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 
Abstract—The nonlinear time history analysis of seismically 

base-isolated structures can require a significant computational effort 
when the behavior of each seismic isolator is predicted by adopting 
the widely used differential equation Bouc-Wen model. In this paper, 
a nonlinear exponential model, able to simulate the response of 
seismic isolation bearings within a relatively large displacements 
range, is described and adopted in order to reduce the numerical 
computations and speed up the nonlinear dynamic analysis. 
Compared to the Bouc-Wen model, the proposed one does not 
require the numerical solution of a nonlinear differential equation for 
each time step of the analysis. The seismic response of a 3d base-
isolated structure with a lead rubber bearing system subjected to 
harmonic earthquake excitation is simulated by modeling each 
isolator using the proposed analytical model. The comparison of the 
numerical results and computational time with those obtained by 
modeling the lead rubber bearings using the Bouc-Wen model 
demonstrates the good accuracy of the proposed model and its 
capability to reduce significantly the computational effort of the 
analysis. 
 

Keywords—Base isolation, computational efficiency, nonlinear 
exponential model, nonlinear time history analysis. 

I. INTRODUCTION 

EISMIC isolation bearings are special devices able to 
provide flexibility and energy dissipation capacity in 

horizontal directions, sufficient vertical stiffness to resist 
service loading, rigidity under low levels of later loads due to 
wind or minor earthquakes, and recentering capability [1], [2]. 

A mathematical model is required to predict the dynamic 
behavior of seismic isolators. Within a relatively large 
displacements range, generally reached under the design 
dynamic loading, models with bilinear characteristics can 
represent the dynamic behavior of elastomeric bearings, such 
as high damping rubber bearings and lead rubber bearings, 
whereas models with rigid-plastic characteristics can be 
adopted to simulate the dynamic response of sliding bearings, 
such as flat sliding bearings and friction pendulum bearings 
[3]. The widely used differential equation Bouc-Wen Model 
(BWM), developed by [4], and then adopted by [5], [6] for the 
study of the random vibration of hysteretic systems, has been 
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adapted for modeling the uniaxial behavior of both 
elastomeric and sliding bearings [7], [3] and has been 
implemented in many computer programs such as 3D-BASIS, 
SAP2000, and ETABS. Since the BWM requires the 
numerical solution of a first order ordinary nonlinear 
differential equation for each time step of a nonlinear time 
history analysis, the use of such conventional model can 
increase the computational effort very significantly. 

The main aim of this work is to reduce numerical 
computations in the nonlinear dynamic analysis of seismically 
base-isolated structures by using a Nonlinear Exponential 
Model (NEM), proposed by [8], which is able to reproduce the 
dynamic behavior of seismic isolators within the relatively 
large displacements range without requiring the solution of a 
nonlinear differential equation for each time step of the 
analysis. 

In order to show the decrease in the required computational 
effort when the proposed mathematical model is adopted, a 
three-dimensional (3D) base-isolated structure with a lead 
rubber bearing system subjected to harmonic earthquake 
excitation is analyzed. The nonlinear dynamic equilibrium 
equations are solved using the implicit unconditionally stable 
Newmark’s constant average acceleration method used in 
conjunction with the pseudo-force iterative procedure. This 
conventional monolithic solution approach has been proposed 
by [3] specifically for the nonlinear dynamic analysis of base-
isolated structures. The numerical results obtained by 
modeling the seismic isolators using the proposed NEM are 
compared with those obtained by adopting the conventional 
BWM in order to show the significant reduction of the total 
computational time when the former is employed. 

II. EQUATIONS OF MOTION 

In this section, the equations of motion of a typical 
seismically base-isolated structure are formulated. The 
discrete structural model of such a structure can be 
decomposed into two substructures: the n-story superstructure 
and the base isolation system. The latter consists of seismic 
isolation bearings and a full diaphragm above the seismic 
isolators. 

In this work, the superstructure is considered to remain 
elastic during the earthquake excitation because the 
introduction of a flexible base isolation system generally 
reduces the earthquake response in such a way that the former 
deforms within the elastic range. In addition, the elastic 
superstructure is assumed to be a shear building, thus the 3d 
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discrete structural model has three Degrees of Freedom 
(DOFs) per floor, floor diaphragms are considered to be rigid 
in its own plane, the beams are considered to be axially 
inextensible and flexurally rigid, and the columns are 
considered to be axially inextensible. 

