
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:2, 2017

244

Abstract—This paper presents a model-oriented development

approach to software development in the Model-View-Controller
(MVC) architectural standard. This approach aims to expose a
process of extractions of information from the models, in which
through rules and syntax defined in this work, assists in the design of
the initial model and its future conversions. The proposed paper
presents a syntax based on the natural language, according to the rules
agreed in the classic grammar of the Portuguese language, added to
the rules of conversions generating models that follow the norms of
the Object Management Group (OMG) and the Meta-Object Facility
MOF.

Keywords—Model driven architecture, model-view-controller, bnf
syntax, model, transformation, UML.

I. INTRODUCTION

OFTWARE development is an area that still presents
several challenges. From the unfolding of the problem to

the code, there are several steps, and it is a labor intensive one.
The challenges are to streamline, facilitate and improve the
unfolding of the various stages of development. Another
challenge is that every time technology changes or evolves, a
lot of work still needs to be redone [1]. However, some
software development methodologies minimize some of these
difficulties, such as Model Driven Development (MDD).
MDD is an approach that uses models as primary development
artifacts, starting from a higher level of abstraction [2]. MDD
provides an increase in productivity, greater automation,
reduced vulnerability to technological changes and other
benefits [3], [4]. An implementation of MDD is the Model
Driven Architecture (MDA) maintained by the Object
Management Group (OMG).

According to the OMG, the MDA is a set of standards used
in a joint way, being the Unified Model Language (UML) and
Meta-Object Facility (MOF) standards, both also defined by
the OMG [5]. MDA makes use of three types of model
abstractions. These levels of abstractions have the purpose of
describing a software system from a particular perspective and
specified by the OMG, being represented by the following
acronyms CIM (Computing Independent Model), PIM
(Platform Independent Model) and PSM (Platform Specific

V. M. Leite is a master's student at the State University of Londrina in

Brazil (e-mail: vanessa.matiasleite@gmail.com).
J. G. Palma, is Prof. Dr. in State University of Londrina in Brazil (e-mail:

jandirapalma@gmail.com).
F. H. de Oliveira is student in the State University of Londrina in Brazil (e-

mail: fho1996@gmail.com).

Model). The CIM has a view of the independent computing
system, not showing details of the system structure [5].
Already PIM focuses on the operation of the system; however
it does not care about details of the implementation in a
specific platform [5]. Finally, the PSM is a view of the system
that has characteristics, elements and information of the
technology that will be employed [5].

From the abstractions of models defined above, the MDA
establishes the transformations between the models of the
different visions from mapping responsible for correlating the
elements present in a source model with the elements of a
target model [5], being that these transformations commonly
are automated. However, it is possible to highlight the
difficulty found to perform the transformations of CIM to PIM
automatically, and the transformations between these models
occur in a manual way [6]. Consequently, the CIM model ends
up being excluded, starting directly from the PIM model [6].

 In addition to software development methodologies, there
are standards of architectures that help both software
development and maintenance. Model-View-Controller
(MVC) is one of these standards, which is based on the
separation of the application into three layers, being the
Model, View and Controller [7].

The purpose of this work is to present a BNF syntax, which
was elaborated for the conception of the use case of the CIM
model of the MDA, and this syntax is also used for the
elaboration of information extraction rules for UML models. It
should be noted that in addition to the syntax and mapping
rules, this article is directed to the MVC architectural model.

This work is organized as follows: Section II discusses the
MDA concepts and related works. In section III, the BNF
grammar and the rules for the development of the proposed
CIM model are presented. Section IV presents the rules for
extracting information from the models. In section V, the
application of the proposal is developed. Section VI presents
the analysis of results, and finally in section VII, the
conclusions of this paper.

II. THEORETICAL FOUNDATIONS

In this section, Model Driven Architecture (MDA) is
presented, describing its characteristics, specifications and
steps. Work related to this article will also be presented and
discussed.

Definition of a Computing Independent Model and
Rules for Transformation Focused on the

Model-View-Controller Architecture
Vanessa Matias Leite, Jandira Guenka Palma, Flávio Henrique de Oliveira

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:2, 2017

245

A. Model Driven Architecture

MDA was defined by OMG in 2001 and is a specification to
support Model Driven Development (MDD), its main
objective being to extract value from models and modeling
processes, thus enabling a way to deal with high complexity
and interdependencies existing in software systems [5].

