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 
Abstract—Aiming at optimizing the weight and deflection of 

cantilever beam subjected to maximum stress and maximum 
deflection, Multi-objective Particle Swarm Optimization (MOPSO) 
with Utopia Point based local search is implemented. Utopia point is 
used to govern the search towards the Pareto Optimal set. The elite 
candidates obtained during the iterations are stored in an archive 
according to non-dominated sorting and also the archive is truncated 
based on least crowding distance. Local search is also performed on 
elite candidates and the most diverse particle is selected as the global 
best. This method is implemented on standard test functions and it is 
observed that the improved algorithm gives better convergence and 
diversity as compared to NSGA-II in fewer iterations. Implementation 
on practical structural problem shows that in 5 to 6 iterations, the 
improved algorithm converges with better diversity as evident by the 
improvement of cantilever beam on an average of 0.78% and 9.28% in 
the weight and deflection respectively compared to NSGA-II. 

 
Keywords—Utopia point, multi-objective particle swarm 

optimization, local search, cantilever beam. 

I. INTRODUCTION 

 ULTI-OBJECTIVE optimization has to deal with 
conflicting nature of objectives. There are various 

methods of optimization and particle swarm optimization 
(PSO) is one of them. PSO is a population based meta-heuristic 
search technique which is known for its simplicity and quick 
convergence [1]. Reference [2] shows that the introduction of 
inertia weight in PSO improved the ability of its global 
convergence. In the comparative study among algorithms like 
genetic algorithm, memetic algorithm, PSO, ant-colony system 
and shuffled frog leaping, PSO performed better in terms of 
success rate and solution quality [3]. Due to these qualities of 
PSO, it has attracted many researchers to extend it to multi- 
objective problems. Multi-objective optimization has to deal 
with the conflicting nature of objectives and there are 
specifically two goals to achieve [4]. They are: 
a. Finding a set of solutions closer to the optimal Pareto- 

front. Optimal Pareto front is a set of non-dominated 
particles 

b. Spreading the solution set uniformly over the Pareto-front 
known as diversity. 

MOPSO was first extended by Moore and Chapman [5]. 
MOPSO was developed further with novel strategies for 
obtaining Pareto-front and a global best/leader and many 
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algorithms were introduced which has extensive applications. 
Reference [6] shows a new local search technique to improve 
diversity and could solve a variety of unconstrained multi-
objective problem, but got trapped into local optimal in some 
benchmark functions. Local search is a heuristic method to 
solve hard computational problems [7]. Improvement in PSO 
are of three categories: Extending the search space, hybridizing 
with other optimization technique and adjusting the parameter 
[8]. 

The paper presents an algorithm which has the 
implementation of a local search based on Utopia point. The 
algorithm is examined by testing it on standard test functions 
and also it is applied to a standard cantilever problem whose 
objective is to minimize weight and deflection. 

II. MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION 

PSO comprises of two main operations: 1. Swarm 
initialization and 2. Updating swarm with the velocity 
parameter obtained by particle best and global best. An 
individual and the swarm move to the optimal solution by 
gathering information by its own intelligence as well as 
intelligence of the swarm. The velocity of the particle is for 
updating the design variable every generation. Equation (1) is 
the mathematical expression of velocity of the particle. 
Equation (2) is defining updated particle. 

 
ሺ݅ݒ ൅ 1ሻ ൌ ¥. ሺ݅ሻݒ ൅ ܿଵ. .ଵݎ ൫ ௕ܲ௘௦௧ሺ݅ሻ െ ሺ݅ሻ൯ݔ ൅ ܿଶ. .ଶݎ ൫ܩ௕௘௦௧ሺ݅ሻ െ  (1)	ሺ݅ሻ൯;ݔ

    
ሺ݅ݔ  ൅ 1ሻ ൌ ሺ݅ሻݔ ൅  ሺ݅ሻ         (2)ݒ

 
 The current position is denoted by ݔሺ݅ሻ and ݔሺ݅ ൅ 1ሻ 
represents the updated position of the particle. ݒ is the velocity 

of the particle and ¥ denotes the inertia weight coefficient. ܿ1 
and ܿ2 represent the acceleration components;	 ௕ܲ௘௦௧is the best 
position an individual has obtained till then and ܩ௕௘௦௧ is the best 
particle encountered so far by the swarm. ݎଵ and ݎଶ are the 
random numbers between 0 and 1.  