As far as the base isolation system is concerned, the 
diaphragm is assumed to be infinitely rigid in its own plane, 
the seismic isolators are considered rigid in vertical direction, 
and torque resistance of individual bearing is neglected. 

A global coordinate system, denoted with upper case letters 
X, Y, and Z, is attached to the mass center of the base isolation 
system. 

As a result of the above-described structural idealization, 
the total number of DOFs of the 3D structural model of a 
base-isolated structure is equal to 3n + 3. The i-th floor 
diaphragm has three DOFs defined at the diaphragm reference 
point io , which is vertically aligned to the global coordinate 

system origin O. The DOFs for the i-th floor are the 
translation ixu  along the X-axis, the translation iyu  along the 

Y-axis, and the rotation iu  about the vertical axis Z; ixu  and 

iyu  are defined relative to the ground. The 3n superstructure 

DOFs are listed in the displacement vector su , whereas the 

three DOFs of the base isolation system are listed in the 
displacement vector bu . The i-th diaphragm mass is lumped in 

its mass center )( iCM  which is also the geometric center. 

The earthquake excitation is defined by the horizontal 
ground acceleration )(tug  whose line of action is given by the 

angle g  that the epicentral direction forms with the X-axis. 

The equations of motion of the 3D discrete structural model 
of a base-isolated structure are: 
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with 

 T     0cc 1 ,                               (2) 
 

 T     0kk 1 ,                               (3) 
 

 T 
ggggg  uu 0)sin()cos(   u ,          (4) 

 

where sm , sc , and sk  are the superstructure mass, damping 

and stiffness matrices, respectively. Taking into account that 
the base isolation system can include linear and nonlinear 
isolation elements, bm  is the isolation system mass matrix, 

bc  is the damping matrix of linear viscous isolation elements, 

bk  is the stiffness matrix of linear elastic isolation elements, 

and nf  is the resultant nonlinear forces vector of nonlinear 

elements. In addition, 1c  and 1k  are the viscous damping and 

stiffness matrices of the superstructure first story, sr  and br  

are the superstructure and base isolation system influence 
matrices, respectively, and gu  is the ground acceleration 

vector. 

III. BOUC-WEN MODEL (BWM) 

In the following, the widely used differential equation 
BWM, developed by [4], and then adopted by [5], [6] to study 
the random vibration of systems having hysteretic behavior, is 
described. According to this model, the restoring force of a 
hysteretic system is given by: 
 

)()()( ufufuf he  ,                          (5) 
 

where )(ufe  is a linear elastic force evaluated as: 
 

u k αufe )( ,                                 (6) 
 

and )(ufh  is a nonlinear hysteretic force defined as: 
 

z k αufh )1()(  ,                             (7) 
 

in which,   is a dimensionless parameter, k  is a stiffness 
parameter, u is the displacement of the hysteretic system, and 
z is a hysteretic quantity, having the unit of displacement, 
obtained by solving the following first order ordinary 
nonlinear differential equation: 

 

u Az  u z u  z nn    ,for n odd              (8) 

 

u Az u z z u  z nn     1 ,for n even            (9) 

 
where n is a positive integer number, and A,  , and   are 

real constants. Equations (8) and (9) can be written in a more 
compacted form as: 
 

nn
z u z z u u Az    1

,                     (10) 

 
valid for n, odd or even.  

It is important to note that A,  ,  ,  , and n are 

dimensionless quantities that control the shape of the force-
displacement loop. Furthermore, Constantinou and Adnane [9] 
have shown that, for A = 1 and   = 1, the model collapses 

to a model of viscoplasticity that was proposed by [10]. 
Dividing (10) by u  gives: 
 

nn
z  z z 

u

u
  A

du

dz   1


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For systems with softening behavior, z attains a maximum 
value, obtained by setting (11) equal to zero, which for 
positive u  and z is given by: 

 
n

max
A

z
/1


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

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




.                          (12) 

 
Thus, the yield level yf is expressed as: 

 

maxy z k αf )1(  .                          (13) 

 

The pre-yield stiffness ik  and the post-yield stiffness fk

are defined as: 
 

A k αk αki )1(  ,                         (14) 
 

k  k f  .                                 (15) 

 
It is important to observe that the ratio of post-yield to pre-

yield stiffness reduces to the value   when A = 1. Finally, the 
sharpness of the transition from the linear to nonlinear range is 
governed by the parameter n, with the hysteresis approaching 
bilinear behavior as n approaches  . 

