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Abstract—The noise requirements for naval and research vessels
have seen an increasing demand for quieter ships in order to fulfil
current regulations and to reduce the effects on marine life. Hence,
new methods dedicated to the characterization of propeller noise,
which is the main source of noise in the far-field, are needed. The
study of cavitating propellers in closed-section is interesting for
analyzing hydrodynamic performance but could involve significant
difficulties for hydroacoustic study, especially due to reverberation
and boundary layer noise in the tunnel. The aim of this paper
is to present a numerical methodology for the identification of
hydroacoustic sources on marine propellers using hydrophone arrays
in a large hydrodynamic tunnel. The main difficulties are linked to the
reverberation of the tunnel and the boundary layer noise that strongly
reduce the signal-to-noise ratio. In this paper it is proposed to estimate
the reflection coefficients using an inverse method and some reference
transfer functions measured in the tunnel. This approach allows to
reduce the uncertainties of the propagation model used in the inverse
problem. In order to reduce the boundary layer noise, a cleaning
algorithm taking advantage of the low rank and sparse structure of the
cross-spectrum matrices of the acoustic and the boundary layer noise
is presented. This approach allows to recover the acoustic signal even
well under the boundary layer noise. The improvement brought by
this method is visible on acoustic maps resulting from beamforming
and DAMAS algorithms.

Keywords—Acoustic imaging, boundary layer noise denoising,
inverse problems, model adaptation.

I. INTRODUCTION

THE acoustic imaging techniques in aero/hydrodynamic

tunnel have seen an increasing of popularity and

performance over the last few decades. The delay-and-sum

beamforming in the frequency domain is widely used in

acoustic tunnels due to the robustness of this approach.

Unfortunately this technique involves side-lobe effects that

strongly reduce the acoustic imaging performance especially

in low frequencies.
Several methods such as DAMAS [1] (Deconvolution

Approach for the Acoustic Mapping of Acoustic Sources),

CLEAN-SC (Source Coherence) [2] have been proposed to

remove the side-lobe effect and then increase the spatial

resolution. Classically, the free field propagation model is

used for the characterisation of acoustic source in closed wind

tunnel [3], [4]. However, the relevance of the results depends

on the accuracy of the propagation model used in the imaging

technique.
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Fenech et al. [5] propose to use the image source method

(ISM) in order to take into consideration the reflections in

the tunnel. Recently, Fischer et al. [6] have introduced an

empirical de-reverberation method based on measured Green’s

functions. They show that the source position is exactly

recovered for a wide frequency range but only when it matches

one of the positions used to measure the Green’s functions.

The performance of the localisation techniques can be

strongly affected by the boundary layer noise. Blacodon

[7] proposes a denoising method based on noise reference.

However, the efficiency of this noise removal process depends

on the accuracy of the noise signal. Hence, the variations

between the estimated noise spectrum and the actual noise

could lead to strong errors.

In this paper, a numerical methodology for the identification

of acoustic sources in the hydrodynamic tunnel using

hydrophone array corrupted by boundary layer noise is

presented. Firstly it is proposed to estimate the reflection

coefficients using an inverse method and some reference

transfer functions in order to reduce the uncertainties about the

propagation model. Secondly a denoising method that does not

need the cross-spectrum estimation of the noise is presented.

This approach takes advantage of the low rank and sparse

structure of the cross-spectrum matrices of the acoustic and

the boundary layer noise and is based on the RPCA (Robust

principal component analysis) algorithm [8].

II. ACOUSTIC PROPAGATION

A. Source Image Theory

The acoustic field p(r) at a given position r resulting from

a radiating source on a surface S(rs) is given by

p(r) =

∫
S

iωρqs(rs)G(r|rs)dS(rs) + n, (1)

with qs(rs) the volume velocity of the source, G(r|rs) the

Green’s function of the environment with a density of ρ and

n accounts for the measurement noise. The image source

method (ISM) is a well known technique to model the acoustic

propagation in enclosed space. This approach considers that

the boundaries of the enclosed space can be replaced by mirror

image sources located outside the enclosed space [5], [9].

Then the acoustic propagation is calculated by summing the

contributions of the image sources and the true source. Thus

the Green’s function between a receiver (r) and a source (rs)
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can be written as

G(r|rs) = iωρ

4π

⎡
⎣e−ik‖r−rs‖2

‖ r − rs ‖2 +
J∑

j=1

e−ik‖r−rj‖2

‖ r − rj ‖2 R
Oj

⎤
⎦,

(2)

with rj the position of the jth image source. The reflection

coefficient is given by R, and Oj is the order of reflection.

