
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:1, 2017

85


Abstract—Manual writing of test cases from functional

requirements is a time-consuming task. Such test cases are not only
difficult to write but are also challenging to maintain. Test cases can
be drawn from the functional requirements that are expressed in
natural language. However, manual test case generation is inefficient
and subject to errors. In this paper, we have presented a systematic
procedure that could automatically derive test cases from user stories.
The user stories are specified in a restricted natural language using a
well-defined template. We have also presented a detailed
methodology for writing our test ready user stories. Our tool “Test-o-
Matic” automatically generates the test cases by processing the
restricted user stories. The generated test cases are executed by using
open source Selenium IDE. We evaluate our approach on a case
study, which is an open source web based application. Effectiveness
of our approach is evaluated by seeding faults in the open source case
study using known mutation operators. Results show that the test
case generation from restricted user stories is a viable approach for
automated testing of web applications

Keywords—Automated testing, natural language, user story
modeling, software engineering, software testing, test case
specification, transformation and automation, user story, web
application testing.

I. INTRODUCTION

remarkable spread of web applications into the areas of
commerce and communications has made web

applications a significant and fairly larger part of the software
industry [1]. Web applications and services will change the
landscape of IT architecture, by providing a new means of
service delivery for enterprises. As predicted by Hagel and
Brown [2], companies are outsourcing or purchasing their
services over the internet. The economic significance of web
applications also increases the importance of controlling and
improving the quality of web applications [3]-[5]. Web
applications therefore require through and systematic test
approaches for testing.

A common approach for testing web applications is by
manually writing record-and-replay test cases and executing
them in a test execution tool, such as Selenium or HPE
Unified Functional Testing. Manual system level testing of
web applications from requirements can be a significant
challenge. Manually writing test cases from requirements is
not only time consuming, but also difficult to maintain when
the requirements change [6]. Moreover, the tester has to write
the test cases manually.

When testing is done manually then the tester has to write

Mahawish Masud is a Student at CE&ME, National University of Sciences

and Technology (NUST). Pakistan (e-mail: mahawish.masud@nust.edu.pk)
Dr. Farooque Azam, is a Professor at CE&ME, NUST.

the test cases covering most or all of the features of the system
depending on the available resources, such as time and
manpower. Moreover, instead of following a thorough testing
procedure, the tester might consider exploring the user
interface of the application and cover as many features as
possible. The success of such a manual testing approach
largely depends on the expertise, domain knowledge, and
enthusiasm of the tester [7]. A lack of these factors might lead
to poor testing of the application. As the software evolves, it
becomes a difficult task to maintain the traceability of
requirements to test cases. Some requirement changes may
result in test cases becoming obsolete and because of the lack
of traceability, identifying such test cases is labor intensive.

Our aim in this paper is to automate the test case generation
process from requirements expressed through user stories in
natural language. The intension to employ user stories for test
generation is twofold: (i) It is a prevalent practice in industry
for gathering the functional requirements of web based
applications from user’s point of view (ii) User stories are
written in natural language, which makes it easier for the user
to express, authenticate and prioritize their requirements. It is
focused on the result that the user wants to achieve, and in the
language that he/she understands. This helps to understand
user requirements clearly and in short span of time. Moreover,
the user stories outline functionality that is required from a
system without getting into lengthy details. The user may like
to accept the user story or delay it for development at a later
stage, without wasting much time on gathering lengthy and
detailed requirement’s first. By postponing details for the later
stage, the user stories can help well in understanding of
problem domain.

The presented approach of test generation from user stories
utilizes the requirements written in user stories. The user
stories are to be written as per our suggested template. The
template uses a restricted language that allows the user stories
to be processed for test generation. The approach has been
applied on an open source case study, Moodle, which is a
course management system written in PHP. The evaluation
has been done by using known mutation operators of HTML
and PHP. Results show that the approach was able to detect all
the 195 seeded equivalent non-equivalent mutants.

