. They 
derived a time-dependent partial differential equation and the 

boundary conditions for describing the lateral deflection of the 
beam. They also derived approximated model for 
multivariable control by using the assumed mode method. 
They performed validation study for the approximated model 
by the experiment. Dynamic response of the elastic beam 
undergoing various motions was investigated by computer 
simulation. Tadikonda and Baruh [2] considered a complete 
dynamic model of a translating elastic beam, with a tip mass at 
one end. They assumed the elastic arm reciprocate in a rigid 
prismatic joint. Al-Bedoor and Khulief [3] used a finite 
element dynamic model for a translating and rotating of an 
elastic beam. They considered all the inertia coupling terms 
for the model and also considered the time-dependent 
boundary conditions by the prismatic joint constraints. They 
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compared their numerical simulations with results of other 
methods for demonstration of the validity and accuracy of 
their developed model. Kalyoncu [4] investigated a 
mathematical modeling and dynamic response of a flexible 
robot manipulator with rotating-prismatic joint and a sliding 
flexible arm with a tip mass. He assumed the flexible arm to 
be an Euler-Bernoulli beam with an end-mass. He developed a 
computer program for solving the numerical simulations. 
Khadem and Pirmohammadi [5] used a mathematical three-
dimensional (3D) model having both revolute and prismatic 
joints. They studied longitudinal, transversal, and torsional 
vibration characteristics of the elastic beam. In order to obtain 
an analytical solution of the vibrational equations, they used 
the perturbation method. By solving the equations of motion, 
they showed that mode shapes of the beam with prismatic 
joints can be modeled as the equivalent clamped beam at each 
time instant. Chung et al. [6] investigated the dynamic stability 
of the flapwise motion with rotary oscillation. They studied 
the linear partial differential equation of flapwise motion to 
consider the stiffening effect due to the centrifugal force. They 
used the Galerkin method to discrete the partial differential 
equation, and the method of multiple scales is applied. By 
using this method, numerical examples are presented to show 
the stability of the beam with variations of the oscillating 
frequency and the maximum angular speed. Wang and Wei [7] 
studied the vibration of a moving slender prismatic beam. 
They used Galerkin approximation method with time-
dependent basis functions for solving the equation of motion. 
They found that the extending and contracting motions have 
destabilizing and stabilizing effects on the vibratory motions, 
respectively. Karimi and Yazdanpanah [8] investigated a new 
methodology based on the singular perturbation method for 
modeling a single-link flexible manipulator. They showed that 
a part of the fast dynamics of the singularly perturbed system 
representing flexibility is treated as a norm-bounded 
uncertainty. Ghayesh and Khadem [9] investigated free non-
linear transverse vibration of an axially moving beam in which 
rotary inertia and temperature variation effects have been 
considered. They applied the multiple scales method to obtain 
steady-state response in equations of motion. Elimination of 
secular terms will give us the amplitude of vibration. They 
analyzed the stability of steady-state responses using Routh-
Hurwitz criterion. To show the effects of rotary inertia, non-
linear term, temperature gradient and mean velocity variation, 
on natural frequencies, critical speeds, bifurcation points and 
stability of trivial and non-trivial solutions, they performed 
numerical examples. Tang et al. [10] analyzed nonlinear 
vibrations of axially moving beams based on the Timoshenko 
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model under weak and strong external excitations. The 
nonlinearity caused by finite stretching of the beams. To 
obtain the transverse vibration modes and the natural 
frequencies of the linear equation, the complex mode approach 
is applied. They demonstrate the effects of a varying axial 
speed, external excitation amplitudes, and nonlinearity on the 
response amplitudes for the first and second modes by 
employed the method of multiple scales. Chen and Zhao [11] 
investigated Free nonlinear transverse vibration of axially 
moving beam modeled by an integro-partial-differential 
equation with a low axial speed. Chen and Yang [12] 
considered an axially moving viscoelastic, Euler-Bernoulli 
beam with time variant velocity. They used only strain which 
is caused by bending moment and neglected strain which is 
made by gradient of longitudinal displacement. Kartik and 
Wickert [13] investigated forced vibration of axially moving 
strip which is guided by a partial elastic foundation and edge 
imperfection. In the present investigation, a non-linear beam 
with mean velocity variation effects is considered. The speed 
is time dependent in translational and rotational motion, and 
the obtained equation is to form a partial differential equation. 
Applying multiple scales method, stability and bifurcation for 
frequency of variable transporting speed are investigated using 
Routh-Hurwitz criterion. Numerical examples show the effect 
of non-linear term and mean velocity on natural frequencies, 
bifurcation points, and stability. 