The reflection coefficient is supposed to be independent of

the frequency and is not angularly variable. In a rectangular

enclosure, the image sources can be positioned as in Fig. 1.

Their positions directly depend on the true source and the

geometry of the enclosed space.
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Fig. 1 Image source positions for a square tunnel : acoustic source ( ),
image sources order 1 ( ), image sources order 2 ( ), receiver ( ) and

reflection path

In many cases, the boundary conditions are difficult to

know and the reflection coefficients are not well estimated.

Therefore that involves inaccurate results in the Green’s

function calculation.

B. Reflection Coefficient Estimation
In this paper, it is proposed to estimate the reflection

coefficients (R) using an inverse method and some reference

transfer functions (Gref ). The system of linear equations can

be written as

Gref = Gdir +AimaR+ n, (3)

with Gdir the transfer function of the direct field due to the

true source propagation in free field and n, the noise which

follows a complex Gaussian distribution n ∼ CN (0, σ2I
)
.

The transfer functions, between the array and a given point

on the focal plane, Fig. 2 is obtained using a known source.

The matrix Gdir is supposed to be known and (3) can be

rewritten as

Gref −Gdir = AimaR+ n = B. (4)

It must be noted that the positions for the estimation of the

reference transfer functions are randomly chosen. The aim of

this work is to estimate the reflection coefficients by solving

R̃λ = Argmin︸ ︷︷ ︸
R

{‖ B̃ −AimaR ‖22 +λ ‖ LR ‖pp}, (5)

with λ and L the regularisation parameter and the

regularisation matrix and p defines the a priori distribution of

LR. In most cases, inverse problems are not well-posed and

resolution can be tricky. In this work, we propose to introduce

the sparse principle (p = 1) on the derivative of the reflection

coefficients.
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Fig. 2 Hydrophone positions ( ), focal plane ( ) and source positions
for transfer function estimation ( )

The regularisation matrix based on the first order derivative

is proposed in (6). The derivative pattern is organised as a

function of the reflection order,

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 0 0 0 · · ·
0 −1 1 0 0 0 0 · · ·
0 0 −1 1 0 0 0 · · ·
0 0 0 0 −1 1 0 · · ·
0 0 0 0 0 −1 1 · · ·
...

...
...

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎬
⎭Order 1⎫⎪⎪⎬
⎪⎪⎭Order 2

,

(6)

the matrix L is rectangular and not directly invertible. For

such case, Elden [10] proposes to rewrite (5) into the standard

formulation,

˜̄Rλ = Argmin{‖ ˜̄B − ĀimaR̄ ‖22 +λ ‖ R̄ ‖11}, (7)

with ·̄ denote the matrices or vectors that take into account

the regularisation matrix L. Equation (7) can be solved using

FISTA algorithm [11]. The regularisation parameter is set to

λ = 0.01 ‖ ¯2Aima
H
b̄ ‖∞ according to [12]. Fig. 3 shows the

reflection coefficients as a function of the reflection order.
The influence of the reflection coefficients identification is

visible in Fig. 4. Thus, the uncertainties about the propagation

model can be reduced.
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Fig. 3 Reflection coefficients (order 3) at 5 kHz, using 15 transfer functions
with SNR = 40 dB
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Fig. 4 Propagation model: wrong model R=1 ( ), true model R=0.6
( ) and optimised model ( )

III. BOUNDARY LAYER NOISE REDUCTION

This section deals with boundary layer noise reduction. The

water flow in the tunnel involves strong pressure fluctuation on

the tunnel wall due to the development of a turbulent boundary

layer noise. Such noise can become very problematic for the

characterisation of acoustic sources lower than the flow. In

this part, we use semi-empirical models, based on Corcos’ and

Goody’s studies, to simulate the flow noise and a denoising

algorithm based on low rank and sparse decomposition of the

cross-spectrum matrix.

A. Boundary Layer Noise Modeling

The boundary layer involves a wall-pressure that could be

separated in two parts [13]:

• Convective: Pressure due to the turbulences on the wall,

• Acoustic: Sound pressure radiated by the turbulences.

These two parts are relatively well separated in the wave

number domain, Fig. 5. The higher pressure fluctuation is

located on the convective region, centred on k1 = ω/Uc (high

wave number), whereas the acoustic part takes place in the

low wave numbers (k = ω/c).