Even though the testable user stories may seem to be tightly
coupled to the graphical interface, this is not a major obstacle
in its practical application. A common practice in web
application testing is to write test cases in record-and-replay
tools that are coupled with graphical interface (GUI). In case
of a change in GUI, the entire test cases (potentially in
hundreds) relating to the change have to be manually

Automated User Story Driven Approach for Web-
Based Functional Testing

Mahawish Masud, Muhammad Iqbal, M. U. Khan, Farooque Azam

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:1, 2017

86

modified. In our case, the modification is simpler as the user
only needs to change a few user stories rather than the test
cases. Overall, the contributions of this paper are: (i) we
suggest an approach for writing user stories in a format that
allows automated test generation; (ii) we have developed a test
generation strategy to obtain test sequences and test data from
the user stories; (iii) the approach is successfully applied on an
open source case study.

The rest of the paper has been organized as: Section II
explains the related work. Section III explains the proposed
approach. Section IV explains evaluation of our technique,
and in Section V, we conclude our work.

II. RELATED WORK

There are works that derive test cases from requirements
expressed in natural language, by employing natural language
processing (NLP) techniques, but most of these techniques do
not fully support automatic test case generation [8]; for
instance, Zhang et al. [7] and Sarmiento et al. [9] generate the
test cases from natural language without test data. Escalona et
al. [10] can generate test cases but need manual intrusion for
providing input values to the generated test cases.
Nevertheless, there are techniques available in literature [6]
that have used NLP for test case automation and also support
the test data generation, but they use the domain models and
OCL constraints to generate the test data and invariably help
in the test case generation process. All these approaches are
contrary to our approach in the sense that we want to fully
automate the test case generation from requirements expressed
in natural language and through user stories. We also tend to
avoid dealing with the domain models. Hametner et al. [11]
and Carvalho et al. [12] have also generated the test cases
from requirements with the help of restricted grammar and
dictionary, which is quite similar to our approach too, but the
dictionary used in their approach is subject to change for every
project, and the restricted grammar is not able to fully express
the requirements of various systems. Unlike their approach,
we tend to use our approach flexible enough to be used on
different kinds of systems.

 Literature suggests that user stories are a much better way
of gathering user requirements [13]-[15]. For web
applications, writing requirements through user stories have
shown to be much more practical [13], [16] since user stories
are written in natural language and simple enough to be
understandable by both the user and the domain experts. To
investigate, if literature suggests any approaches that have
used the user stories for the test case automation, it was found
out that Cucumber testing frame work [16]-[18] suggests
writing the user stories in a natural language; however, it
involves writing the user stories using a particular language
called “Gherkin”. However, “Gherkin” is a very inflexible
camouflaged form of Ruby, which apparently allows user to
write user story in a syntax which is close enough to English
language, but it is not English [19], [20]. Such a technique is
not feasible in our case, because primarily it does not support
the automatic test case generation right from the requirements
and secondly, and we want to keep the user stories simple and

flexible enough to be understandable by both user and domain
experts.

To summarize, various techniques are available in literature
that do support automated test case generation from
requirements that are expressed in natural language. However,
issue with almost all of the techniques is that either they
require certain level of manual intervention for their correction
and completion or they involve complex models. Such
approaches are contrary to our aim, which is to automatic test
case generation from requirements given in natural language
through user stories.

III. USER STORY BASED TEST GENERATION
APPROACH

Our approach mainly focuses on derivation of automatic
test cases from testable user stories. The approach consists of
two parts: (i) A user story driven modeling approach that deals
with how to write the user story and (ii) An automated
approach for test generation. Our approach shall encompass
training steps:

A. User Story Modeling Approach

In this section, we will go over the important features of
user story modeling approach for the automated test
generation. The approach consists of a user story template, and
a set of restriction rules that can be used to improve the
understanding and reduce the ambiguity in the use of natural
language. Next we have defined a keyword list of data input
types that are commonly used to input data in many web based
applications. The attributes of these data input types give the
user the flexibility to pick and choose the test data. We have
also defined action type that would translate the actions on
keywords, and invariably help in the process of automation.
We have also illustrated how a user story could be written
using our user story template, restriction rules, keywords, and
action types.

This section discusses various techniques used in the
literature for generation of automatic test cases from
requirements.

1) Template for Writing User Stories

The proposed template for writing the user stories allows
the writer to express the user story in restricted natural
language. The template includes basic information about the
user story, e.g. action type, data input types, and attributes of
data input types that can be used for test generation. The idea
is to keep the user story template simple enough to be
understandable by both the users and the domain experts. The
fields in the user story template are pretty simple to
comprehend and are part of many templates. The Conditions
of Satisfaction (CoS) do not contain any branching or
conditional flows. We recommend separate user story for each
branching flow.