The main feature of the MDA focuses on transformations
between models. Automating the transformation of high-level
executable information systems models provides a number of
advantages, citing cost reduction, time, production and system
maintenance risks, by operating on system refinement for the
problem-specific domain [5]. However, not all models are
capable of automatic transformations; a model must be
sufficiently complete and accurate for information about the
developing system to be well specified by the models.

The Meta Object Facility (MOF) is a specification created
by the OMG, in which it defines an abstract language and a
framework to create a behavior pattern and the implementation
of repositories for the metamodels and metadata, respectively
[8].

Unified Modeling Language (UML) is a visual language
used to model software based on the model-driven paradigm.
In 1997, UML was adopted by the OMG as standard modeling
language [9]. In this paper, three diagrams contained in UML
will be used: the use case diagram, class diagram and the
sequence diagram. For the CIM, the use case diagram will be
developed, and for PIM, the diagrams will be the class and the
sequence diagrams.

In MDA, the development of models and the
transformations between them are one of the primordial points;
three categories of models are established:
 Computation Independent Model (CIM), also called a

business model [10], is one that presents a vision of the
system, thereby helping to understand what the system is
expected to execute. This type of model is independent of
knowledge in computing having a high level of
abstraction [11].

 Platform Independent Model (PIM) describes a system
without any knowledge of the final platform of execution.
PIM possess a higher level of abstraction than the PSM,
however less than the CIM, and represents a formal
specification of the structure and functioning of the
system, such as it hides the features of a particular
platform that enables the reuse in different platforms [11],
[12].

 Platform Specific Model (PSM) is created from the PIM.
In PSM, specific platform details are considered, being the
basis for the transformation of the model to code [11],
[12].

The transformations in MDA deal with the production of
different models or artifacts, starting from a model based on a
transformation pattern. It should be noted that there is a
difficulty in performing the automatic transformation of CIM
to PIM, and that this transformation is performed manually.
This is due to the lack of specific artifacts and/or rules that
define which elements should be used in the CIM, and

consequently, there is no standardization for the mapping of
CIM-PIM, this can be observed in several works [13]-[16].

B. Related Work

Article [17] presents an MDA approach that proposes a
development process based on models and transformations that
allows the implementation of Graphical User Interface (GU)
for Rich Internet Applications with JavaFX platform
respecting the MVC pattern. The article implements from the
PIM model with transformation rules for PSM and uses the
QVT (Query View Transformation) transformation mechanism
to get to the code.

Articles [18] and [19] also present an MDA approach to the
automatic generation of web application code, and propose the
use of UML diagrams and the MVC architectural standard,
using a framework, Spring MVC. However, these articles do
not present a separation in CIM, PIM or PSM.

III. PROPOSAL FOR THE ELABORATION OF THE CIM MODEL

This paper proposes formalism for the CIM and the rules for
mapping the CIM to PIM models for MVC architecture.

In the CIM model proposed, it was considered a well-
structured language with a syntax defined in Backus-Naur
Form (BNF). The mapping performed was oriented to the
MVC architecture. For clarity:
 The Backus-Naur Form (BNF) is a notation used to

express the grammar of a language in the form of
production rules. The BNF grammars are composed of
terminals and non-terminals, and non-terminals can be
expanded to one or more terminals or non-terminals [20].

 The MVC structure consists of three types of objects. The
model is the application of the object, it is where they
implement the logic of the application (domain of the
problem) [21]. The Controller interprets the user inputs,
informing the model and/or the view to change as
appropriate. The View must ensure that its appearance
reflects the state of the model. By approaching the
isolation of the functional units, it facilitates the
understanding and the modifications, and therefore, there
is no need to understand all other units [7].

The rules of development and conversion are determined
from the syntax created and defined by the BNF grammar.

For the elaboration of the CIM, the use case diagram and the
screen interface will be elaborated. For each sentence of the
use case description, the BNF grammar rules defined in this
work will be used, so the use case sentences must be within the
established syntax. The screen interface will be the means of
communication with the user to validate the specification of
the requirements, just as it will correspond to the view in the
MVC architecture. The distribution of the activities described
by each use case will be executed by a controller with the same
name as the case of use.

The extraction of information, which comes from the
formulated rules based on the BNF, generate the models of the
PIM. In the PIM phase two diagrams are produced, the class
diagram and the sequence diagram. The two diagrams are

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:2, 2017

246

developed from the derivation of the use case diagram and the
screen interface, which derives from the defined rules.

