
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:3, 2017

315

Parallel Vector Processing Using Multi Level
Orbital DATA

Nagi Mekhiel

Abstract—Many applications use vector operations by applying
single instruction to multiple data that map to different locations
in conventional memory. Transferring data from memory is limited
by access latency and bandwidth affecting the performance gain of
vector processing. We present a memory system that makes all of
its content available to processors in time so that processors need
not to access the memory, we force each location to be available to
all processors at a specific time. The data move in different orbits
to become available to other processors in higher orbits at different
time. We use this memory to apply parallel vector operations to data
streams at first orbit level. Data processed in the first level move
to upper orbit one data element at a time, allowing a processor in
that orbit to apply another vector operation to deal with serial code
limitations inherited in all parallel applications and interleaved it with
lower level vector operations.

Keywords—Memory organization, parallel processors, serial code,
vector processing.

I. INTRODUCTION

MULTIPROCESSOR system has been used to improve

performance of parallel applications [1], [2]. One

popular architecture is the multiprocessor with shared memory.

The sharing of one memory and the synchronization overhead

for managing the shared data limit the performance gain and

scalability of this system [3].

Vector processing has been used in many systems with

SIMD implementation using array of processors to process

data at same time. The data must come from a memory system

and depends on its access latency and bandwidth. This limit

the performance of vector processing that must wait for data

to be available and the whole vector to be delivered before

it can apply a single instruction to process it. This requires

fast memory like cache and also a fast network or wide

bus to satisfy bandwidth requirements which adds to system

complexity and cost.

The conventional vector processing is also limited in dealing

with serial code that usually needed to collect the results after

applying SIMD. In matrix multiplication data elements in a

row is multiplied by corresponding column data elements,

this could use SIMD, however the results must be added one

at a time in serial fashion to get the resultant data element.

Therefore a second level of vector processing that applies one

operation to multiple data elements in serial fashion is needed.

This is different from the conventional vector operation that

adds two vectors and produces a third vector that has each

element corresponds to addition of one element in first vector

and a second element in second vector.

Nagi Mekhiel is with the Department of Electrical and Computer
Engineering, Ryerson University, Toronto, Ontario, Canada (e-mail:
nmekhiel@ee.ryerson.ca).

II. BACKGROUND

The performance of processor depends on its memory

system [4]. New processors use large multi-level cache

system to close the huge speed gap between processor and

main memory DRAM [5]. According to Amdahl’s law the

performance improvements of advanced processor is limited

by the slow portion that cannot be improved in accessing

memory and the serial code.

It is essential to improve memory performance to take full

advantage of vector operations that are widely used in many

applications. Special mapping of vector data elements to one

cache line, with data elements that are scattered in memory,

has been proposed in [6] to improve vector processing.

However this mapping requires data to be first transferred from

slow memory to a cache line. The mapping of data to different

memory locations makes accessing them slower as they cannot

be transferred in a burst mode or use a block transfer of a

sequential locations. This method also cannot support parallel

vector operation due to cache conflicts and also cannot apply

a vector operation to collect data to replace a serial code by

a single instruction.

III. CONCEPT OF ORBITAL DATA

A shared resource will become not shared if we offer it or

make it available to all processors. Processors then need not

to arbitrate and wait to get the data from the shared resource.

Rather than having one processor to access one location in

memory at a time, we allow all locations to be available to all

processors all the time. The processor waits for the memory

to provide its data or instructions at a specific time [7], [8].

We propose making the contents of memory available to

all processors using a shared bus or orbit. Every location in

the memory is guaranteed to be delivered to the bus and all

processors have all the requested data available after waiting

for a time that does not exceed the time of transferring the

memory section out in the bus.

The new memory makes its content spins continuously

around the bus, so that any processor can access the data at a

specific time. This memory uses time as an address to access

it and is considered as a Time Addressable Memory ”TAM”

[7], [8].

It consists of the following features:-

• It supplies all contents of memory to all processors

regardless if the processor needs it or not.

• It is very fast because it is accessed sequentially in time

and does not have to use a random access mode as in

conventional memory.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:3, 2017

316

• The access of each location is known ahead of time,

so there is no waiting time for precharge, or decoding,

therefore access time is hidden.