The CoS should be written using our pre-defined data input
types and action keywords, which shall help in the automation
of the user story. Moreover, the user stories have to be written
keeping in view the set of grammar rules that should not be

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:1, 2017

87

violated.

TABLE I
USER STORY TEMPLATE

User Story Name User Story name, and it generally starts with a verb.

Pre-conditions What should hold true before the user story is executed.

CoS Also, called “Happy Path” and specifies the steps that
constitute the main successful path.
Steps (1….n) List of events in the main

successful path.
Post-condition What should hold true after the CoS

terminate

2) Writing Testable User Stories

In order to better understand how a user story should be
written, using our user story template, let us consider an
example: Consider a user who intends to make a new account
on Moodle which is an open source course management
system. The user would have to follow a few steps to make the
new account. Ideally, he/she would have to go to the sign-up
page, fill in the required information, and hit ‘create my new
account’ button. Now, this user story when written as per our
prescribed format is depicted in Table II.

TABLE II

USER STORY OF MOODLE WRITTEN AS PER USER STORY TEMPLATE

Story Name Moodle Signup

Description To test the signup functionality of Moodle

Actors User

Pre conditions User has a working internet connection.

Conditions of Satisfaction

1. The user goes to the PAGE:/r.php

2. The user enters user name in the TEXTFIELD_T : id_username, Admin

3. The user enters password in the TEXTFIELD_T: id_password,
Admin@22

4. The user enters email in the TEXTFIELD_email: id_email,
administrator@hotmail.com

5. The user enters email in the TEXTFIELD_email: id_email2,
administrator@hotmail.com

6. The user enters first name in the TEXTFIELD_T: id_firstname, Amy

7. The user enters last name in the TEXTFIELD_T: id_lastname, Smith

8. The user enters city in the TEXTFIELD_T: id_city, ISB

9. The user selects country in the DROPDOWN_N: id_country,Pakistan

10. The user clicks the BUTTON: id_submitbutton

11. The user sees the TEXT: Welcome Admin

 end_story

The user story steps have to be written keeping in mind

three things (i) no restriction rules are violated; (ii) keyword
list; (iii) action type. Note that the user story contains number
of keywords specified to the approach that we will discuss.

3) Restriction Rules

We adopt the natural language restriction rules proposed by
Yue et al. for writing user stories [21]. The rules have been
well defined to remove the ambiguities of the natural language
and invariably help in improving the structure of the sentences
in user stories and bring clarity to sentences. The rules have
been divided into not-allowed keyword (Nak) rules and
sentence structure rules. The user story steps are written
keeping in line the restriction rules. Note that due to space

issues we enlisted only few rules. In order to understand how
these Nak rules are used in user story, let us consider the first
Nak, which defines that IF/AND/BUT are not allowed in user
story steps. Now, in order to comprehend this, consider our
user story steps in example expressed in Table II. The Step 1
and Step 2 of the user story cannot be joined in a single step,
using “IF”, “AND”, and “BUT”. If this rule is violated and
two steps are merged into one, then it would be difficult to
parse the user story steps. The intention is to bring clarity to
the use of natural language, and at the same time get a clear
and precise meaning of the user action.

TABLE III

LIST OF NOT ALLOWED KEYWORDS (NAK 1-NAK 11)
Not Allowed Keywords(Nak) Explanation

Nak 1 No IF/AND/BUT allowed in user stories Compound
sentences are
difficult to parse

Nak 2 No use of UNLESS/ EXCEPT

Nak 3 Do not use model verbs. For instance,
MIGHT/POSSIBLY/COULD

Model verbs as well
as adverbs introduce
uncertainty. Nak 4 Adverbs should not be used. (e.g. very)

Nak 5 Negative adverbs are not allowed for
instance NEVER and HARDLY. However,
it is permissible to use no or not.

Nak 6 The sentence should be simple, should not
contain any conjunctions. One action per
sentence is allowed.

It is hard to predict
the correct sequence
of more than one
action in a sentence.

TABLE IV

LIST OF SENTENCE STRUCTURE RULES (R1-R6)

 Description Explanation

R1. Action steps should be sequential. Implements use of our restricted
user story template and the
interaction types.

