
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:11, No:3, 2017

521

Thermal Fracture Analysis of Fibrous Composites
with Variable Fiber Spacing Using Jk-Integral

Farid Saeidi, Serkan Dag

Abstract—In this study, fracture analysis of a fibrous composite
laminate with variable fiber spacing is carried out using Jk-integral
method. The laminate is assumed to be under thermal loading.
Jk-integral is formulated by using the constitutive relations of plane
orthotropic thermoelasticity. Developed domain independent form
of the Jk-integral is then integrated into the general purpose finite
element analysis software ANSYS. Numerical results are generated
so as to assess the influence of variable fiber spacing on mode I
and II stress intensity factors, energy release rate, and T-stress. For
verification, some of the results are compared to those obtained
using displacement correlation technique (DCT).

Keywords—Jk-integral, variable fiber spacing, thermoelasticity,
t-stress, finite element method, fibrous composite.

I. INTRODUCTION

ENGINEERING materials are mostly highly sentient

to temperature, resulting deformation in the material.

Polymer matrix fibrous composites are used widely in industry

and their behavior in the case of temperature change is

critically important to be analyzed. Composite plates are made

of several layers called laminas, and traditionally in fibrous

laminas fibers are parallel and uniformly spaced. However,

by disturbing isotropy of the laminas by controlling space

between fibers to gain more stiffness, where the fibers are

laid close to each other, and less density at the regions that

fibers have more distance from each other, more efficient

laminas than traditional ones can be fabricated [1]. Utilizing

composite plates with variable fiber spacing is increasing every

day in industry, as a result scientific researches are relatively

increasing in this field.

Jk-integral is a pretty useful method, since stress intensity

factors (SIFs), T-stress, and also energy release rate can be

obtained through, however in calculations based on other

methods, obtaining all three factors at the same time is not

possible. Jk-integral is a vector defined at the crack tip, and its

first component, i.e. J1, is equivalent to the J-integral [2], [3].

The implementation of Jk-integral is carried out by developing

a domain independent form of the formulation at crack tip, in

terms of line and area integrals.

The concept of Jk - integral had first been introduced by

Knowels et al. [4], Hellen et al. [5], and Budiansky et al. [6],

who related path independent Jk-integral to energy release rate
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associated with cavity or crack rotation, and expansion rate.

Four different formulations of Jk-Integral were developed for

multifarious engineering materials as a solution for the fracture

problems of materials with specific properties. These formulas

provide solutions to obtain fracture parameters for thermally

loaded homogeneous isotropic solids [7], [8]; homogeneous

anisotropic bodies under the effect of mechanical loading [9],

[10]; mechanically or thermally loaded bi - material interfaces

[11], [12]; functionally graded materials under mechanical or

thermal stresses [13], [14].

The objective of this study is to develop an extension of Jk
- integral formulation and utilize it as a computational method

for calculation of fracture parameters, for fibrous composites

with variable fiber spacing subjected to thermal stresses.

Constitutive relations of plane orthotropic thermoelasticity

were used in developing the Jk - integral formulation for

thermal loading; and then shifted to a domain independent

form expressed in terms of line and area integrals. Finite

element method was used for implementation of new form

of Jk-integral. Process of the algorithm designed to obtain

thermal fracture parameters solution is carried out using a

general purpose finite element program [15]. The computation

of fracture parameters in the fibrous composite sheet with

variable spaced fiber, involved modeling of an embedded crack

in sheet, which is assumed to be in plane stress state and steady

state boundary conditions. Jk-integral is used as a numerical

method to solve the governing partial equations of thermal

field. Some results are presented as a validation for the domain

independence of the Jk-integral method, also T-stress and

energy release rate is presented as additional crack parameters.

Numerical solutions are generated for cracks located in various

locations of the composite sheet, also effect of minimum fiber

density in the composite sheet, which is changing the function

of fiber distribution in the whole sheet is investigate through

the same solution for individual models.

II. Jk-INTEGRAL FORMULATION FOR THERMAL LOAD

A. Jk-Integral and Mechanical Strain Energy Density
Function

For both plane stress and plane strain conditions Jk-integral

formulation at the crack tip can be written as [16]:

Jk = lim
Γε→0

(

∫
Γε

(Wnk − σijnjui,k)ds) (1)

In (1), Γε represents an open curve, on which the integration

is calculated, illustrated in Fig. 1. The integration curve starts

on the lower crack surface and ends on the upper one. In the
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Fig. 1 Intergration path around crack tip

equation, nk, σij and s represent outward unit vector, stress

tensor and arc length respectively. ui stands for displacement

unit, whereas ui,k represents differentiation, i.e. ()k ≡ ∂()
(∂xk)

.