For the editing of the diagrams presented in this article, the
Enterprise Architect (EA) tool was used. This tool supports the
MDA and is recognized by the OMG.

A. BNF Syntax

In this work, the BNF will be used with the objective of
creating a formal notation to describe a syntax for creating the
CIM use case description. It is also used to extract information
and rules for mapping between diagrams.

The defined BNF syntax is based on the natural language
based on syntax of the Portuguese language, being composed
of nine non-terminal elements. Fig. 1 shows the syntax defined
without the terminal symbols, in which it establishes a
standardization for writing the use case description, thus
allowing a transformation from CIM to PIM.

<sentence> := <subject> <predicate>

<predicate> := <verb> <object1> | <verb> <object> <complement> |
<verb> <object> <complement1> <complement2>

Fig. 1 BNF Syntax

It is worth noting that the non-terminals <subject>,

<object>, <object1>, <complement>, <complement1> and
<complement2> of this syntax must be composed of a single
noun, and the non-terminal <verb> for a single verb, with all
these non-listed terminals can be accompanied by articles
and/or prepositions. Therefore, for the writing of the
description of the use case presented in this article, the
sentences defined by the BNF was used, and some more rules
will be exposed later in this paper. Each use case description
will generate your terminals according to the specifications
and generated sentences.

Some rules of writing in addition to the syntax itself are
imposed, for example, non-terminals <object1>,
<complement>, and <complement2> must be key words to the
important requirements of the use case, and these requirements
usually answer certain questions like: Who? Where? What?
This specification is important because these elements have
been transformed into classes, for example, so this restriction.

English : System checks room occupation
Syntax

BNF : System checks occupation of room
Syntax

Fig. 2 Example of writing by BNF syntax

In this paper some sentences do not adjust well with the

English language, since the BNF was based on the Portuguese
language and the way of structuring sentences is different. To
illustrate this differentiation between languages, Fig. 2 shows
what would be correct in the syntax of the English language
and how the phrases will follow the defined BNF.

B. Proposed CIM Model

For the CIM phase, the use case diagram is defined, and this
diagram will be used to document the requirements. The use
case diagram was chosen because it is suitable for the CIM
phase because it is high level and is independent of
computation. To elaborate the description of the use case, the
rules of the defined syntax of the BNF grammar were adopted,
so all the sentences elaborated must follow what was specified
by the BNF grammar.

As an example of the elaboration of the use case description,
a representation of the elements proposed in this paper is
presented in Fig. 3. What is emphasized in red are fields that
need to be filled in when there are alternate specifications or
exceptions to the normal specification path. It is noteworthy
that these alternatives and exceptions must have an origin, title
and an end, but must also have the sentence(s) that follow the
defined BNF.

Fig. 3 Example of use case description

Some rules, in addition to the BNF syntax, are established
for the development of the use case description, these rules
are:
 The verb contained in each sentence of the form must be

in a specific verbal conjugation, the verb tense used will
be Simple Present.

 A specific verb will be used to indicate the input of data
by the actor, that verb will be the INSERT.

 The verb INSERT will be used to indicate the input of
data by the actor.

 The non-terminals <object1>, <complement> and
<complement2> must contain keywords of the
requirements.

The screen interface is used to support the development of
CIM. With the screen interface, in addition to being able to
have a clearer view of the system, it is possible to convert
important information, such as data and relevant specification
iterations. Another point, on which the interface assists in this
article, is with the architecture of the development MVC; the
screen interface makes the role of the View. The screen
interface should be in accordance with the use case, so when
the diagrams are referring to the same functionalities, these
should have the same appointment.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:2, 2017

247

IV. PROPOSAL OF RULES FOR THE EXTRACTION OF

INFORMATION FOR THE GENERATION OF CLASS DIAGRAMS AND

SEQUENCE DIAGRAMS

For the conversion of the description of the use case and the
screen interface into UML models, rules were created from the
BNF grammar, as shown in Fig. 1. In this section, the rules
will be defined for conversion into two diagrams, the class
diagram and the sequence diagram.

A. Extraction of Information from the Use Case Diagram
and the Screen Interface to the Class Diagram

In the MVC architecture, every use case that has at least one
system interface will have a class with the stereotype interface.
The Controller class must also be created because it will
receive the methods of the View class and will distribute the
Activities of the Use Case. The classes referring to the Model
will be added as it happens to the transformation.

