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Abstract—Recently, feedback control systems using random dither
quantizers have been proposed for linear discrete-time systems.
However, the constraints imposed on state and control variables
have not yet been taken into account for the design of feedback
control systems with random dither quantization. Model predictive
control is a kind of optimal feedback control in which control
performance over a finite future is optimized with a performance
index that has a moving initial and terminal time. An important
advantage of model predictive control is its ability to handle
constraints imposed on state and control variables. Based on the
model predictive control approach, the objective of this paper is to
present a control method that satisfies probabilistic state constraints
for linear discrete-time feedback control systems with random dither
quantization. In other words, this paper provides a method for
solving the optimal control problems subject to probabilistic state
constraints for linear discrete-time feedback control systems with
random dither quantization.
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I. INTRODUCTION

THE quantized control of systems is one of the most

important research topics in recent years. This is partly

because various quantizing devices, such as communication

networks and discrete-level actuators/sensors, are useful to

reduce installation and maintenance costs. On the other hand,

in considering the control systems with quantized signals, it

is important to avoid the performance degradation caused by

quantization errors, which is a challenging control problem.

So far, several kinds of quantizers have been proposed for

linear discrete-time feedback control systems. In particular,

this study focuses on the so-called random dither quantizer

[1] that transforms a given continuous-valued signal to a

discrete-valued signal by using an artificially added random

signal. It has been shown in [1] that the random dither

quantizers exhibit much better performance than the simple

uniform quantizers. However, the constraints imposed on state

variables and control inputs have not yet been taken into

consideration for the design of feedback control systems with

random dither quantization.
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Model predictive control (MPC), also known as receding

horizon control [2]-[4], is a well-established control method

in which the current control input is obtained by solving a

finite-horizon open-loop optimal control problem using the

current state of the system as the initial state, and this

procedure is repeated at each sampling instant. An important

advantage of MPC is its ability to deal with constraints on

state and control variables, which makes it one of the most

successful control methodologies because it enables control

performance to be optimized while considering any constraints

on state and control variables [5]-[7].

Although a certain class of MPC methods [8]-[11] does not

provide a systematic method to handle uncertain disturbances,

another class of MPC methods [12]-[14] guarantee constraint

fulfillment under uncertain disturbances. In this study, we

focus on the class of MPC problems in which a performance

index is minimized subject to state constraints under uncertain

disturbances. In fact, the methods of MPC against uncertain

disturbances can be classified into deterministic and stochastic

approaches.

In the deterministic approach, most works are based

on the min-max approach, where a performance index is

minimized over the worst possible disturbance [12], [13].

In this approach, however, the control performance often

results in too conservative because no statistical properties of

uncertain disturbances are taken into consideration.

The other approach is addressed by stochastic MPC

(SMPC) where the expected values of the performance

indices and probabilistic constraints are considered by

exploiting the statistical information of uncertain disturbances.

It is known that a small relaxation of the probability

requirement sometimes can lead to a significant improvement

in the achievable control performance. In general, however,

probabilistic constraints are generally intractable in an

optimization problem. In recent decades, much attention has

been paid to this difficulty of the stochastic MPC problem.

For example, the methods proposed in [15]-[19] enable

us to address unknown arbitrary probability distributions

of stochastic disturbances, including non-Gaussian, infinitely

supported, and time-variant distributions, only under the

assumption of known expectation and variance in the

disturbance. These studies aim to provide a SMPC method

to successfully deal with probabilistic constraints with a

lower computational load. For this purpose, concentration

inequalities [20] were applied to transform probabilistic

constraints on state variables into deterministic constraints on
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control inputs.

The design method of feedback control systems for

quantized control systems subject to probabilistic state

constraints has not yet been established. Thus, the objective

of this paper is to propose a SMPC method that fulfills

probabilistic state constraints for linear discrete-time feedback

control systems with random dither quantization. In other

words, this paper enables us to solve the optimal control

problems subject to probabilistic state constraints for linear

discrete-time feedback control systems with random dither

quantization.