Fig. 5 Turbulent boundary layer spectrum in the wavenumber domain and at
low mach number (ωδ/U ) [14]

The wall pressure field is simulated using semi-empirical

methods such as Corcos and Goody models. The aim of this

part is not to describe accurately the wall-pressure but rather

to see the influence of such noise on the sound pressure.

Goody’s model describes the energetic distribution of the

boundary layer noise as a function of the frequency, and is

given by

Snn(ω) =

3τ2ωδ

(
ωδ

U

)2

U

⎛
⎝[0.5 + (ωδ

U

)0.75
]3.7

+

[
1.1R−0.57

T

(
ωδ

U

)]7⎞⎠
,

(8)

with RT =
u2
τδ

νU the Reynolds number [15]. Table I shows the

boundary layer parameters in water flow.

TABLE I
WATER FLOW PARAMETERS AT 16◦C [16]

Parameters Values
Fluid velocity U = 10 m/s
Fluid density ρ = 1000 kg/m3

Convection velocity Uc = 0.8 U
Boundary layer thickness δ = 0.047 m

Friction velocity uτ = 0.16 m/s
Kinematic viscosity ν = 1.1 · 10−6 m2/s

Shear stress τω = 3 N/m2

The spatial coherence inside the wall-pressure is described

using Corcos model [17],

Gnn(rx, rz, ω) = Snn(ω)

⎛
⎜⎝e

−ωαx

|rx|
Uc e

−ωαz

|rz|
Uc e

−jω
rz
Uc

⎞
⎟⎠ ,

(9)
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Fig. 6 Typical cross-spectrum matrices for spatially decorrelated noise: noise
part (a), acoustic part (b)

with rx and rz the distances between sensors, in the xz
plane, αx and αz the spatial coherence rates. The correlation

lengths are strongly smaller than the distance between sensors,

thus the sound field can be viewed as a decorrelated sound

pressure. The total wall-pressure can be written in terms of

the cross-spectrum matrix,

Ĝpp(ω) = Gpp(ω)︸ ︷︷ ︸
Acoustic propagation

+ Snn(ω)I︸ ︷︷ ︸
Boundary layer noise

+ σ2
n(ω)I︸ ︷︷ ︸

Noise measurement

,

(10)

with I the identity matrix, and σ2
n the noise variance which

follows a Gaussian distribution and could be written as a

function of the signal-to-noise ratio SNR n,

σ2
n = 10−SNRn0.1max(diag(Gpp(ω) + Snn(ω)I)). (11)

B. Sparse Low Rank Decomposition

In this subsection, a denoising method based on

cross-spectrum matrix decomposition is developed. Indeed,

the wall-pressure field can be separated into an acoustic part

(Q(ω)) supposed to be of low rank and a boundary layer noise

part (D(ω)) assumed to be sparse (diagonal),

Ĝpp(ω) = Q(ω) +D(ω). (12)

The method presented in the following is based on the robust

principal component analysis and allows to jointly estimate the

acoustic and the noise parts in case of a spatially decorrelated

wall-pressure field.
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Fig. 7 Results of the denoising method: (a) acoustic PSD ( ), total
wall-pressure PSD ( ) and denoised PSD ( ). (b) Relative error on
the acoustic part ( ) and the noise part ( ). (c) Estimation of the

rank of the acoustic part( ) SNRn = -5 dB

(Q̂(ω), D̂(ω)) = Argmin︸ ︷︷ ︸
Q,D

{‖Q(ω)‖∗ + λ‖D(ω)‖1},

under constraint Ĝpp(ω) = Q(ω) +D(ω),

(13)

with ‖Q(ω)‖∗ the nuclear norm of Q(ω) and λ the

regularisation parameter. Wright et al. proposed to solve the

problem using accelerated proximal gradient and set λ =
m−1/2 with m the number of rows [8]. Fig. 6 illustrates

the cross-spectrum matrix of the acoustic and the boundary

layer noise parts. Fig. 7 shows the efficiency of the boundary

layer noise reduction. Indeed, the RPCA algorithm estimates

precisely the acoustic part even when the signal-to-noise ratio

is equal to -5 dB.