W is the mechanical strain energy density function (3), (4).

W =

{
1
2σijε

2
ij

1
2σijε

2
ij +

1
2σ33ε

2
33

(2)

W =
E2

1(ε11 − α1ΔT ) + ν12E1E2(ε22 − α2ΔT )

2(E1 − ν212E2)
(ε11 − α1

ΔT ) +
ν12E1E2(ε11 − α1ΔT ) + E1E2(ε22 − α2ΔT )

2(E1 − ν212E2)

(ε22 − α2ΔT ) + 2G12ε
2
12 (3)

(
∂W

∂xk
)expl =

∂W

∂E1

∂E1

∂xk
+

∂W

∂E2

∂E2

∂xk
+

∂W

∂G12

∂G12

∂xk
+

∂W

∂ν1

∂ν1
∂xk

+
∂W

∂α1

∂α1

∂xk
+

∂W

∂α2

∂α2

∂xk
+

∂W

∂β1

∂β1

∂xk
+

∂W

∂β2

∂β2

∂xk
+

∂W

∂ΔT

∂ΔT

∂xk
(k = 1, 2) (4)

εmij is the mechanical strain:

εm11 = ε11 − α1ΔT (5a)

εm22 = ε22 − α2ΔT (5b)

εm12 = ε12 (5c)

Domain independent form of the integral is found to be in

the following form [17]:

J1 =

∫∫
A

(σijui,1 −Wδ1j)q,jdA−
∫∫

A

(W,1)explqdA

J2 =

∫∫
A

(σijui,2 −Wδ2j)q,jdA−
∫∫

A

(W,2)explqdA−∫
Γcr

(W+ −W−)qds (i, j = 1, 2) (6)

So the integration domain is changed to an area integral A
and a line integral Γcr. Presentation of the integral domain in

Fig. 2 shows that Γcr is actually the crack length surrounded

by area A. The shape and the size of the area of the integration

should not affect the result of the solution, because this

formulation is independent of the domain. In the solution, for

Fig. 2 New integration domains after the change by divergence theorem

validation of this property of the formulation, several circular

areas are considered as the integration area.
W+ and W− resemble to the strain energy density on the

upper and lower face of the crack respectively, Fig. 2.
The solution of the integrals were processed using standard

Gauss quadrature, but the only problem with the integral

calculation was discontinuity for the (W+ − W−) in J2
expression. The solution for this difficulty was presented by

[16], suggesting use of discrete integration on the domain and

division of integration interval into two parts, one part is the

interval far from crack tip, and the other one would be near

crack tip which includes the singularity on the domain. The

solution for the second part was reached using asymptotic

approximation for mechanical strain energy density difference.

The illustration of d as a measurement for determining the

close and far parts of the domain is presented in Fig. 3.

∫
Γcr

(W+ −W−)qdΓ =

∫ R

0

(W+ −W−)qds

=

∫ R−d

0

(W+ −W−)qds+
∫ R

R−d

(W+ −W−)qds (7)

Fig. 3 Representation of d in the model geometry

The solution for the integral near crack tip was achieved

using asymptotic distribution of stresses in the region [18].
Expression of difference of W function in polar coordinates

would be:

W+ −W− = W (r, π)−W (r,−π) (8)

From (1), (8) and asymptotic distribution of stress

formulation [18]:

W (r, π)−W (r,−π) = (W+ −W−)

=
1

2
(a11(

4KII√
2πr

(D(β2
1 − β2

2))Ts)) (9)
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simplifying (7):

(W+ −W−) =
1√
2πr

L (10)

where:

L = 2a11KII [D(β2
1 − β2

2)]Ts (11)

Defining following parameters:

a11 =
1

E1
(12)

D = − 1

β1 − β2
(13)

Then (7) can be written as:

∫
Γcr

(W+ −W−)qdΓ �
∫ R−d

0

(W+ −W−)qds+

∫ R

R−d

L√
2πr

qds (14)

Simply solving last part of the integral in (14) following

equation is obtained:

J2 =

∫∫
A

(σijui,2 −Wδ2j)q,jdA−∫∫
A

(W,2)explqdA−
∫ R−d

0

(W+ −W−)qds+

4

√
d

2π

b(3R− d)

3R
KIITs (i, j = 1, 2) (15)