R2. Only present tense is allowed. Describes what the system does
rather than what the system has
done or will do.

R3. Make use of active voice rather
than passive voice

R4. The subject of the sentence in
CoS should be either a system or
an actor.

Explicitly defining sender and
receiver would remove
ambiguity in NL.

R5. No Actor to Actor interactions are
allowed

R6. The interactions between the
actors and the systems should be
clearly defined, without omitting
the sender and receiver

The sentence structure rules help to improve the structure of

the sentences, and bring clarity to natural language. Table IV
lists all sentence structure rules from R1 to R6.

The sentence structure rules are pretty easy to comprehend;
for instance, rule 1 of sentence structure rules states that action
steps should be sequential. Refer to Table VIII, each user story
step contains only one action keyword and all the user story
steps are written in a sequential order.

4) Keywords List of Data Input Types and their Definitions

We have proposed a list of keywords of commonly used
data input types that are used in web-based applications to
input certain type of data. Then, list can be extended further;
however, we have defined a total of 14 keywords that define
the most commonly used data input types and are outlined in
Table V.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:1, 2017

88

TABLE V
KEYWORD LIST AND THEIR DESCRIPTIONS

Sr. Data Input
Types

Description

1. TextField_T Use for combinations of text and numbers.
 0 character minimum
 255 characters maximum.

2. TextField_M Memo: It is used for bigger amounts of text.
0 character minimum
65,536 characters maximum.

3. Page / URL/
Hyperlink

Contains links to other web pages or files.

4. email ["[a-zA-Z0-9\\.]+ @ [a-zA-Z0-9\\-_\\.]+\\ . [a-zA-
Z0-9]{3}“]‘ ’

5. date Format DD:MM:YY

6. time Format: HH:MM:SS

7. Year 2-digit or 4-digit format allowed.
Allowed values in 4-digit format: 1800 - 2100.
Allowed values in 2-digit format: 60 - 69,
representing years from 1960 – 2069

8. Image Maximum 500MB. Format JPEG, TIFF, GIF, BMP,
PNG

9. currency 15 digits of whole numbers, and 4 decimal places.
Define the country currency.

10. phone number Contains a combination of numeric digits (0-9)

11. Postal code 5-digit number from (0-9)

12. Boolean Either TRUE or FALSE

13. Id number 13-digit number (0-9)

14. Calendar A combination of numeric digits (0-9) and characters
(A-Z) 9-character long

The 14 data input types as defined in Table IV have been

elaborated further. For instance, the first data input type
TEXTFIELD_T is explained in Table VI. Due to space
limitation, rest of the date input types is not appended here.

The data input type TEXTFIELD_T is used to input small
amounts of texts in a textfield; for instance, when a user
intends to write a “user name” in some website, he/she may
choose TEXTFIELD_T as the data input type. Next he/she can
choose from the attributes of the data input type
TEXTFIELD_T. For instance, the user can then choose that
the maximum no. of characters that he/she allows is 8, and
only upper case letters from A-Z are allowed and numerical
values from 1-10 are allowed. So, the user name will contain
values within the defined attributes of the data type
TEXTFIELD_T.

TABLE VI

DATA INPUT TYPE TEXTFIELD_T

Data Type: TEXTFIELD (TEXT)

1. Format: 0 character minimum
255 characters maximum.

2. Type: TEXTFIELD _T (for TEXT)

3. Max no. of characters 26

4. Null values allowed Yes/No

5. Upper case(A-Z) allowed Yes/No

6. Lower case (a-z) allowed Yes/No

7. Numerical Values Allowed Yes/No

8. Alphanumeric_characters_allowed a-z, 0-9, Punctuation*, Symbols*

 * punctuations: [] () { } * , : = ; ... # ‘ “ “ < << > >> ! ? _ - ‘

 *symbols: & * \ @ • ^ ¿ + − ′ ″ ‴ § ¡ ‱ ¶ ~ ÷

With the purpose of better understanding how the keywords

and their attributes are used while writing the user story, refer

to step 2 in Table II. The keyword used in step 2 is
TEXTFIELD_T, which indicates that the user intends to input
some data in the text field, like in the said case the user wants
to input the user name. Now, once the keyword
TEXTFIELD_T has been defined by the user, the next step is
to define the attributes of the keyword selected, for instance
the attributes related to keyword TEXTFIELD_T as outlined
in Table VI. The user may like to allow only upper case
alphabets to be used for user name, or he/she may allow a
combination of upper and lower case alphabets with numerical
values. So, for each keyword used, the attributes of the
keywords have to be selected.