IV. ACOUSTIC IMAGING

A. Beamforming

The beamforming method (delay and sum) is a robust

method largely used in aeroacoustic studies [5], [1]. In the

frequency domain, this technique can be viewed as a spatial

filter that estimates the power spectrum density (PSD) Ỹi(ω)
at a given focal point i

Ỹi(ω) = wH
i (ω)Q̂(ω)wi(ω), (14)
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Fig. 8 Acoustic imaging results for a monopolar source without denoising step, beamforming: (a) true model, (b) wrong model, (c) optimised model and
DAMAS: (d) true model, (e) wrong model, (f) optimised model, at 3 kHz
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Fig. 9 Acoustic imaging results for a monopolar source with denoising step, beamforming: (a) true model, (b) wrong model, (c) optimised model and
DAMAS: (d) true model, (e) wrong model, (f) optimised model, at 3 kHz
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Fig. 10 Acoustic imaging results for a monopolar source with denoising step, beamforming: (a) true model, (b) wrong model, (c) optimised model and
DAMAS: (d) true model, (e) wrong model, (f) optimised model, at 5 kHz
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Fig. 11 Relative error on the source strength reconstruction. Without
denoising: true model ( ), wrong model ( ), optimised model

( ). With denoising method: true model ( ), wrong model ( ),
optimised model ( )

with wi(ω) the steering vector based on the propagation model

and gi(ω) the transfer function vector between the array and

the focal point i

wi(ω) =
gi(ω)

gH
i (ω)gi(ω)

. (15)

The acoustic sources are supposed to be decorrelated, then

the beamforming output can be rewritten as

Ỹi(ω) = wH
i (ω)

N∑
q=1

xq(ω)gq(ω)g
H
q (ω)wi(ω) + (σ2

n)
1

‖gi(ω)‖2 ,

=
N∑
q=1

Ai,q(ω)xq(ω) + (σ2
n)

1

‖gi(ω)‖2 ,

(16)

with N the number of decorrelated sources, xq(ω) the source

strength at the focal point q and A(ω) the array response.

B. Deconvolution

The beamforming results suffer from low spatial resolution

in low frequencies. In order to enhance the acoustic maps

Brooks et al. [1] propose the DAMAS algorithm. This

deconvolution algorithm allows to reduce the side-lobe effects

and to estimate the source strength X by solving [1]

Ỹ (ω) = A(ω)X(ω), (17)

with Ỹ (ω) the beamforming output, A(ω) the array response

and X(ω) the source strength. The solution at iteration n is

given by

x̂(n)
q = max

⎧⎨
⎩0,

⎛
⎝Ỹq −

q−1∑
k=1

Aq,kx
(n)
k −

N∑
k=q+1

Aq,kx
(n−1)
k

⎞
⎠
⎫⎬
⎭ .

(18)

Fig. 8 shows the effects of the boundary layer noise on

the beamforming and the DAMAS results for the different



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:11, No:2, 2017

353

propagation models in the case of one monopolar source

without the denoising step, whereas Fig. 9 illustrates the

acoustic maps after the denoising process.

Through these simulations, the noise due to the boundary

layer introduces strong artefacts on the DAMAS maps. The

denoising step allows to reduce the influence of the noise

and therefore improves the results. Moreover, it is clear that

working with a propagation model that is not perfect can

involve important errors on the acoustic maps, Fig. 10. Thanks

to the reference transfer functions, the uncertainties on the

model are reduced which lead to an improvement of the

acoustic maps. According to Fig. 9 and 10 we can see that

the introduction of Green function which takes into account

reflections, introduced strong side lobes that can be higher than

de main lobe.

Fig. 11 displays the relative error as a function of the

frequency defined as

Error(ω) = 10 log10

(
‖ X̃(ω)−X(ω) ‖2

‖ X(ω) ‖2

)
, (19)

with X(ω) the true solution and X̃(ω) the solution after

deconvolution, and reduction or not of the boundary layer

noise. According to Fig. 11, the errors in the propagation

model involve large artefacts over all the frequencies. The

identification of the reflection coefficients improves the

acoustic map results. Indeed, after 5 kHz the errors are below

− 10 dB which means that the results are accurate in terms of

source localisation and quantification. The poor results in low

frequencies are due to the fact that the DAMAS algorithm

has not yet totally converged and that the solution is a bit

spread out. The denoising approach enhances the acoustic map

especially in low frequency range.

V. CONCLUSION

In this paper, an adaptation method capable of reducing the

model errors using reference transfer functions is presented.

This approach allows the identification of the reflection

coefficients associated to the image sources in a closed tunnel

and improves our knowledge about the propagation model.

In addition, a denoising algorithm for wall-pressure noise

is proposed. This method is based on the RPCA algorithm

that separates the acoustic signal from the boundary layer

noise thanks to the low rank and sparse properties of the

cross-spectrum matrices of the acoustic and the boundary

layer noise. The improvement brought by these methods

enhances the acoustic maps in terms of source localisation

and quantification.
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