The inspiration behind the implementation of local search in 
MOPSO is to achieve improved convergence and diversity to 
obtain effective results of practical engineering problems. The 
presented algorithm is comprised of the following steps: 
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A. Initialization 

N particles are initialized randomly within the decision 
variable space and the respective fitness values are evaluated.  

B. Personal Best Operator ( ௕ܲ௘௦௧) 

௕ܲ௘௦௧ operator is used to update the personal best particle  
after every iteration. If the previous ௕ܲ௘௦௧ is dominated by the 
current particle, the ௕ܲ௘௦௧ is replaced by the current particle  

C. Elite Particles Operator 

According to constrained Pareto dominance criteria, the 
operator finds the non-dominated particles among the swarm 
[4]. Consider P, Q, R and S as the solution coordinate in the 
function space. Let ௉݂௫, ோ݂௫, ோ݂௫, ௌ݂௫ and ௉݂௬, ொ݂௬, ோ݂௬, ௌ݂௬ be the 
fitness values of objective function 1 and objective function 2 
respectively as shown in Fig. 1. Solution P is said to be 
dominating Q if both the conditions are true [4]:  
 Solution P is no worse than Q in all the objectives 
 Solution P is strictly better than Q in at least one objective. 

 

 

Fig. 1 Concept of dominance for Multi-objective problems 
 

 

Fig. 2 Utopia point representation for bi-objective problem 

D. Mutation Operator 

To enhance the global search ability of the algorithm, 
polynomial mutation [8] is introduced in the evolutionary cycle. 

E. Local Search Operator 

The presented algorithm uses the Utopia point for guiding the 
swarm towards the True Pareto-front. Utopia point is the 
optimal solution of the objective function.  Let the utopia point 
of objective function 1 ( ଵ݂) on the function space be ଵܷand the 

corresponding design variables be ݔଵ
௎భ, ଶݔ

௎భ, ଷݔ
௎భ … . ௡ݔ

௎భ	where n 
is the number of decision variable. Similarly, Utopia point of 
objective function 2 ( ଶ݂) be	ܷଶ and the corresponding design 

variables be ݔଵ
௎మ, ଶݔ

௎మ, ଷݔ
௎మ … . ௡ݔ

௎మ. Fig. 2 shows the schematic 
diagram of the Utopia point of bi-objective problem with 
coordinates ଵܷ, ଶܷ. 

After updating the position of the particles, the local search 
is implemented as follows.  

Equations (3) and (4) show the mathematical representation 
of the Local search scheme: 

   

௜ܺ௝ீ
௣ ൌ ௜௝ீݔ ൅ r ∗ ሺݔ௜௝ீ െ ௜௝ݔ

௎ሻ;       (3) 
 

௜ܺ௝ீ
௤ ൌ ௜௝ீݔ െ r ∗ ሺݔ௜௝ீ െ ௜௝ݔ

௎ሻ;       (4) 
 

where ௜ܺ௝ீ
௣  and ௜ܺ௝ீ

௤  are the obtained values on the opposite 

direction of the particle. r is the random number between 0 and 
1. Then, the operator checks for the best particle among the 
particle and two neighbor particle, according to constrained 
dominance criteria and the best particle is updated. This local 
search operator is also implemented on the archive where the 
elite candidates are stored. This helps in choosing the Gୠୣୱ୲ 
more efficiently. 

F. Evolutionary Update Operator 

After every iteration, the elite particles are stored in the 
archive. The archive is truncated with the strategy of 
implementing crowding distance of the particle. The non- 
dominated elite particles are arranged in the descending order 
and the Pareto-front is obtained with user defined number of 
solutions. 

G. 	ܩ௕௘௦௧	Operator 

Among the non-dominated particles stored in the archive, the 
 ௕௘௦௧ operator chooses the candidate as global best which lie inܩ
the least crowded region.  

III. SIMULATION 

The performance of the presented algorithm was compared 
with NSGA- II and RMOPSO [9] by rigorous examination of 
standard test functions available from the literature. 