• It uses DRAM or SRAM technology with very simple

organization.

Fig. 1 shows a block diagram for this concept. The contents

of memory spin around all the time in a fast speed and is

accessed by any processor.

1 0111111 0000001 010

lOCATION 1 2 3 4 n

P1 PmP2 P3

TIME ADDRESSABLE MEMORY "TAM"

time

Fig. 1 Concept of Orbital Data

IV. ORBITAL DATA MEMORY ORGANIZATION AND

OPERATION

Orbital Data could be implemented in any technology. It

also could be implemented using a different organization

than the known array structure to optimize the cost

of implementation. We assume using the known DRAM

technology to implement it and the contents of DRAM is

accessed sequentially in a serial fashion without the need for

address or decoders. Because the time to access each location

is known ahead of time, the activation time overhead is hidden

and overlapped among the different banks. The access time

for each location will be only the time of accessing the sense

amplifier and is limited only by the external bus speed. There

is no address lines, and it could use the address lines to

transfer more data which will double Bandwidth. Fig. 2 shows

the organization of Orbital data memory. It consists of the

following components:

• DRAM Array: Organized as an array of N rows by

M columns. Each cell is located at the intersection of

a specific row and a specific column. The storage cell

consists of one capacitor and a one transistor as in any

DRAM structure.

• Row Shift Register: Has N outputs, each is responsible to

activate the corresponding row similar to the row decoder

outputs in DRAM. The shift register consists of N D-type

Flip Flop and only one has 1 that corresponds to current

active row. Each row stays active for the time to access

all columns in it. Row Shift Register shifts the 1 to access

the next row.

• Column Shift Register: Has M outputs, each corresponds

to a column selection that allows the flow of data similar

to the column decoder outputs in DRAM. It also uses

D-type Flip Flops and only one has 1 that corresponds to

accessed column. Column Shift Register shifts the 1 to

access next column.

• Sense Amplifiers: Are used to access the data from the

input output DO/DI signal as in DRAM. The direction of

data flow is controlled by a /WE signal as in any DRAM.

D
R

A
M

 A
R

R
A

Y

Start-act-ROW

CLOCK
POWER-ON

Time Control

St
ar

t-a
ct

-R
O

W

St
ar

t-s
hi

ft-
C

O
L

Start-shift-COL

R2

RN

R0

R1

CL0CL1CL2CLM

DO/DI

sense
amp

sense
amp

ROW CLK

COL CLK

ROW CLK

LAST ROW

COL CLK

LAST COL

Column Shift Register

R
ow

 S
hi

ft
R

eg
is

te
r

/WE

Fig. 2 Orbital Data Memory Organization

V. ORBITAL DATA MEMORY SYSTEM

Fig. 3 shows the basic memory system that uses multiple

of chips to expand the memory. The basic system consists of

N number of orbital memory chips connected in serial fashion

such that the first location starts from first location of first chip

and the last location is from the last location of last chip. After

the access of the last location of the last chip, the access of first

location of first chip occurs as shown in the block diagram.

All memory chips are connected to same CLOCK signal for

synchronous design. All Do/Di signals are connected to the

same bus signals as in any conventional memory expansion.

The /WE signal is connected to /WE in all the chips.

The expansion of the memory system is very simple because

it needs only one signal to be connected to the next memory

chip. The LAST ROW signal from one chip is connected to the

Start-act-ROW input of the next chip. Conventional memory

expansion needs to decode some address lines to access the

extra memory. Decoder adds to system complexity and delay.

If the DRAM single chip is organized as N Row by M

Column, and the memory system consists of K chip, then

total number of memory storage= NxMxK locations. It will

take NxMxK cycles to access the full memory, and accessing

the memory repeats every NxMxK cycles in a Cyclic serial

fashion. The cycle time for is much faster than accessing

conventional memory as it does not have a decoder and it

hides Row and Column activations time.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:3, 2017

317

CLOCK

CLK CLKCLK

Start-act-ROW Start-act-ROW Start-act-ROW
LAST ROW LAST ROW

Do/Di Do/Di Do/Di

DATA

LAST ROW

POWER-ON

/WE

Fig. 3 Orbital Data Memory Expansion for Basic System

A. Orbital Data Memory with Multiplexer/De-Multiplexer

Fig. 4 shows the orbital memory organization using a

multiplexer and De-multiplexer. The select bank address

selects the specific bank to be accessed among the multiple

banks. It allows output data Do of the specific bank to pass

through the multiplexer to the memory bus. It also allows the

input data Di from the memory bus to be passed through the

De-multiplexer to be written to the selected bank.