This paper is organized as follows: In Section II, we

introduce some notations. In Section III, the system model and

random dither quantizers are formulated. In Section IV, we

formulate the SMPC problem for linear discrete-time systems

with stochastic disturbances. The main results are provided

in Section V. Finally, some concluding remarks are given in

Section VI.

II. NOTATION

In this section, we introduce some notations that are

adopted throughout this paper. Let the sets of real and natural

numbers be denoted by R and N, respectively. Let the set of

non-negative real numbers be denoted by R+.

For matrix A, let A′ and trA denote the transpose and trace

of A, respectively. For matrices A = {ai,j} and B = {bi,j},

let the inequalities between A and B, such as A > B and

A ≥ B, indicate that they are component-wise satisfied, i.e.,

ai,j > bi,j and ai,j ≥ bi,j hold true for all i and j, respectively.

Similarly, let multiplication A ◦B indicate that it is applied

component-wise, i.e., A◦B = {ai,j×bi,j} for all i and j. Let

1 indicate the column vector whose every element is equal to

1.

Let a probability space be denoted by (Ω,F ,P), where Ω ⊆
R is the sampling space, F is the σ-algebra, and P is the

probability measure [21]. Here, Ω is non-empty and is not

necessarily finite.

Let P(E) denote the probability that event E occurs.

If P(E) = 1 holds true, E almost surely occurs. For a

random variable z : Ω → R defined by (Ω,F ,P), let the

expected value and variance of z be denoted by E(z) and

V(z), respectively. For a random vector z = [z1, · · · , zn]′,
whose components are random variables zi : Ω → R (i =
1, · · · , n) defined on the same probability space (Ω,F ,P),
let the same notations E(z) and V(z) be adopted to denote

E(z) = [E(z1), · · · , E(zn)]′ and V(z) = [V(z1), · · · ,V(zn)]′
for notational simplicity. Furthermore, let the covariance

matrix Cv(z) be defined by Cv(z) := E [{z−E(z)}{z−E(z)}′].
Let q denote the static nearest-neighbor quantizer toward

−∞ with the quantization interval d as shown in Fig. 1.

III. SYSTEM MODEL

First, we consider the following linear discrete-time system

ΣP :

x(t+ 1) = Ax(t) +Bv(t), (1)

v(t) = q (u(t)) , (2)

Fig. 1 Quantizer q with quantization interval d

where t ∈ N is the time step, x(t) : N → R
n is the state, u(t) :

N → R
m is the control input. Note that the simple uniform

quantizer v(t) = q (u(t)) is introduced into ΣP , where q is

defined in Section II and Fig. 1.

Suppose that system coefficients A and B are constant

known matrices. The pair (A,B) is assumed to be controllable.

All components of state x(t) are deterministically observable,

that is, the state x(t) is known at present time t. Thus, we

assume that E(x(t)) = x(t) and V(x(t)) = 0.

Next, we consider the following linear discrete-time system

ΣQ:

x(t+ 1) = Ax(t) +Bv(t), (3)

v(t) = q (u(t) + η(t)) , (4)

where η(t) : N → R
m is an independent and identically

distributed random variable with the uniform probability

distribution on [−d/2, d/2). The signal η is called the random

dither signal and the quantizer is called the random dither

quantizer. Note that the random dither quantizer v(t) =
q (u(t) + η(t)) is introduced into ΣQ.

Here, note that the system ΣQ is equivalently transformed

into the following system:

x(t+ 1) = Ax(t) +B(u(t) + w(t)), (5)

w(t) = v(t)− u(t), (6)

where w denotes the quantization error. From the definition

of the random dither quantizer, we note that the quantization

error is also a random variable.

A schematic view of system ΣQ described by (3) and (4) is

shown in Fig. 2. In contrast, a schematic view of system ΣQ

described by (5) and (6) is shown in Figs. 3.

Fig. 2 A schematic view of system ΣQ described by (3) and (4)

The following lemma proved in [1] shows the properties of

the expectation and variance of the quantization error w.
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Fig. 3 A schematic view of system ΣQ described by (5) and (6)

Lemma 1 ([1]): For the random dither quantizer defined in

section II, suppose that the quantization interval d is given.

Then,

E(w(t)) = 0, (7)

V(w(t)) ≤ d2

4
. (8)

This lemma plays an important role to solve the SMPC

problem introduced in the next section.