An established rule, which must be taken into account since
the development of the use case itself, is that any sentence
describing the use case should be possible for conversion.
Therefore, from this rule, we must analyze all the sentences of
the description of the use case, decomposing them and
analyzing them according to the rules given below:
1. The sentence with the syntax <subject> <verb> <object1>

has the following rules:
 <verb> followed by <object1> is transformed in the name

method;
 <object1> is transformed into class.

In this rule, the <verb> and the <object1> join and form the
name of the method, the class is already formed by <object1>.
To define which class the method should be inserted,
<subject> must be parsed. If the <subject> is an actor that
interacts with the system, the method must be inserted in the
View and Controller class. However, if the <subject> of the
sentence is a system, then <verb> <object1> of the sentence is
a method of the <object1> class.
2. The sentence with the syntax <subject> <verb>

<object><complement> has the following rules:
 <verb> followed by <object> is transformed in the name

method;
 <complement> is transformed into class.

In this rule the <verb> and the <object> join and form the
name of the method, since the class is formed by
<complement>. To define which class the method should be
inserted, <subject> must be parsed. If the <subject> is an actor
that interacts with the system, the method must be inserted in
the View and Controller class. However, if the <subject> of
the sentence is the system, the method must be part of the class
represented by the <complement> contained in the sentence.
3. The sentence with the syntax <subject>

<verb><object><complement1> <complement2> has the
following rules:

 <verb> followed by <object> is transformed in the name
method;

 <complement2> is transformed into class.
In this rule, the <verb> and the <object> join and form the

name of the method, since the class is formed by

<complement2>. To define which class the method should be
inserted, <subject> must be parsed. If the <subject> is an actor
that interacts with the system, the method must be inserted in
the View and Controller class. However, if the <subject> of
the sentence is the system, the method must be part of the class
represented by the <complement2> contained in the sentence.

Other rules that are valid for all sentences of the use case
description are:
 The verb INSERT is a reserved word that means the input

of data by the user of the system, so when the sentence
contains this verb it should not be converted to the class
diagram.

 After the sentence with the verb Insert, the next sentences
may use the data entered as its parameters in the class
diagram.

 Another aspect to be considered is the question of the
prepositions, articles and pronouns that compose the
sentences, for the conversion these should be disregarded.

 When a use case description generates more than one class
in the course of its sentences, this will imply that there is a
relationship between these generated classes. This
relationship can be of the type association, aggregation or
composition.

After the rules for the use case, information can be extracted
from the screen interface, as well as establishing a class with
the stereotype interface in the class diagram, the interface also
allows the extraction of data that are represented on the screen.
Therefore, when there are fields and representations that
represent data of the possible classes already created, this data
must be added as attributes and must be private.

B. Extraction of Information from the Use Case Diagram
and the Screen Interface to the Sequence Diagram

In the MVC architecture, every use case that has at least one
screen interface will be a Lifeline View instance, there will
also be an instance of the lifeline Controller. These instances
have the same name as the use case under analysis.

The actor system will be the lifeline controller itself and the
other actors that interact with the interface are also actors in
the sequence diagram.

In the same way that all the sentences from the use case for
the class diagram were analyzed, the same will be done for the
sequence diagram. Therefore, the conversion rules are given
below:
1. The sentence with the syntax <subject> <verb> <object1>

has the following rules:
 <verb> followed by <object1> is transformed in the

message;
 <object1> is transformed into lifeline;
 <subject> sends the message;
 <object1> receives the message.

In this rule, the <verb> and the <object1> join together and
form the name of the sent message. The <object> transforms in
a lifeline. The <subject> of the sentence is that it sends the
message, it is the <subject> also who defines where the
message will be received, if the <subject> is an actor that
interacts with the system the message must pass through the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:2, 2017

248

View and then reach the Controller. However if the <subject>
of the sentence is the system, the <object1>, which has
transform lifeline, it is who receives the sent message.
2. The sentence with the syntax <subject> <verb>

<object><complement> has the following rules:
 <verb> followed by <object> is transformed in the message;
 <complement> is transformed into lifeline;
 <subject> sends the message;
 <complement> receives the message.