This organization supports Out-Of-Order access patterns as

the select address determines the accessed bank in any order. It

also supports In Order Access patterns by using a counter and

a mode signal, to access banks in order through the multiplexer

or De-multiplexer.

counter counter

select bank number

DEMUX 16XN TAM

TAM Implementation With Multi-Bank DRAM

MUX

mode

Fig. 4 Orbital Data Memory with Multiplexer/De-Multiplexer

B. Parallel Orbital Data Memory

It is possible to design a parallel Orbital memory system

to access data from more than one bank at the same time.

The advantage of this design is that it allows accessing data

from different banks simultaneously. In a system with more

than one processor, a number of processors could share one

portion of memory while others access different portion of

memory independent of each other and each system could

have a different cycle time. The cycle time is the time it takes

to access the memory section in a serial fashion until it repeats.

Fig. 5 shows a block diagram for parallel Orbital

Data Memory using multiplexers/De-multiplexer. The core

memory consists of multiple banks, two multiplexers and two

De-multiplexers. Each multiplexer selects one bank from the

memory to deliver its data to a bus. MUX1 has its output

connected to DO1/DI1. MUX2 has its output connected to

DO2/DI2,. The SELECT BANK1 signal selects one bank for

MUX1 and SELECT BANK2 selects one bank for MUX2. The

DO1/DI1 is also connected to DEMUX1 to supply DI1 to the

selected bank based on SELECT BANK1 for write operations.

DO2/DI2 is connected to input of DEMUX2 to supply DI2 to

the second selected bank based on SELECT BANK2 signals.

C. Multi-Level Orbital Data Memory

Multi-Level allows data to be accessed from different

sections of memory at different cycle time. A memory section

has a number of memory locations accessed in a serial or

sequential order (mapped in a linear time order). Cycle time

is the time it takes to access a section of sequential accessed

locations until it accessed again in a cyclic fashion.

Fig. 6 shows the concept of Multi-Level Orbital Data

Memory. The whole memory spins on ORBIT0, which has the

longest cycle time. Each memory location is accessed and is

available to the outside bus for one bus cycle. Other sections of

memory are rotating their contents at the same time in a cyclic

fashion each with different cycle time. ORBIT1 has a portion

of memory spinning at a faster cycle time because it contains

smaller number of memory locations. ORBIT2 has the smallest

number of memory locations and spins at the fastest cycle

time. When the contents of memory ORBIT0 needs to be in

ORBIT1 (because ORBIT1 is part of whole memory), both

are aligned and become one section that belongs to ORBIT0.

There is no extra memory storage for ORBIT1 or ORBIT2,

they take portions of whole memory that spins at higher speed.

This is because the whole memory is divided to an integer

number of sections for ORBIT1 and ORBIT2.

D. Implementation of Multi-Level Orbital Data Memory

Fig. 7 shows the implementation of a multi-level Orbital

Data Memory. Memory is divided to banks or sections and

each section could be designed as the basic organization given

above. Each section rotates its content around a special bus

shown for BNK0, BNKM, BNKN. The bus for each bank has

all locations of its section continuously spinning at cycle time

equal number of locations in the bank multiplied by bus clock

time. It combines number of banks and makes their contents

available one after another in sequence. The bus output of

MUX1 is also connected as input for De-MUX1. If MUX1

is selecting BNK3, then data out from BNK3 is delivered to

MUX1 bus, and rerouted through De-MUX1 to be available

for BNK3, while BNK1 own bus data output is connected to

BNK1 to deliver data input at the same time in parallel.