A. Standard Test Functions 

Four standard test functions of the different nature of Pareto- 
fronts are adopted from the literature, namely:  ZDT1, ZDT2, 
ZDT3, ZDT4 and ZDT6 [10].  All these standard test functions 
are bi-objective unconstrained problems consisting of either 10 
or 30 design variables. The ZDT1 function has a convex true 
Pareto-front, whereas ZDT2 has non-convex. Pareto-front of 
ZDT3 is discrete and ZDT4 has 21 local Pareto-fronts [11]. 

B. Performance Parameters 

There are various ways to examine the performance of the 
algorithm by checking its convergence and diversity of 
solutions. These are generational distance (GD), inverted 
generational distance (IGD) and Diversity metric (Δ). 
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Inverted generational distance (IGD): IGD is the parameter 
which is used to examine both convergence and diversity of the 
algorithm. It is the distance of each elite candidate obtained by 
the algorithm from the True Pareto-front. Equation (5) shows 
the mathematical expression of IGD metric [12]. It is 
understood that IGD cannot have absolute value, but it can be 
utilized for comparing the performance of different algorithms. 
The lower the value of IGD, the better is the convergence and 
diversity achieved by the algorithm. 

 

,∗ሺܲܦܩܫ ܲሻ ൌ 	
ට∑ ௗ೔

మ೙
೔సభ

୬
                    (5) 

C. Selection Parameters 

The presented algorithm is compared with NSGA-II and 
RMOPSO. The value for comparison of IGD metric is adopted 
from [9]. Table I shows that the parameter selection of NSGA-
II and SMPSO.  

 
TABLE I 

INPUT PARAMETERS   

Algorithms Parameter settings [9] 

NSGA-II N=100, ݌௖ ൌ ௠݌ ,0.9 ൌ 1/݊, ŋ௖ ൌ 20,	ŋ௠ ൌ 20 

SMPSO N=100,	ω	∈	[0.1,	0.5],	ܿଵ, ܿଶ	 ∈ ሾ1.5, 2.0ሿ,	݌௠ ൌ 1/݊, 

 
As NSGA-II and SMPSO have been tested with population 

size of 100, the population size for the presented algorithm is 
taken as 100 and the inertia weight ω is chosen according to 
[13] which is varied from 0.7 to 0.4 over every iteration. To 
overcome premature convergence of the algorithm, velocity 
limits [14] are set as v ∈ [- ݒ௠௔௫, ݒ௠௔௫], ݒ௠௔௫= 0.3* ( ݔ௠௔௫ െ
 ௠௜௡). Acceleration coefficients are chosen randomly betweenݔ	
0 and 1. Each test function is independently tested for 30 runs 
with 10 iterations in every run. 

IV. RESULTS 

The simulation results obtained by the algorithm are shown 
in the IMOPSO column of Table II. As stated above, the IGD 
values of NSGA-II and SMOPSO are adopted from [9] and 
tabulated in 1st and 2nd column respectively in Table II. The 
maximum number of iterations performed by the presented 
algorithm named as ‘Improved multi-objective particle swarm 
optimization’ (IMOPSO) in every run is 10. 

 
TABLE II 

IGD VALUES OF ALGORITHMS ON ZDT FAMILY FUNCTION 

  NSGA-II[9] SMPSO[9] IMOPSO 

ZDT1 
Mean 0.0051 0.0071 0.0009 

SD 0.000233 0.000783 0.000191 

ZDT2 
Mean 0.009 0.0061 0.001459 

SD 0.28 0.0182 0.000457 

ZDT3 
Mean 0.0075 0.023 0.006303 

SD 0.00271 0.00599 0.002727 

ZDT4 
Mean 0.29 0.56 0.2821 

SD 0.4 0.0412 0.147 

ZDT6 
Mean 0.0062 0.0046 0.001445 

SD 0.000702 0.000336 0.001017 

 

 

Fig. 3 Pareto-front of ZDT1 
 

 

Fig. 4 Pareto- front of ZDT2 
 

 

Fig. 5 Pareto-front of ZDT3 
 
According to IGD values shown in Table II, it is observed 

that IMOPSO significantly outperforms NSGA-II and SMPSO 
for ZDT1, ZDT2, ZDT3 and ZDT6 test function. NSGA-II and 
IMOPSO have performed comparatively equal in case of 
ZDT4. Figs. 3-6 show the obtained Pareto-front of ZDT1, 
ZDT2, ZDT3 and ZDT6 respectively obtained by IMOPSO 
which signifies the closeness and uniformity achieved by the 
proposed algorithm. The light color line in Fig. 3 represents the 
true Pareto-front and the dark dots represents the obtained 
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Pareto-front of ZDT1 by the algorithm.  
 