Nagarajaiah et al. [3] have adapted the above described 
uniaxial differential equation model for simulating the 
dynamic behavior of elastomeric bearings, such as high 
damping rubber bearings and lead rubber bearings, whereas 
Constantinou et al. [7] have adapted the BWM for modeling 
sliding bearings, such as flat sliding bearings and friction 
pendulum bearings. Thus, for an elastomeric bearing, the 
nonlinear restoring force can be evaluated by using the 
following equation: 

 

z 
u

f
 αu 

u

f
 αuf
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y

y )1()(  ,                    (16) 

 
where   is the post-yield to pre-yield stiffness ratio, yf  is the 

yield force, and yu  is the yield displacement. 

For a friction pendulum bearing, the nonlinear restoring 
force can be obtained as: 

 

z 
u

N 
u 

R

N
uf

y


)( ,                            (17) 

 
in which N is the vertical load carried by the seismic isolator, 
R is the radius of curvature of the spherical concave surface of 
the bearing,   is the sliding friction coefficient, which 

depends on the value of bearing pressure and the instantaneous 
velocity of sliding u . For a flat sliding bearing, (17) becomes: 
 

z 
u

N 
uf

y


)( .                                  (18) 

Since the explicit expressions for z are possible only for n = 
1 or 2, the unconditionally stable semi-implicit Runge-Kutta 
method [11] has been proposed by [3] to solve (10). 

IV. PROPOSED ANALYTICAL MODEL 

In this section, the NEM proposed by [8] is described. The 
presented model is able to predict the dynamic behavior of 
seismic isolation devices displaying a continuously decreasing 
tangent stiffness with increasing displacement within a 
relatively large displacements range, such as elastomeric and 
sliding bearings. Fig. 1 shows a typical normalized symmetric 
softening force-displacement hysteresis loop. 

 

 

Fig. 1 Typical normalized symmetric softening force-displacement 
loop 

 
The force-displacement hysteresis loop shown in Fig. 1 can 

be decomposed into three curves: the first loading curve 
(portion a-b), namely, virgin curve, the unloading curve 
(portion b-c), and the loading curve (portion c-d). Plotting the 
tangent stiffness of the loading curve as a function of the 
displacement (Fig. 2), it can be observed that the former 
exponentially decreases with increasing displacement. 

The tangent stiffness )(ukt  can be expressed by the 

following two mathematical expressions, valid for a loading 
and an unloading curve, respectively: 

 
)(

212 )()( minu - u a
t e kkkuk  ,   )( 0u         (19) 

 
)(

212 )()( u -u a
t

maxe kkkuk  ,   )( 0u         (20) 
 

where 1k  and 2k  are the initial and the asymptotic values of 

the tangent stiffness, maxu  and minu  are the displacement 

values at the most recent point of unloading and loading, 
respectively, and a is a parameter that defines the transition 
from 1k  to 2k . 

Integration of (19) and (20) gives the following nonlinear 
hysteretic restoring force: 

 

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

displacement

no
nl

in
ea

r 
re

st
or

in
g 

fo
rc

e

a

b, d

c



International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:11, No:2, 2017

221

 

 

  , e  
a

kk
                         

uu kufuf

minu  u a

minmin

1
)(

)()()(

)(21

2








   )( 0u     (21) 

 

 .  e  
a

kk
                         

uu kufuf

u  u a

maxmax

max 1
)(

)()()(

)(21

2








   )0( u    (22) 

 
According to Masing’s rule, the virgin curve can be 

obtained applying a similitude transformation of ratio 0.5 to 
the generic loading or unloading curve of the nonlinear 
restoring force )(uf . Thus, if the initial displacement and 

velocity of the bearing are equal to zero, the virgin curve can 
be evaluated using the following expressions, valid for a first 
loading and unloading curve, respectively: 
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Fig. 2 Tangent stiffness variation of the loading curve 
 
It is important to note that the proposed analytical model 

does not require the numerical solution of a nonlinear 
differential equation, as in the case of the differential equation 
model presented in Section II. Furthermore, the proposed 
NEM requires the evaluation of only three parameters, i.e. 1k , 

2k , and a, whereas in the BWM the number of parameters to 

be identified is equal to 7 for an elastomeric and a flat sliding 
bearing and 8 for a friction pendulum bearing. 