Dehgolan et al. [14] investigated linear frequencies and 
stability of a flexible rotor-disk-blades system. Using Euler-
Bernoulli beam theory, they considered the effects of various 
system parameters on the natural frequencies and clarified the 
decay rates (stability condition). 

II. EQUATIONS OF MOTION 

A beam with axial stiffness of EA and the flexural rigidity 
of EI is shown in Fig. 1. Additionally, this beam is assumed as 
an Euler–Bernoulli beam. The prismatic joint is assumed to be 
rigid and the flexible arm slides in the prismatic joint. The 
mass and flexible properties are considered to be distributed 
uniformly along the flexible arm, and the sliding motion of the 
flexible manipulator is assumed to be frictionless. The initial 
length of the beam is denoted as  and a harmonically varying 
transport speed, v. As shown in Fig. 1, w(x,t) describes 
transverse displacements of the beam. 

It is obvious that kinetic energy is given by 
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in which   is the constant mass per unit length, and em is the 

tip mass. Non-linear strain is used in order to calculate 
potential energy. Then, the non-linear strain and potential 
energy are found as 

 

Fig. 1 Axially moving beam with rotating prismatic-joint 
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The governing partial-differential equation and the 

associated boundary conditions are derived from the 
Hamilton’s principle and the geometrical relations as 
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Introducing dimensionless quantities 
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Using (4), after simplification, the coupled non-linear 

equations would be 
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To use the multiple scales method, the non-linear term must 

be weak. Then, using transformation uw   and its 
substitution into (7), one obtains 
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in which   is a very small parameter (namely 1  ). As 
mentioned above, the beam is moving with a harmonically 
varying velocity about a constant mean velocity, i.e. 
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in which, 
1&2  is the frequency of varying speed, 0v  is the 

mean translational velocity, 0  is the mean rotational 

velocity, 1v  is the amplitude of  translational velocity, and 

1  is the amplitude of rotational velocity. In order to find an 

approximated solution in a finite dimensional function space, 
the Galerkin method is used in this study. The solution of (7) 
is approximated by a series of comparison functions that 
satisfy both the essential and natural boundary conditions. The 
trial function for the approximated solution may be expressed 
as 
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where N is the total number of comparison functions, ( )nq t  

are the unknown functions of time to be determined, and 
( )z  are the eigenfunctions for the bending vibration of the 

stationary cantilever beam. 
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The weighting function or the virtual function 

corresponding to (14) is given by 
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Discretized equations of motion are determined by using 

(14) and (15). Consider an equation obtained by substituting 
(14) into (10), multiplying the resultant equation by (16) and 
then integrating it over the domain 0 1x  , If this equation is 
collected with respect to ( )q t , their coefficients provide the 

discretized equations since ( )q t  are arbitrary. The discretized 

equations of axially moving beam with rotating prismatic joint 
may then be expressed as (17)
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where the superposed dot represents the differentiation with 
respect to time; are given by 
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Note that the dimensionless natural frequency of the 

stationary cantilever beam n is equal to the square of the root 

of n . 

III. STABILITY AND BIFURCATIONS 

Analytical methods often easily delineate general 
phenomena, yielding useful results in closed form [16]. The 
simple asymptotic expansions often fail to correctly result in 
appropriate solutions for problems which have secular terms. 
Using the method of multiple scales and assuming the solution 
to be a function of multiple independent scales of time, this 

method leads to a set of equations in different orders. 
Elimination of secular terms from these equations provides 
solutions. For more general form of the multiple scales 
method, see [15]-[17]. 