In this rule, the <verb> and the <object> join together and
form the name of the sent message. The <complement>
transforms in a lifeline. The <subject> of the sentence is that it
sends the message, it is the <subject> also who defines where
the message will be received, if the <subject> is an actor that
interacts with the system the message must pass through the
View and then reach the Controller. However, if the <subject>
of the sentence is the system, the <complement>, which has
transform lifeline, it is who receives the sent message.
3. The sentence with the syntax <subject>

<verb><object><complement1> <complement2> has the
following rules:

 <verb> followed by <object> is transformed in the message;
 <complement2> is transformed into lifeline;
 <subject> sends the message;

 <complement2> receives the message.
In this rule, the <verb> and the <object> join together and

form the name of the sent message. The <complement2>
transforms in a lifeline. The <subject> of the sentence is that it
sends the message, it is the <subject> also who defines where
the message will be received, if the <subject> is an actor that
interacts with the system the message must pass through the
View and then reach the Controller. However, if the <subject>
of the sentence is the system, the <complement2>, which has
transform lifeline, it is who receives the sent message.

Other rules that are valid for all sentences are:
 The verb INSERT is a reserved word that means the input

of data by the system user, so when the sentence contains
this verb it should not be converted to the sequence
diagram.

 After the sentence with the verb Insert, the next sentences
may use the data entered as its parameters in the sequence
diagram.

 Execution of specifications (ExecutionSpecifications) is
defined according to the sequential order of the existing
sentences in the use case description.

 The alternative and exception flows of the use case
description generate a combined fragment in the sequence
diagram.

Fig. 4 Use case of a clinic

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:2, 2017

249

V. APPLICATION OF THE PROPOSALS

The problem that is studied in this paper, for which the
diagrams were drawn up, portrays the systems of a medical
clinic. One of their primary needs is related to patient
admissions, and the need for a system that interactively and
visually addresses the issue of beds and occupied wards. It
should be noted that this problem is a real case study, and the
requirements were provided by a local software developer, so
that it would be possible to apply this study in a more concrete
scope. The use case for all medical clinic requirements is
represented in Fig. 4; however, for this article only the
description of the featured use case will be presented.

The use case that will be described is related to a patient's
admission to a bed on a ward; this is depicted in Fig. 5. The
description of the use case present in Fig. 5 follows the BNF
grammar defined in Fig. 1, so all sentences present in the main

and alternative scenarios are within the sentences defined by
the BNF grammar of this paper.

The screen interface corresponding to the use case described
in Fig. 5 is shown in Fig. 6. It is noted that the functionalities
that are equivalent between the diagram and the interface have
the same denominations. After the CIM models already built,
information can be extracted for the other UML models
through the established rules. Using the information extraction
rules for the class diagram, Fig. 7 presents an example of how
to apply the rules in the sentences of the use case description.
The sequence diagram will also be developed in the same way.
Fig. 8 shows an example of how to apply the rules in the
sentences of the use case description.

Fig. 5 Description of use case of a clinic

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:2, 2017

250

Fig. 6 Screen Interface

Fig. 7 Example of applying the rules to the class diagram

Fig. 8 Example of applying the rules to the sequence diagram

Figs. 7 and 8 illustrate how to apply the rules presented in

this paper, and in order to obtain complete diagrams, it is

necessary to apply the appropriate rules for all sentences of the
use case description.

VI. RESULTS ANALYSIS

For the construction of the CIM models there was a
standardization, with rules for creating the use case description
and the screen interface. Thus, standardized models are
created that facilitate the extraction of information.

The rules for extracting information for the generation of
class diagrams and sequence diagrams were also presented in
this paper, and as it was presented and exemplified, rules are
able to extract in a simple way several pieces of information
for the proposed diagrams.

Another relevant point of this article is that the BNF
grammar defined is simple because it is based on natural
language, so the developers of the models do not need to learn
a new language. The rules based on the BNF are also clear and
easy to understand and apply. Therefore, it can be concluded
that the diagrams that were generated, both those of the CIM
models and those that were produced from the rules, are
susceptible to automated transformations within the proposed
MDD, and the MDA proposed by the OMG.

VII. CONCLUSION

The aim of this paper is to propose the development of the
MDA approach in view of the CIM model, as well as to create
a standard for the development of the same. The rules of both
construction and conversion are based on the defined BNF
grammar developed, which was constructed from the natural
language, and which facilitates the understanding and use of
the same.