5) Action Type

The steps in user stories are written using the predefined
action types, which are enlisted in Table VII.

TABLE VII

 LIST OF ACTION TYPE

 Action Type Keywords

1. Goes PAGE

2. Enters TEXTFIELD_T
TEXTFIELD_M
TEXTFIELD_EMAIL
TEXTFIELD_DATE
TEXTFIELD_YEAR

3. Clicks Button
Link

4. Selects DROPDOWN_T
RADIOBUTTON_T
CHECKBOX_T

5. Sees TEXT

B. Automated Approach for Test Generation

These action types define the intended user actions and are
used in conjunction with the keywords. For instance, the
action type “goes” suggests that the user wants to go to a page
(URL). So, the action keyword “goes” is used with the
keyword PAGE. The step in a user story then could be like
“The user goes to the PAGE”. Similarly, action type “enter”
shall be used along with a keyword that is used to input data;
for instance, it shall be used with data input type
“TEXTFIELD _T” or with data input type “date” or “email”.

The generation of test case from user story involves three
steps: (i) writing and validating the user story as per the
prescribed format (ii) approach for mapping from user story to
test sequence (iii) approach for test data generation.

1) Proposed Strategy for Writing and Validating the User
Story

Given the user story has been written as per our prescribed
format. It will then be checked for any limitations. First, it will
be ensured that user story is in the required format.

Each first level field name which is also called label shall
be read first. It shall be ensured that user has entered data
against all the labels. The data entered by user along with the
label is called a step.

Each step will be sequentially read. When the label has
CoS, then second level fields, i.e. CoS steps will be read. For
each CoS.step, the algorithm will check three things. First, it
will check if there is any violation of restriction rules, like if

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:1, 2017

89

some Naks have been used or Sentence Structure Rules have
been violated. Next, it will check if only defined keywords
from keywords list have been used. Lastly, it will check if it
contains only defined action types. If the three conditions are
not met, an error will be generated else the keyword name and
action type will be saved in CoSStep Result.

2) Approach for Mapping User Story to Test Sequence
Illustrated.

To convert the user story into a test case, three things have
to be recorded from the user story (i) Test Sequence (ii) Test
data (iii) Action type.

Both test sequence and test data shall be recorded from the
given example in a manner identified at Table VIII.

TABLE VIII

EXTRACTION OF TEST SEQUENCE AND TEST DATA FROM USER STORY

Sr. Test Sequence Test Data

Data Input Types Target

1. PAGE signup.php

2. TEXTFIELD_T id_username Admin

3. TEXTFIELD_T id_password Admin@22

4. TEXTFIELD_email id_email administrator@hotmail.com

5. TEXTFIELD_email id_email2 administrator@hotmail.com

6. TEXTFIELD_T id_firstname Amy

7. TEXTFIELD_T id_lastname Smith

8. TEXTFIELD_T id_city ISB

9. DROPDOWN_N id_country Pakistan

10. BUTTON id_submitbutton

11. TEXT Module Testing Page for
Thesis

The “test sequence” and “test data” extracted from the

given user story will be mapped to the Selenium commands.
The mapping is explained in Table X. Note that the approach
is specific to Selenium.

TABLE IX

MAPPING TO SELENIUM COMMANDS

Test Sequence Test Data

 Data Input
Types

Selenium
Command

Target Value

1. PAGE Open /login/index.php

2. Textfield_T Type id= uname Admin

3. Textfield_T Type id=upass Admin@22

4. BUTTON ClickandWait id=loginbtn

5. TEXT VerifyTextPresent Module
Testing Page
for Thesis

The test data can be generated randomly by generating

values among the allowed attributes of the data input type. For
instance, if the user intends to input a user name in textfield_t.
The user can choose that the user name is 5-character long
with no numerical value and only alphabets in upper and
lower case are allowed. So, the test data can be generated
within the allowed parameters defined by the user.

Action types are defined to express what action has to be
applied on the data input types. In order to better understand
the Action type lets first extract the action type from the given

example and enlist them in Table X.