V. NUMERICAL APPLICATION 

In the following, the nonlinear dynamic response of a 3D 
base-isolated structure with a lead rubber bearing system 
subjected to harmonic earthquake excitation is simulated by 
modeling each seismic device with the presented NEM. In 
order to demonstrate the accuracy of the proposed nonlinear 
analytical model and its capability to decrease significantly the 

computational effort of the analysis, the numerical results and 
the computational time are compared to those obtained 
modeling the seismic devices with the widely used BWM. The 
dynamic equilibrium equations are numerically solved by 
using a conventional monolithic solution approach, that is, the 
implicit unconditionally stable Newmark’s constant 
acceleration method employed in conjunction with the 
iterative pseudo-force procedure. In this paper, for brevity, the 
latter solution algorithm, proposed by [3] specifically for the 
analysis of seismically base-isolated structures, is referred to 
as the Pseudo-Force Method (PFM). 

A. Analyzed 3d Base-Isolated Structure 

The superstructure is a four-story reinforced concrete 
structure with plan dimensions 19 m x 11 m, and story height 
h = 3.5 m. The weight of the superstructure is 9921.24 kN and 
the first three natural periods are 0.33 s, 0.33 s, and 0.26 s, 
respectively. Each superstructure diaphragm mass includes the 
contributions of the dead load and live load on the floor 
diaphragm and the contributions of the structural elements and 
of the nonstructural elements between floors. 

The base isolation system, having a total weight of 3006.44 
kN, consists of an orthogonal mesh of foundation beams 
having rectangular cross section with dimensions 60 cm x 75 
cm, and 24 identical Lead Rubber Bearings (LRBs), 
positioned centrically under all columns. 

As a result of the kinematic constraints assumed in Section 
II, the total number of DOFs, defined relative to the ground, is 
equal to 15. The typical floor plan and a section of the 
analyzed 3D base-isolated structure are shown in Fig. 3. 

The base isolation system has been designed in order to 
provide an effective isolation period effT  = 2.50 s and an 

effective viscous damping eff  = 0.15 at the design 

displacement dd  = 0.50 m. Each elastomeric bearing has a 

yield force yf  = 45400.3 N, a yield displacement yu  = 0.017 

m, and a post-yield to pre-yield stiffness ratio   = 0.10. 

B. Analytical Models Parameters 

Table I gives the parameters of the two analytical models, 
that is, the BWM and the proposed NEM, adopted to simulate 
the dynamic behavior of each LRB. 

 
TABLE I 

ANALYTICAL MODELS PARAMETERS 

BWM yf  [N] yu  [m]   A     n 

 45400 0.017 0.10 1 0.5 0.5 2 

NEM 1k  [N/m] 2k  [N/m] a     

 4513478 265499 50     

 
Fig. 4 shows the simulated force-displacement hysteresis 

loops produced by use of the BWM and NEM. They are 
obtained, as done in experimental tests, by applying a 
sinusoidal harmonic displacement having amplitude equal to 
0.5 m and frequency of 0.40 Hz. It can be observed that the 
two analytical models adopting the parameters listed in Table I 
can reproduce hysteresis loops having the same area and 

-1 -0.5 0 0.5 1
0

0.5

1

displacement

lo
ad

in
g 

cu
rv

e 
ta

ng
en

t s
tif

fn
es

s



International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:11, No:2, 2017

222

 

 

effective stiffness. 
 

TABLE II 
NLTHAS RESULTS 

   )( bMC
xu  [m] 

)( bMC
yu  [m] )4(MC

xu  [g] 
)4(MC

yu  [g] 

 tct[s]  tctp max min max min max min max min 

PFM-BWM 511 - 0.071 -0.065 0.099 -0.146 0.329 -0.342 0.591 -0.562 

PFM-NEM 4.51 0.88% 0.073 -0.060 0.095 -0.140 0.323 -0.334 0.510 -0.537 

 

 

(a) 
 

 

(b) 

Fig. 3 Four-story reinforced concrete base-isolated structure: (a) 
typical floor plan; (b) section A-A’ 

 

 

Fig. 4 Simulated force-displacement hysteresis loops 

C. Numerical Results 

Harmonic ground motion, having amplitude 0gu  = 2.5 

m/s2, frequency g  = 2  rad/s, and time duration dt  = 20 s, 

is imposed with an angle g  = π / 3 and time step of 0.005 s. 