In (15), R is length of the path, integration is calculated

over, as shown in Fig. 3, the path near to the crack tip,

over which the asymptotic approximation of (W+ −W−) is

substituted in the main equation, is represented as d, Fig. 3

shows the dimensions in the model. KII is mode II stress

intensity factor and Ts stands for T-stress. b is equal to

Im(μ1 + μ2). μ1 and μ2 are roots of characteristic equation

[18]:

a11μ
4 + (2a12 + a66)μ

2 + a22 = 0 (16)

In the equation above the constants are equal to the terms

below:

a11 =
1

E1
, a12 = −ν12

E1
, a22 =

1

E2
, a66 =

1

G12
(17)

B. Computation of the Crack Parameters Using Jk-Integral
Formulation

Considering the final form of J2 formulation in (15), it can

be inferred from equation that the solution cannot be achieved

by solving the integral, because KI , KII and Ts are unknown.

In order to find Ts, KI and KII , a new form of the equation

is presented for J̃2 [16]:

J̃1
2 = J2 −

√
d1[1− d1

3R
]S (18)

J̃2
2 = J2 −

√
d2[1− d2

3R
]S (19)

Equations above are J̃2 written for two different values of

d, which allow us to evaluate the values of S and J2 through

a linear equation system. The values given to d where defined

dependent on the crack length and these values are equal to

d1 = 0.0001a and d2 = 0.0002a. In these simplified equations

the approximation is presented in terms of one variable:

S =
4Im(μ1 + μ2)a11√

2πKII

Ts (20)

Then solution for S and J2 would be:

J2 =

√
d1(1− d1

3R )J̃1
2 −√

d2(1− d2

3R )J̃2
2√

d1(1− d1

3R )−√
d2(1− d2

3R )
(21)

S =
J̃1
2 − J̃2

2√
d1(1− d1

3R )−√
d2(1− d2

3R )
(22)

After getting S and J2, T-stress can be calculated from (10),

(11), (13) and (20).

Ts =
s
√
2π

4a11KIID(β2
1 − β2

2)
(23)

Since J1 and J̃2 are solved only using numerical method

for the integral, and solving the equation system, we obtain

J2 and S. As an additional equation, to make system of the

unknowns solvable, we use the relation between J1 and J2
[18]:

J1 = B1K
2
I +B2K

2
II (24)

J2 = B3KIKII (25)

where:

B1 = −a11
2

Im((μ1 + μ2)μ1μ2) =

a11
2

(β1 + β2)(β1β2) (26a)

B2 =
a11
2

Im(μ1 + μ2) =
a11
2

(β1 + β2) (26b)

B3 = −a11(β1 + β2)(β1β2) (26c)

Equations (24) and (25) clearly show that KI and KII are

coupled, so this system of equations for intensity factors can

be solved using numerical methods. Kim and Paulino [18]

have used Newton iteration method to find intensity factors,

but in this method they needed to have initial values for SIFs.

These initial values were obtained using DCT (Displacement

Correlation Technique). However, in this study the values

for μk were all purely imaginary, because directions of axes

coincide with principle directions of elasticity and crack

is laying on one of the principle orthotropy directions. In

equations above, μ1 and μ2 are representing the conjugates

of μ1 and μ2 in the equation.

Defining KI in terms of KII , one can write:
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KI = − J2
KIIa11(β1 + β2)β1β2

(27)

K4
II −

2J1
a11(β1 + β2)

K2
II + (− J2

a11(β1 + β2)β1β2
)2β1β2 = 0

(28)

System of equations above was solved as below:

KI = ±

√√√√ J1
2B1

[1±
√
1− 4B1B2

B2
3

(
J2
J1

)2] (29)

KII =
J2

B3KI
(30)

Once KII is calculated from the equation above T-stress

can be determined using (23). In order to determine the right

sign for the intensity factors, a method based on relative

normal and tangential displacements of two nodes, defined

very close to the crack tip was manipulated [19]. Investigating

displacements of nodes close to crack tip will truly show if

either − or + sign should be assigned for intensity factors.

Two couples of nodes at both upper and lower crack faces

were chosen, then [18]:

Δ1 = u+
2 − u2

2 (31)

Δ2 = u+
1 − u2

1 (32)

A positive outcome for Δ1 implies that KI should be

positive, which shows crack is open, and if Δ2 is positive

KII should be positive too. In ((31)) and ((32)), the signs in

the parenthesis should also be determined [20]:

If |Δ1| ≥ |Δ2| take + for KII and − for KI

If |Δ1| ≤ |Δ2| take − for KII and + for KI

III. PROBLEM DESCRIPTION AND NUMERICAL RESULTS

For thermal fracture analysis of the orthotropic composite, a

crack was embedded in the fibrous composite as illustrated in

Fig. 4. x1 and x2 are two principal axes of the sheet, and fiber

volume was assumed to change along x2 axis of the medium.