The transformation of CIM to PIM is generally little
discussed in the literature, since the OMG itself does not

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:2, 2017

251

establish a standard for the CIM. Given what has been defined
using the BNF syntax for the elaboration of the use case
diagram and screen interface, it allows a writing pattern for the
CIM, with which, this standard enables the conversion from
the established rules of the CIM to the PIM to the MVC
architectural standard.

The mapping performed in this article of the CIM models
for the PIM models was performed manually; however, with
the BNF grammar defined and the rules established it is
possible to create a tool that performs this transformation
automatically.

This work does not present the transformations of the PIM
for the PSM and the PSM for the code, however, it should be
noted that these transformations are supported by several tools
recognized by the OMG [13].

REFERENCES
[1] Kleppe, Anneke G., Jos B. Warmer, and Wim Bast. MDA explained: the

model driven architecture: practice and promise. Addison-Wesley
Professional, 2003.

[2] Parviainen, P. et al. Model-driven development processes and practices.
VTT Technical Research Centre of Finland, 2009.

[3] Souza, R. X. de O.; Oliveira, A. A. de; Nascimento, R. P. do. Modeler:
Abordagem baseada em modelos aplicada ao processo de elicitação de
requisitos.

[4] Torchiano, M. et al. Relevance, benefis, and problems of software
modelling and model driven techniques—a survey in the italian industry.
Journal of Systems and Software, Elsevier, v. 86, n. 8, p. 2110–2126,
2013.

[5] OMG. MDA Guide version 2.0. 2014
[6] Shirado, W. Hissamu, J. Guenka Palma, and V. Matias Leite. "Model

Driven Architecture for Development Test Automation Tools."
Proceedings of the International Conference on Software Engineering
Research and Practice (SERP). The Steering Committee of The World
Congress in Computer Science, Computer Engineering and Applied
Computing (WorldComp), 2016.

[7] Isikdag, Umit, and Jason Underwood. "Two design patterns for
facilitating Building Information Model-based synchronous
collaboration." Automation in Construction 19.5 (2010): 544-553.

[8] OMG. Meta object facility (mof). 2002.
[9] Guedes, Gilleanes TA. UML: uma abordagem prática. Novatec Editora,

2008.
[10] Magri, J. A. Arquitetura dirigida a modelos (mda): Utilizando modelos

no desenvolvimento de sistemas. Augusto Guzzo Revista Acadêmica, n.
8, p. 29–43,2008.

[11] OMG. MDA Guide version 1.0. 2003
[12] Mellor, S. J. MDA distilled: principles of model-driven architecture.

(S.l.): Addison-Wesley Professional, 2004.
[13] Calic, T.; Dascalu, S.; Egbert, D. Tools for MDA Software

Development: Evaluation Criteria and Set of Desirable Features. Las
Vegas: Conference on Information Technology: New Generations, 2008.

[14] Gailliard, G. et al. Transaction Level Modelling of SCA Compliant
Software Defined Radio Waveforms and Platforms PIM/PSM. Design,
Automation & Test in Europe Conference & Exhibition. Nice: (s.n.).
2007

[15] Guttman, M.; Parodi, J. Real Life MDA: Solving businessproblems with
Model Driven Architecture. San Francisco: Elsevier, 2007.

[16] Alves, E. L. G.; Machado, P. D. L.; Ramalho, F. Automatic generation
of built in contract test drivers. Software and Systems Modeling
Journal., New York, v. 13, 2014.

[17] Roubi, Sarra, Mohammed Erramdani, and Samir Mbarki. "Modeling
and generating graphical user interface for MVC Rich Internet
Application using a model driven approach." 2016 International
Conference on Information Technology for Organizations Development
(IT4OD). IEEE, 2016.

[18] Kateros, Dimitrios A., et al. "A methodology for model-driven web
application composition." Services Computing, 2008. SCC'08. IEEE
International Conference on. Vol. 2. IEEE, 2008.

[19] Kapitsaki, Georgia M., et al. "Model-driven development of composite
web applications." Proceedings of the 10th International Conference on
Information Integration and Web-based Applications & Services. ACM,
2008.

[20] Ryan, Conor, J. J. Collins, and Michael O. Neill. "Grammatical
evolution: Evolving programs for an arbitrary language." European
Conference on Genetic Programming. Springer Berlin Heidelberg, 1998.

[21] Dennis, Alan, B. H. Wixom, and David Tegarden. "Systems Analysis
with UML Version 2.0." (2005).