MUX0 is used to access the whole memory as level 0, by

selecting ,in a sequential order, the outputs from all MUX1

of memory. The bus of MUX0 is also connected to the input

of De-MUX0 and rerouted to the accessed bank by one of

DE-MUX1. When one bank is accessed by the bus of MUX0,

this bank will only be controlled by this bus, and the other

buses from MUX1 or internal bank bus are not used.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:3, 2017

318

DEMUX 16XN TAM

DEMUX

MUX1

MUX2

DEMUX1

DEMUX2

SELECT BANK1

SELECT BANK2

DO1/DI1

DO2/DI2

Fig. 5 Parallel Orbital Data Memory

ORBIT0

ORBIT1

ORBIT2

Fig. 6 Concept of Multi-Level Orbital Data Memory

VI. MULTIPROCESSOR USING MULTI-LEVEL ORBITAL

DATA MEMORY FOR PARALLEL VECTOR OPERATIONS

Fig. 8 shows multiprocessor organization using

Multi-Level Orbital memory described above. Each

group of multiprocessors are connected to one

multiplexer/De-multiplexer to access sections of memory

based on the selected memory section. Other groups of

multiprocessors are similarly connected to other levels

of Orbital memory system. This provides a multi-level

parallelism achieved by Multi-Level orbital organization.

Each multiprocessor group shares one portion of memory at a

specific time without the need to exclude the other groups of

multiprocessors. Third level parallelism is obtained among the

multiprocessor group sharing one multiplexer/De-multiplexer

MUX0, DE-MUX0. Second multiprocessor group shares

MUX1/DE-MUX1 accessing a smaller portion of memory

that spins at higher speed. First level of processors are

connected directly to memory bank or section.

A. First Level Parallel Vector Operations in Orbital Data
Memory

Fig. 9 shows a block diagram of vector operations in orbital

data memory. The content of each memory location is placed

in the bus for a single cycle, then all processing elements read

these locations without arbitration or waiting. The Vector with

N elements is stored in N sequential memory locations, and

could be read or written to by N parallel processing elements

in N cycles. The load and store of long vectors in conventional

vector processor requires complicated and highly interleaved

bank memory with careful mapping of data in to different

banks. Even if vector processor uses a cache memory, it also

has limitations in supporting vector load and store because the

vector length causes high miss rate and costly transfer time.

The following are some of the vector operations supported

and shown in Fig. 9:

• LDV R1, 0(R7): This is a load instruction for a vector

with N elements to N processors. Processor P1 transfers

first element of vector to its register R1 at cycle number

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:3, 2017

319

MUX1

MUX1

MUX0

D
E-

M
U

X
1

D
E-

M
U

X
1

D
E-

M
U

X
0

BNK0

BNKM

BNKN

Bank Bus

Bank Bus

Bank Bus

Bank Bus

Fig. 7 Multi-Level Orbital Data Memory Implementation

MUX1

MUX1

MUX0

D
E-

M
U

X
1

D
E-

M
U

X
1

D
E-

M
U

X
0

BNK0

BNKM

BNKN

PP

P

P

P

P

P

P
P

P

Fig. 8 Multiprocessor using Multi-Level Orbital Data Memory

equal to the content of R7. Processor P2 transfers second

element of the same vector to its R1 register at cycle equal

to R7 plus one. Processor PN transfers the last element

of the vector to its R1 register at cycle equal R7 plus N.

It takes N cycles to transfer the full vector to processors

registers.

• LDV R2, 0(R8): This instruction transfers the second

vector to N processors register R2 in N cycles as

explained above.

• ADD R5, R1, R2: Every processor adds one element

of first vector to one element of the second vector only

in one cycle in parallel using SIMD. It is important to

note that a conventional vector processor with pipelined

function unit will take N cycle to add the two vectors.

• SDV 0(R9), R5: This instruction stores the results of the

vector elements obtained from N processor SIMD ADD

operation above in N locations in N cycles. P1 stores it

at location R9 in time, P2 stores its R5 in R9 plus 1, ..

processor N stores its R5 at R9 plus N.

The following are the advantages of using orbital data

memory for vector operations in the same level:-

• Data transfers from memory to processor or processor

to memory is very efficient. There is no need for bank

interleaving, and there is no bank conflicts as in vector

processor.

• Conventional cache suffers from high cost of transfer time

and high miss rate for using long vector in cache [8] when

data is scattered in main memory.