Vf0 and Vfw are minimum and maximum fiber volumes in

the composite sheet respectively. The extrema of the volume

were considered to be at the lower and upper boundaries of the

medium. Boundary conditions for the problem are illustrated in

Fig. 5, T resembles thermal boundary condition. The problem

is solved for cracks embedded in different locations of the

composite sheet, 0.1, 0.2, 0.3 and 0.4 were taken as the value

of h1; consequently four different models were simulated and

analyzed. Volume of the fiber is assumed to be a function of

x2 and also P, as it can be seen obviously from ((33)), Vf0 took

values equal to 0.1, 0.2, 0.3 and 0.4, and Vfw had the value of

0.7 through calculations. In ((33)), P as an exponent defines

the properties of the sheet, so by changing P from 0 to infinity

during calculations, solution will be done for several models.

Considering both physical and material models, solutions were

done for 256 different mediums.

Vf (x2) = Vf0 + (Vfw − Vf0)(
x2

h
)P (33)

Vm(x2) = 1− Vf (x2) (34)

In the equations above Vf stands for volume of the fiber

and Vm stands for volume of the matrix.

Fig. 4 Crack embedded in fibrous composite with variable fiber spacing

Fig. 5 Boundary conditions for the problem

The solution of the problem is achieved by finding the

solution for the half of the actual medium, since the medium is

symmetric in x1 direction. Thus simulating a half model with

an insulated boundary condition in the cut face would give us

the desired solution. So the whole process during simulation

and solution is carried out for crack at x1 = a, but after finding

crack parameters at this crack tip we can find the parameters

for the other one as shown below:

J1(−a) = J1(a) (35a)

J2(−a) = J2(a) (35b)

Ts(−a) = Ts(a) (35c)

Orthotropic materials are materials having two or three

planes of symmetry; such a characteristic fits properties of

the material used in this study, so the composite sheet used is
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a non-homogenous orthotropic material. For such a material

the thermal constitutive relations under plane stress condition

can be written as:

⎛
⎝ ε1

ε2
ε3

⎞
⎠ =

⎡
⎣ 1/E1 −ν12/E1 0

ν12/E1 1/E1 0
0 0 1/G12

⎤
⎦
⎛
⎝ σ1

σ2

σ12

⎞
⎠

+

⎛
⎝ α1

α2

0

⎞
⎠ΔT (36)

In the equation above εij are the strain tensor elements. σij

are stresses and ΔT is thermal variation at the point. This

variation is calculated with respect to T0, which is initial

reference value causing no strain in the medium. α is the

thermal expansion coefficient. Mechanical properties of the

fibrous composites are defined as:

E1(x2) = EfVf (x2) + EmVm(x2) (37a)

1

E2(x2)
=

Vf (x2)

Ef (x2)
+

Vm(x2)

Em
(37b)

1

G12(x2)
=

Vf (x2)

Gf
+

Vm(x2)

Gm
(37c)

α1(x2) =
1

E1(x2)
(αfEfVf (x2) + αmEmVm(x2)) (37d)

α2(x2) = (1 + νf )αfVf (x2) + (1 + νm)αmVm(x2)

−α1(x2)ν12 (37e)

k1(x2) = kfVf (x2) + kmVm(x2) (37f)

k2(x2) =
1 + ηVf (x2)

1− ηVf (x2)
km (37g)

η =

kf

fm
− 1

kf

km
+ 1

(37h)

D1(x2) = DmVm(x2) (37i)

D2(x2) = (1− 2

√
Vf (x2)

π
)Dm (37j)

In the equations above, m and f stand for matrix and fiber

property in the sheet respectively.

In the following section tables show both comparison of the

results with DCT technique and also the superposition of the

results are presented.

As previously presented in Figs. 4 and 5, a fibrous

composite sheet with variable spaced fiber and a crack with

length of 2a is embedded in different locations of the plate in

various analysis. Tr = T0 is defined as reference temperature

and as shown in Fig. 5, temperature at boundary of X2 = h
is equal to 2T0, and on the other boundaries, it is equal to T0.

The crack faces are assumed to be insulated, and that means

no thermal flux is provided at these faces. Considering all the

analysis in this paper, most of the variables are changing in

different models, but for all the models T0, h and W remain

the same and equal to T0 = 20, h = 2.5 and W = 5.