TABLE X
ACTION KEYWORD MAPPING

 Action Keyword Data Input Type Required Parameters

1. Goes PAGE URL

2. Enters TEXTFIELD_T
TEXTFIELD_M
TEXTFIELD_EMAIL
TEXTFIELD_DATE
TEXTFIELD_YEAR

Element ID through:
Element Name
Element Class Name
Element Tag Name
Element CSS Selector
Element Partial Link
Element Xpath

3. Clicks Button
Link

Button ID
Button Name
Button Class Name
Button Tag Name
Button Link Text
Button CSS Selector
Button Partial Link
Button Xpath

4. Selects DROPDOWN_T
RADIOBUTTON_T
CHECKBOX_T

Element ID

5. Sees TEXT Text

The action keyword “goes to” will be mapped to the data

input type PAGE, which expects a URL of the page. Similarly,
the action keyword enters is mapped to data input type
TEXTFIELD_T, TEXTFILED_M, and expects an element id,
which could preferably be the id of the element, but could be
done through link text, name, partial link, tag name or CSS
select.

3) Approach for Mapping from User Story to Test Sequence

The algorithm shall explain the mapping from user story to
test sequence. It reads the steps in user story under the label
“condition of satisfaction”, and extracts the action type. The
action type is then mapped to Selenium commands. Also, the
format of allowed data input types in each step are recorded
and saved.

Algorithm of Mapping from User Story to Test Sequence

Require: CoSStepResult, (step number in Condition of satisfaction,
Action name, Keyword, Keyword format)

 Require: AcK, List of Action types e.g. Clicks/Types/Open
 Require: Format, List of Action type
 Ensure CoSStepResult, List of pairs <ActionName,

AllowedDataType, and Allowed Data Type Format>

// Read CoSStep from CoSStepResult list
//Mapping the Action type from CoS
// Command is the name of Selenium command. Action types are
mapped to Selenium commands.
1: If CoSStep has a AcK then
2: Action. Name AcKName
3: ActionKeywordMapping(Action.Name)
4: CoSStep Action.Name U Command
5: CoSStepResult CoSStep
6: CoSStep.next
7: end if
8: If CoSStep has a ADT
9: ADT. Name ADTName
10: AllowedDataTypes(ADT.Name)
11: CoSStep ADT.Name U Format

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:1, 2017

90

12: CoSStepResult CoSStep
13: CoSStep.next

 14: end if

4) Approach for Test Data Generation

An important aspect of software testing is the generation of
test data, which is the process of creating dataset for checking
the adequacy of web based applications. The test data could be
either be actual or artificial test data.

The test data can be generated using the attributes of the
allowed data input types. The user first selects the data input
type for instance the user has selected textfiled_T as the
allowed data input type. The user then defines the attributes of
that data input type, for instance the user may choose that only
26 characters are allowed, with a lower-case letters and
numerical values between 1-5. Now the data can be generated
by varying combinations of data attributes that have been
allowed by the user. We have generated random test data.

5) Tool for Writing User Story

A tool “Test-o-Matic” has been developed which can
automate the testing of web applications using user story. It
takes a user story as an input written in a specified format and

converts it into an executable test case to run with the help of a
Selenium. Selenium web driver helps to automate the
interaction with the web application.

The tool has a built-in text editor which aids the user in
writing the user story or multiple user stories to build up a test
suite. It also extends the facility to open up a pre-saved user
story in the editor in .txt format. To write a user story the user
has to identify the identification factors of the web elements,
which could easily be located using the Webpage inspector
within the tool.

The user story must contain the action, data type, id to
identify, web elements and value to pass. Fig. 1 elaborates a
user story written in Text editor of the tool. The action type is
highlighted in green, the input data types are highlighted pink
and web element id’s are on the right hand column under the
‘Identifiers List’. The test data are on the extreme right of
every line. For instance, the test data in line 2, Fig. 1 is
‘admin’. The user story can be written in the text editor or a
pre-save user story in .txt format can also be opened.

Fig. 1 Writing a user Story in Test-o-Matic tool

Once a user has written and saved the user story, the
“generate test” automatically generates the test cases and
redirects to a browser and runs the test case.

IV. EVALUATION

We evaluate the presented approach by applying it on web
based application called “Moodle”, which is an open source
course management system written in PHP. We selected this
application as it is a widely-used system and is of sufficient

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:1, 2017

91

complexity. We conduct mutation analysis by seeding X faults
and evaluating the fault detection effectiveness of our
proposed approach.