In perturbation method, ( , )u t   is generally assumed as an 

asymptotical expansion. 
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Assuming the solution of (20) as [14] 
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in which n is the natural frequency, and ( )n 1t  is the 
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in which, when 1  is close to n2 , subharmonic resonance 

will occur. Let us consider 
 

1 2 n                                                                     (24) 

 

where   is the detuning parameter, the solvability condition 
can be obtained using (21) as 
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Using (23) and (25), one has (28) 
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As one considers the stationary response, the value of na  

and n   will be equal to zero. Elimination of n  between (28) 

and (29) leads to  
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Using (28) and (29) and constructing the Jacobian matrix, 

one has (32) 
0J I                                           (32) 
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From (31) and (33), one has 
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From (31) and (34) and using the Routh-Hurwitz criterion, 

the stability condition can be obtained as below 
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IV. SIMULATION 

In this section, the objective is to study natural frequencies 
according to mean velocity. Also, the effects of non-linear 
term, mean velocity on stability are investigated. In the other 
words, one would like to assess how the natural frequencies, 
stability, and bifurcation points will change when system 
parameters change. Figs. 2 and 3 show that increasing the time 
would lead to a reduction in first two natural frequencies of 
system. 

V. CONCLUSION 

In this section, numerical simulations are presented to show 
the effectiveness of the analytic method. Frequency-response 
curve of the system which is governed by (34) is depicted in 

Fig. 4. When , there is a stable trivial solution. At , 

the trivial solution starts to be unstable, and a stable nontrivial 
solution bifurcates. At , the trivial solution starts to be 

stable again, and then unstable, nontrivial solution appears. It 
means that the bifurcation point will appear sooner. Through 
(35) and numerical simulations, it can be concluded that for 

the dynamic model, the curve first detuning parameter  is 

always stable, and the curve of second detuning parameter  
is always unstable. 

In Figs. 5-7, when , only stable trivial solution exists. 

When , the trivial solution will be unstable, and a 

stable nontrivial solution occurs. When , the trivial 

solution starts to be stable again, and an unstable nontrivial 
solution occurs. In Figs 5-7, at , a stable trivial solution 

exists. When , the trivial solution starts to be unstable, 

and an unstable nontrivial solution occurs. At , the 

trivial solution starts to be stable again, and an unstable 

nontrivial solution bifurcates. Increasing “ ” leads to a 

smaller instability interval for trivial solution. 
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Fig. 2 First natural frequency versus the mean velocity and rotary inertia for the first two modes

0 1 0 1 1 2 10.072; 0.001; 2.6; 0.002; 0.16; 15.2; 16.82n n nv v             
 

 

Fig. 3 Second natural frequency versus the mean velocity and rotary inertia for the first two modes
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Fig. 4 Stability and bifurcation points’ variation for the first mode (dashed line: unstable and solid line: stable) 
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Fig. 5 Stability and bifurcation point variation under the mean velocity variation for the first mode 
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Fig. 6 Stability and bifurcation point variation under the mean angular velocity variation for the first mode 

0 1 1 2 10.072; 0.001; 0.16; 15.2; 16.82n n nv v         
 

 

Fig. 7 Stability and bifurcation point variation under the non-linear 
term variation for the first mode 

0 1 0 1 1 2 10.072; 0.001; 2.6; 0.002; 0.16; 15.2; 16.82n n nv v             

V. STABILITY UNDER VARIATION OF THE MEAN  
TRANSLATIONAL VELOCITY AND NON-LINEAR TERM 

Free non-linear vibration of axially moving beam with 
rotating prismatic joint in which non-linear strain have been 
considered was investigated. The beam is moving under 
constant a mean translational and rotational velocity with 

small periodic fluctuations. A time-dependent partial 
differential equation and boundary conditions are derived to 
describe the beam lateral deflection. The multiple scales 
method was used. It was realized that when speed fluctuation 
frequency is close to twice of the natural frequency, the 
principal parametric resonance would arise. For this case, the 
effects of mean translational velocity and mean rotational 
velocity on natural frequencies were investigated. Stability 
and bifurcation of non-trivial and trivial steady state responses 
were analyzed by using Routh-Hurwitz criterion. The effects 
of non-linear term and mean velocity on bifurcation points and 
stability of trivial and non-trivial solutions also were 
investigated, and the frequency-response curves were drawn. 
Decreasing mean translational and rotational velocity led to a 
reduction in stability of system, but increasing mean angular 
velocity made stability increased. 
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