IV. SMPC PROBLEMS

In this section, we formulate the SMPC problem of system

(5). The control input at each time t is determined to minimize

the performance index given by

J := φ[x(t+N)] +

t+N−1∑
k=t

L[x(k), u(k)], (9a)

where N ∈ N denotes the length of the evaluation interval.

Moreover, let φ and L be defined by

φ := E [x(t+N)′Px(t+N)], (9b)

L := E [x(k)′Qx(k)] + u(k)′Ru(k), (9c)

where let P , Q, and R be weighting coefficients that are

positive definite constant matrices. Note that φ ∈ R+ is the

terminal cost function and L ∈ R+ is the stage cost function

over the evaluation interval.

Let the probability in vector form be denoted by

p(t) =

⎡
⎢⎣

p1(t)
...

p2(t)

⎤
⎥⎦ : N → [0 1]n,

which means that each component pi(t) belongs to [0 1] for

each time t.
For notational convenience, we introduce the so-called

expanded vectors as follows: Let X ∈ R
nN , U ∈ R

mN and

W ∈ R
�N be defined by

X(t) :=

⎡
⎢⎣

x(t+ 1)
...

x(t+N)

⎤
⎥⎦ ,

U(t) :=

⎡
⎢⎣

u(t)
...

u(t+N − 1)

⎤
⎥⎦ ,

W(t) :=

⎡
⎢⎣

w(t)
...

w(t+N − 1)

⎤
⎥⎦ .

Note that X, U and W consist of the system state,

control input and uncertain disturbance, respectively, over the

evaluation interval.

Similarly, we introduce the so-called expanded matrices as

follows: Let A ∈ R
nN×n, B ∈ R

nN×mN , Q ∈ R
nN×nN ,

R ∈ R
mN×mN , and p ∈ R

nN , be defined by

A :=

⎡
⎢⎢⎢⎣

A
A2

...

AN

⎤
⎥⎥⎥⎦ .

B :=

⎡
⎢⎢⎢⎢⎣

B 0 · · · 0

AB B
. . .

...
...

. . .
. . . 0

AN−1B AN−2B · · · B

⎤
⎥⎥⎥⎥⎦ ,

Q :=

⎡
⎢⎢⎢⎢⎣

Q 0 · · · 0

0
. . .

. . .
...

...
. . . Q 0

0 · · · 0 P

⎤
⎥⎥⎥⎥⎦ ,

R :=

⎡
⎢⎣

R 0 0

0
. . . 0

0 0 R

⎤
⎥⎦ ,

p(t) =

⎡
⎢⎣

p(t+ 1)
...

p(t+N)

⎤
⎥⎦ .

Using the expanded vectors and matrices denoted by the

aforementioned notation, the performance index in (9) can be

rewritten as follows:

J [x(t),X(t),U(t)] = E [x(t)′Qx(t)]

+ E [X(t)′QX(t)] +U(t)′RU(t), (10)

In addition, (5) over the evaluation interval can be rewritten

as:

X(t) = Ax(t) +B (U(t) +W(t)) . (11)

Then, E(X(t)) and V(X(t)) are given by

E(X(t)) = Ax(t) +BU(t) +BE(W(t)), (12a)

V(X(t)) = (B ◦B)V(W(t)). (12b)

In (12a), we apply E(x(t)) = x(t) because the present state

x(t) is a deterministic vector. Note that the performance index

(9a) can be transformed into the following:

J = x(t)′Qx(t) +U(t)′RU(t)

tr[QCv(X(t))] + E(X(t))′QE(X(t)). (13)

Here, we introduce the following assumption.

Assumption 1: Each element of x(t), U(t) and W(t) are

assumed to be independent for each time t.
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Noting that covariance matrix Cv(X(t)) is independent of

U(t), we have the following:

Cv(X(t)) = E [{X(t)− E(X(t))}{X(t)− E(X(t))}′]
= E [{BW(t)−BE(W(t))}{BW(t)−BE(W(t))}′] .