In (37j), m and f in the variables show the relation of the

property with matrix and fiber material respectively. α shows

the thermal expansion. Matrix is chosen to be epoxy and fibers

TABLE I
MATERIAL PROPERTIES FOR MATRIX AND FIBER

Paroperty Epoxy matrix Glass Fiber

E(GPa) 3.4 85

G(GPa) 1.308 35.42

ν 0.3 0.2

α(1/0C) 63(10)−6 5(10)−6

ρ(Kg/m3) 1200 2500

k(W/m0C) 0.25 1.05

D(m2/s) 3(10)−15 N/A

in the matrix are glass fiber. Properties for these materials are

presented in Table I.

Calculations are carried out using different domain circles,

the domain independency of Jk-integral is proven using

outcomes of solutions for different domains; however, a

validation for the results gained using Jk-integral is needed.

For this purpose, Table II is prepared to show both the results

achieved using Jk-integral and results for the same model

achieved using another method called displacement correlation

technique (DCT) [18], [21]. For presentation of the results

some kind of normalization of the data was required, thus in

all the results (38d) was used to make result normalized.

KIn =
KI

amEmT0
√
πa

(38a)

KIIn =
KII

amEmT0
√
πa

(38b)

JIn =
JI

a2mEmT 2
0 πa

(38c)

Tsn =
Ts

amEmT0
(38d)

Deformed medium under effect of thermal loads can be

observed in the following figures. In Fig. 6 mesh map and

distribution around at the crack tip and through the medium

is presented.

Fig. 6 Deformation and mesh map of the simulated model

It is clear from the tables that DCT and Jk-integral give out

nearly the same results, which admits the validity of them. Last

column in Table II, shows the difference between results of

two methods.

Some of the graphs for the interpretation of the results

for solution of the mediums with various dimensions and

crack location, and also several values for the minimum and
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Fig. 7 Contour plot illustrating temperature distribution on the medium and
structural deformation caused by thermal load

TABLE II
RESULTS OF PLAIN STRESS THERMAL SOLUTION FOR THE MODEL

w = 5, h = 2.5, h1 = 2, a = 1, Vf0 = 0.1, P = 0.1

DCT Jk-integral

R/a KI KII KI KII

0.1 0.02202 0.05662 0.02198 0.05707

0.2 0.02202 0.05662 0.02201 0.05705

0.3 0.02202 0.05662 0.02101 0.05704

0.4 0.02202 0.05662 0.02202 0.05704

Thermal

maximum fiber volume at the lower and upper boundaries are

presented below.

Fig. 8 Normalized first mode SIF for the model
w = 5, h = 2.5, a = 1, Vf0 = 0.1

Fig. 9 Normalized second mode SIF for the model
w = 5, h = 2.5, a = 1, Vf0 = 0.1

Fig. 10 Normalized energy release rate for the model
w = 5, h = 2.5, a = 1, Vf0 = 0.1

Fig. 11 Normalized T-stress for the model
w = 5, h = 2.5, a = 1, Vf0 = 0.1

Following graphs show affect of crack length on the fracture

parameters:

Fig. 12 Normalized first mode SIF for the model
w = 5, h = 2.5, P = 0.6, Vf0 = 0.1
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Fig. 13 Normalized second mode SIF for the model
w = 5, h = 2.5, P = 0.6, Vf0 = 0.1

Fig. 14 Normalized energy release rate for the model
w = 5, h = 2.5, P = 0.6, Vf0 = 0.1

Fig. 15 Normalized T-stress for the model
w = 5, h = 2.5, P = 0.6, Vf0 = 0.1

IV. CONCLUSION

Results indicate that generally crack propagation

inhabitation is easily controllable in composites with

variable spaced fibers, and comparison of the energy release

rate in composites having the property 1/P = 0 (equally

spaced fibers) with those having P equal to other values,

reveals that composites with variable fiber spacing are

behaving quite better than equally spaced ones in every

aspect.

T-stress is known as a critical factor as a crack parameter

in analysis, which determines the crack kinking angle and

also plastic zone size around crack tip. As a conclusion,

investigation of T-stress would show accuracy of the results

gained for the crack. It is quite clear from the results that

the same explanations as energy release rate are not valid for

T-stress outcomes of analysis, and functionally spaced fibers

seem to have less accurate results than equally spaced ones,

since in general, its magnitude is larger than T-stress value for

FRC with variable fiber spacing.
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