For the experiment, we wrote a total of 12 user stories to
document the requirements of Moodle. A total of 33 test cases
were then written against the corresponding user stories.

For mutation analysis, we seeded mutants corresponding to
mutation operators of both HTML and PHP. The HTML
mutation operators are taken from Upsorn et al. [22], whereas
the PHP mutation operators are taken from Mutagenesis
testing framework [23]. We seeded a total of 79 mutants
corresponding to HTML mutation operators and 98 mutants
corresponding to the PHP mutation operators. The HTML
mutation operators are outlined in Table XI, whereas the PHP
mutation operators used in the analysis are highlighted in
Table XII.

TABLE XI

HTML MUTATION OPERATORS
 Mutation Operator

Abbreviation
Mutation Operator

1 WLR Simple Link Replacement

2 WLD Simple Link Deletion

3 WFR Form Link Replacement

4 WTR Transfer Mode Replacement

5 WHR Hidden Form Field Replacement

6 WHD Hidden Form Field Deletion

7 WIR Server-Side Include Replacement

8 WID Server-Side Include Deletion

TABLE XII

PHP MUTATION OPERATORS
 Mutation Operator

Abbreviation
Mutation Operator

1 Add Addition

2 CNE Conditional Negation Equal

3 Equal Equal

4 False False Value

5 GT Greater Than

6 Identical Identical

7 LT Less Than

8 LLA Logical Lower And

9 LLO Logical Lower Or

10 LN Logical Not

11 LO Logical Or

12 NE Not Equal

13 NI Not Identical

Refer to Table XII, the mutation operator Web Link

Replacement (WLR), replaces destination of a simple link
transition specified in <a> tag with another destination,
Simple Link Deletion (WLD), removes the destination link
specified in <a> tag, Form Link Replacement (WFR), changes
destination of a form link transition to another destination in
the same domain of the targeted web applications, Transfer
Mode Replacement (WTR), replaces all POST requests to
GET and vice versa, Hidden Form Field Replacement (WHR),
alters the value attributes of <input> tag to a space, null, zero
or an empty string, Hidden Form Field deletion (WHD),
removes an entire block of tag < input> of type hidden,

Server-Side include replacement (WIR), changes file attributes
of include directives to another destination in the same domain
of the targeted web applications, server-side include
deletion(WID), removes an entire include directive from the
html file.

The results of application of our proposed approach are
shown in Table XIII for HTML mutants and in Table XIV for
PHP mutants. For HTML mutants, our approach was able to
kill all the seeded mutants. For PHP mutants, the test cases
generated corresponding to our approach was able to kill 96
out of 97 mutants, whereas the remaining one live mutant had
no effect on the behavior of the application and was therefore
classified as an equivalent mutant.

TABLE XIII

SUMMARY OF MUTANTS AND RESULTS
Html
File

Mutants (HTML) Total Killed Score
(%) W

L
R

W
L
D

W
F
R

W
T
R

W
H
R

W
H
D

W
I
R

W
I
D

Index
form

2 5 3 4 6 2 4 2 28 26 92

index - 1 - - - - - 2 3 3 100

Forgot
password
form

1 - - - - - 1 1 3 3 100

Forgot
password

7 - - - - - 5 2 14 14 100

logout 3 - - - - - 3 6 4 66

signup - - - - - - 2 2 2 100

Signup
form

2 1 - - - - 3 6 6 100

Change
Password

1
0

1 - - - - 4 3 18 16 89

Change
Password
form

1 - - - - - 4 1 6 3 50

Set
password
form

- - - - - - 2 - 2 2 100

 - - - - - - - - 86 79 92

The mutation operator Addition, replaces ‘+’ with ‘-‘,

Conditional Negation-Equal(CNE), replaces ‘==’ to ‘!=’,
Equal, replaces, FalseValue, replaces FALSE with TRUE,
Greater Than, replaces ‘>’ with ‘>=’, Identical, replaces ‘===’
with ‘!==’, LessThan, replaces ‘<’ with ‘>=’,
LogicalLowerAnd, replaces ‘and’ with ‘or’, LogicalLowerOr,
replaces ‘or’ with ‘and’, LogicalNot, replaces ‘!’ with a blank
string LogicalOr, replaces ‘||’ with’&&’, NotEqual, replaces
‘!= or <>’ with ‘==’ and NotIdentical, replaces ‘!==’ with
‘===’. A total of 97 mutants were hand seeded into the
application, out of which 96 were killed, and 1 was live
mutant, and 1 was equivalent mutatnt. The live mutants were
not killed because it was dealing with user session data, which
was not dealt in our test cases. Same could be dealt in future
for better results. One equivalent mutant was ignored, yielding
to a total of 97 mutants. Table XIV outlines the results.