• Other vector operations could be performed between

processors sharing one memory bank in the same orbit

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:3, 2017

320

R5

R2R1

R5

R2R1

R5

R2R1

R5

R2R1

R5

R2R1

R1 R1 R1 R1R1

P1 P2 P3 P4 PN

ADDV R5, R1, R2 ; ADD VECTOR X TO VECTOR Y AND RESULT IS IN R5

P1 P2 P3 P4 PN

X1X2X3X4XN

X1

LDV R1 , 0(R7) ; LOAD R1 ON EACH PROCESSOR WITH LOCATION R7+ PROCESSOR NUMB

P1 P2 P3 P4 PN

Y1Y2Y3Y4YN

Y1

LDV R2 , 0(R8) ; LOAD R2 ON EACH PROCESSOR WITH LOCATION R8+ PROCESSOR NUMBE

R2 R2 R2 R2 R2

Fig. 9 Vector Operations using Orbital Data Memory

in parallel with other processors sharing another orbit or

bank in the same level, both groups are connected to same

multiplexer/de-multiplexer for that specific level.

B. Second Level Vector Operation in Upper Level Orbit

While each processor P1..PN is storing the results of ADD

in sequential memory locations using SDV in the above

example, the multiplexer selects these contents to appear at the

same time in a higher level orbit to a processor P at higher orbit

as shown in Fig. 8. Processor P applies a single instruction to

collect the results from lower level for example, an ADD will

add all these results together. This represents another level

of vector operation completely done in parallel while storing

these results to their locations in lower memory orbit level and

completely overlapped at the same time while executing the

SDV instruction. Conventional processors will use serial code

to add these results one at a time using N instructions that

need to read N vector elements, then transfer them to vector

processor.

Another group of processors could in parallel have a similar

vector operations at same time and pass their results through

a second multiplexer to a higher orbit for a processor to apply

a second level parallel vector operation. A third level orbit

could process data from the second level orbits and apply

a third level vector operation to a huge amount of data by

passing these data through another higher level multiplexer

that could be interleaved with vector operations of first, second

level operations to occur at same time.

This system can successfully apply parallel vector

operations to multiple vectors of data and at same time

interleave them and overlap them with other vector operation

in a higher orbit level.

VII. CONCLUSIONS

Orbital data memory allows the continuous transfer of data

in different orbits with different cycle time to processors. It is

simple and fast making it suitable to implement multi level and

parallel vector operations for streams of data that are provided

to processors at fast rate. The vector operations can be offered

in parallel by different processors in each orbit and at the same

time could be overlapped to support serial code that executes

as single instruction for stream of data, therefore dealing with

a fundamental limitations in parallel computing.

REFERENCES

[1] J. Hennessy, D. A. Patterson Computer Architecture: A Quantitative
Approach Morgan Kaufmann Publishers, Inc, San Francisco, CA, 1996.

[2] Agarwal, B. H. Lim, D. Kranz and J. Kubiatowicz, April: A processor
architecture for Multiprocessing, in Proceedings of the 17th Annual
International Symposium on Computer Architectures, pages 104-114,
May 1990.

[3] D. Burger, J. R. Goodman, and A. Kagi, Memory Bandwidth of
Future Microprocessors, In Proc. 23rd Annual Int. Symp. on Computer
Architecture, (ISCA’96), pp.78-89, Philadelphia, PA, 1996.

[4] Saulsbury, A.; Nowatzyk, A. Missing the memory wall: the case for
processor memory integration, ISCA96: The 23rd Annual International
Conference on Computer Architecture, Philadelphia, PA, USA, 22-24
May 1996 p.90-101.

[5] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Camean, A. Kyker,
and P. Roussel, The microarchitecture of the Pentium 4 processor, Intel
Technology Journal, 5(1), pages 1-133, Feb. 2001.

[6] Eichenberger et al., International Business Machines Corporation, Armonk,
NY (US) Vector Loads With Multiple Vector Elements From a Same Cache
Line in a Scattered Load Operation, US 8,904,153 B2 Dec. 2, 2014.

[7] Mekhiel, Data processing with time-based memory access, US 8914612B2
Dec 16, 2014.

[8] Introducing TAM: ”Time Based Access Memory”, Nagi Mekhiel, IEEE
Access journal, March 30, 2016. P. 1061-1073 Volume 4.