Substituting (12a) into (13) and neglecting the terms that do

not contain U(t), we obtain

min
U(t)

J [x(t),X(t),U(t)] = (14)

min
U(t)

{
U′(t) (B′QB+R)U(t)

+2 (Ax(t) +BE(W(t)))
′
QBU(t)

}
.

Note that the minimization problem of J in (9) subject to (11)

has been reduced to a quadratic programming problem with

respect to U.

Here, we impose the following probabilistic constraint on

the optimization problem:

P (DX(t) < h) ≥ p. (15)

where D ∈ R
s×nN, 0 < h ∈ R

s
+, p ∈ [0 1]s, and s ∈ N are

given constant parameters.

In general, to solve the quadratic programming problem

with probabilistic constraints is not straightforward. In

[18]-[19], it has been shown that the probabilistic constraints

can be converted into deterministic constraints using the

concentration inequalities.

V. MAIN RESULTS

In this section, the main results are shown below. The

following proposition proved in [18] plays an important role

to derive the main results.

Proposition 1 ([18]): Here, we consider the following

system subject to probabilistic constraint (15):

X(t) = Ax(t) +BU(t) +CW(t). (16)

Suppose that the following condition holds true for system

(16):

DBU(t) ≤ h−D (Ax(t) +CE(W(t)))−V(t), (17)

where the ith element of V ∈ R
s is given by:

Vi =

√
pi

1− pi
((DC ◦DC)V(W(t)))i. (18)

Then, the probabilistic condition (15) is satisfied.

Using Proposition 1, we can state the following proposition.

Proposition 2: Suppose that the following condition holds

true for system (11):

DBU(t) ≤ h−D (Ax(t) +BE(W(t)))−V(t), (19)

where the ith element of V ∈ R
s is given by:

Vi =

√
pi

1− pi
((DB ◦DB)V(W(t)))i. (20)

Then, the probabilistic condition (15) is satisfied.

Proof: The proof can be completed by substituting C =
B into (17) and (18).

Using Proposition 2, we can state the following theorem.

Theorem 1: For the system ΣQ with the random dither

quantizer, suppose that the following condition holds:

DBU(t) ≤ h−DAx(t)−V(t), (21)

where the ith element of V ∈ R
s is given by:

Vi =

√
pi

1− pi

(
(DB ◦DB)1

d2

4

)
i

. (22)

Then, the probabilistic condition (15) is fulfilled.

Proof: Substituting (7) into (19), we obtain (21). From

(8), we consider the worst case as follows:

V(w(t)) = d2

4
. (23)

Substituting (23) into (20), we obtain (22). Therefore, we can

see that if deterministic constraint (21) on U(t) is fulfilled,

then the probabilistic constraint (15) on X(t) is also fulfilled.

This completes the proof.

Remark 1: From Theorem 1, the minimization problem of

(9) subject to probabilistic constraint (15) is reduced to a

quadratic programming problem (14) subject to deterministic

constraint (21), which can be solved using a conventional

algorithm [22].

Remark 2: Suppose that not only probabilistic state

constraint (15) but also control input constraint are imposed

on the optimization problem as follows:

FU(t) < U, (24)

where F ∈ R
f×mN, U ∈ R

f and f ∈ N are given constant

parameters. Then, the optimization problem can be reduced to

a quadratic programming problem (14) subject to the following

constraint:[
DB
F

]
U(t) ≤

[
h−DAx(t)−V(t)

U

]
. (25)

To solve a quadratic programming problem (14) subject to

constraint (25) is also straightforward using a conventional

algorithm [22].

VI. CONCLUSION

In this study, we have examined a design method of

SMPC for linear discrete-time systems with the random dither

quantizer. The solution method to the optimal control problems

subject to probabilistic state constraints was proposed for

quantized control systems under stochastic quantization

errors. The optimal control problems subject to probabilistic

constraints were reduced to quadratic programming problems

with deterministic constraints that can be solved using a

conventional algorithm. To verify the effectiveness of the

proposed method using numerical simulations is a possible

future work.

It is known that not only uncertain disturbances but also

time delays may cause instabilities and lead to more complex

analysis [23]-[28]. The stabilization problem of random dither

systems with time delays is also a possible future work.
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