Table II shows the Nonlinear Time History Analyses 
(NLTHAs) results obtained adopting the PFM [3] to solve 
numerically the nonlinear dynamic equilibrium equations of 
the analyzed base-isolated structure. More specifically, the 
first row of Table II gives the numerical results obtained by 
modeling the seismic isolators using the BWM (i.e., PFM-
BWM), whereas the second one shows the results obtained by 
simulating the dynamic behavior of LRBs adopting the 
proposed NEM (i.e., PFM-NEM). 

The solution algorithm and the seismic isolator models have 
been implemented on the same computer (Intel® Core™ i7-
4700MQ processor, CPU at 2.40 GHz with 16 GB of RAM) 
by using the computer program Matlab. In the PFM, the 

adopted convergence tolerance value is equal to 810 and in 
the BWM the first order ordinary nonlinear differential 
equation given by (10) has been solved by using the 
unconditionally stable semi-implicit Runge-Kutta method [11] 
with a number of steps equal to 50. 

The comparison of the maximum and minimum values of 
the bMC  displacements and 4MC  accelerations in X and Y 

directions, obtained using the PFM-BWM and the PFM-NEM, 
reveals that the NLTHA performed by modeling the seismic 
isolators with the proposed model provides results that are 
close enough to those obtained adopting the BWM. 

As far as the computational efficiency is concerned, the 
total computational time, tct, required by the PFM-NEM is 
significantly reduced in comparison to the PFM-BWM. It 
must be observed that the comparisons using the tct are 
meaningful only qualitatively because it depends on the CPU 
speed, memory capability, and background processes of the 
computer used to obtain the previous results. Thus, in order to 
normalize the computational time results, Table II also shows 
the percentage of the PFM-NEM tct evaluated with respect to 
the PFM-BWM tct as follows: 

 

  100
BWMPFM

NEMPFM
NEMPFM 

tct -

tct -
% tctp-           (25) 

 
The PFM-NEM tctp, evaluated with (25), is equal to 0.88%. 
Figs. 5 and 6 illustrate, respectively, the displacement time 

history of the bMC  and the acceleration time history of the 
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4MC  for a time duration of the harmonic earthquake 

excitation dt  = 10 s. It is evident the good agreement between 

responses obtained using the BWM and the proposed NEM. 
 

 

(a) 
 

 

(b) 

Fig. 5 Displacement time history of the base isolation system mass 
center in (a) X and (b) Y directions 

 

 

(a) 

 

(b) 

Fig. 6 Acceleration time history of the superstructure fourth story 
mass center in (a) X and (b) Y directions 

VI. CONCLUSIONS 

The use of the BWM to simulate the dynamic behavior of 
seismic devices can increase significantly the computational 
effort of a nonlinear time history analysis of a base-isolated 
structure due to the numerical solution of the first order 
ordinary nonlinear differential equation required by the model 
for each time step of the analysis. 

In this paper, the NEM developed by [8] has been described 
and then adopted in order to speed up the nonlinear dynamic 
analysis of base-isolated structures. Indeed, the proposed 
model is able to simulate the dynamic behavior of seismic 
isolators by avoiding the solution of the nonlinear differential 
equation required in the BWM. 

In order to demonstrate the accuracy of the proposed 
analytical model and its capability to reduce the computational 
effort of the analysis, the nonlinear dynamic response of a 3D 
base-isolated structure with a lead rubber bearing system 
subjected to harmonic earthquake excitation has been 
simulated by modeling each seismic device with the NEM. 
Comparing the numerical results and computational time 
obtained by simulating the dynamic behavior of each LRB 
adopting the proposed NEM with those obtained by using the 
BWM, the following conclusions can be drawn: 
(1) The nonlinear time history analysis performed by 

modeling the LRBs with the proposed analytical model 
provides results that are close enough to those obtained 
modeling the seismic isolators adopting the BWM; 

(2) Simulating the dynamic behavior of the seismic isolation 
devices with the proposed NEM allows decreasing very 
significantly the computational effort of the analysis: 
indeed, the nonlinear time history analysis performed by 
modeling the LRBs with the proposed model requires a 
total computational time percentage, evaluated with 
respect the total computational time obtained by adopting 
the BWM, equal to 0.88%. 
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