 

Fig. 6 Pareto-front of ZDT6 

V. ENGINEERING DESIGN PROBLEM 

To examine the applicability and efficiency of the algorithm, 
engineering design problem is very useful. In this paper, the 
detail analysis of the cantilever beam problem is taken into 
consideration. 

A. Cantilever Beam Design 

The objective of the cantilever beam design is to minimize 
the weight and deflection of the beam subjected with the 
constraint of maximum developed stress and end deflection of 
the beam. Fig. 7 shows the cantilever beam with d as the 
diameter and l as the length of the beam with the vertical load 
of P as the tip. The young modulus (E) and density (ρ) of the 
material of the beam are 207 GPa and 78000݂݇݃/݉ଷ 
respectively. The value of load P is 1000 N. The limit of 
maximum stress (S) is 300MPa and maximum end deflection 
ሺδ	୫ୟ୶	ሻ	is 5 mm. Table III shows the upper and lower bounds 
of the diameter and length of cantilever beam which are the 
design variables. 

 

 

Fig. 7 Cantilever beam 
 

Objective functions: Minቐ
ݐ݄ܹ݃݅݁ ൌ ଵ݂ ൌ

஡஠ௗమ௟

ସ

ሻߜሺ	݊݋݅ݐ݈݂ܿ݁݁ܦ ൌ ଶ݂ ൌ
଺ସி௟య

ଷா஠ௗర
;
 (6) 

 
Constraint:  1. Maximum developed stress must be lower 

than the allowable stress S. 
 

i.e.  
ଷଶி௟

஠ௗయ
െ ܵ ൑ 0  

 

2. The actual deflection at the tip of the cantilever must be 
less than the maximum deflection (δ௠௔௫) 

 
δ െ δ	୫ୟ୶	 ൑ 0 

 
TABLE III 

DESIGN VARIABLES UPPER AND LOWER LIMITS 

Sr. No Variables Bounds (mm) 

1 Diameter of the beam 10 ≤ d ≤ 50 

2 Length of  the beam 200≤ l ≤ 1000 

B. Results 

The results of IMOPSO are compared with NSGA-II, taking 
into consideration the four best solutions from Pareto- front of 
the proposed algorithm and NSGA-II. Table IV shows 
improvement in the weight and table V shows for improvement 
in the deflection of the cantilever beam. 

 
TABLE IV 

COMPARISON OF WEIGHT 

S. 
No 

Weight ଵ݂ ൌ
஡஠ௗమ௟

ସ
 % improvement 

in weight NSGA-II [4] IMOPSO 

1 0.44 0.44 0 

2 0.58 0.57 1.72 

3 1.43 1.41 1.39 

4 3.06 3.06 0 

 
TABLE V 

COMPARISON OF DEFLECTION 
S. 
No 

Deflection ଶ݂ ൌ
଺ସி௟య

ଷா஠ௗర
 % improvement 

in weight 
NSGA-II [4] IMOPSO 

1 2.04 1.98 2.94 

2 1.18 1.17 0.85 

3 0.19 0.19 0 

4 0.06 0.04 33.33 

 
The average improvement in the weight of the cantilever 

beam is obtained as 0.78% and the average improvement in the 
deflection is 9.28%. Fig. 8 shows the 200 well-distributed 
solution of cantilever beam design for weight vs deflection. 

 

 

Fig. 8 Pareto-front of cantilever beam 
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VI. CONCLUSIONS 

The presented algorithm effectively evaluates the Pareto-
fronts of the standard test functions. The implementation of 
local search improved the rate of convergence and thus 
improved the performance of the presented algorithm. The IGD 
metric results showed that the presented algorithm 
outperformed NSGA-II and SMPSO in achieving the 
convergence and diversity of Pareto-front.  
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