V. CONCLUSION

Web Applications form a large portion of the overall
software industry. These applications range from simple

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:1, 2017

92

discussion based application to highly critical financial
applications. An essential element for precise functioning of

these websites require testing, which should be thorough as
well and systematic.

TABLE XIV

SUMMARY OF MUTANTS AND RESULTS
 Mutants (php) Total Killed Score

(%) Add CNE Equal False GT Identical LT LLA LLO LN LO NE NI

Index form - 5 2 - - - - - - 7 1 - - 15 14 93

index 1 4 2 1 1 2 2 3 1 17 - - 6 40 40 100

Forgot pwd form - - - - 1 - - 1 - 4 - - - 6 6 100

Forgot Pwd - - - - - - - 3 1 2 - - - 6 6 100

logout - - - - - - - - - 2 - - - 2 2 100

signup - - - - - - - 1 - 3 - - - 4 4 100

Signup form - - - - - - - - - 1 - - 3 4 4 100

Change Pwd - - - - 1 1 - - - 5 - - - 7 7 100

Change Pwd form - 1 1 - - - - - - 5 - - 1 8 7 87

Set Pwd form - - - - 1 - - - - 3 - - 1 5 5 100

Total - 11 5 1 4 3 2 8 2 49 1 1 4 97 96 98

A common approach for testing such applications is by

either writing or use a record and replay test tool which could
run test cases corresponding to the user stories. Manual
writing of such test cases is not scalable, especially because of
the frequent changes in applications. We have presented an
approach that could test web based applications automatically
from restricted user stories. The restricted user stories can be
written using the restricted natural language, following some
set rules. The rules remove the ambiguity in natural language
and improve sentence structure. A well-defined restricted user
story template has been defined which allows the tester to
write the restricted user story. The process is simplified using
our Restricted User Story (RUST) tool ‘Test-o-Matic” which
enables a tester to write the user stories in restricted user story
format using the restricted grammar. It also automatically
checks if the restriction rules have been followed or not. The
tool then automatically generates the test cases by processing
the developed restricted user stories. The tool is integrated
with a well-known open source record-and-replay tool,
Selenium. The fault detection effectiveness of the presented
approach is evaluated on an open source course management
system (Moodle) using mutation analysis. The approach was
tested on open source web-based application by seeding faults
into the source code and the results prove that test case
generation from restricted user stories can be an effective
technique for automated web based application testing.

REFERENCES
[1] Offutt, J., Quality attributes of web software applications. IEEE

software, 2002. 19(2): p. 25.
[2] Hagel, J. and J.S. Brown, Your next IT strategy. Harvard business

review, 2001. 79(9): p. 105-115.
[3] Kreger, H., Web services conceptual architecture (WSCA 1.0). IBM

Software Group, 2001. 5: p. 6-7.
[4] Zo, H., D.L. Nazareth, and H.K. Jain. Measuring reliability of

applications composed of web services. in System Sciences, 2007.
HICSS 2007. 40th Annual Hawaii International Conference on. 2007.
IEEE.

[5] Ricca, F. and P. Tonella. Analysis and testing of web applications. in
Proceedings of the 23rd international conference on Software
engineering. 2001. IEEE Computer Society.

[6] Wang, C., et al. Automatic generation of system test cases from use case
specifications. in Proceedings of the 2015 International Symposium on
Software Testing and Analysis. 2015. ACM.

[7] Zhang, M., et al. A systematic approach to automatically derive test
cases from use cases specified in restricted natural languages. in
International Conference on System Analysis and Modeling. 2014.
Springer.

[8] Sinha, A., S.M. Sutton Jr, and A. Paradkar. Text2Test: Automated
inspection of natural language use cases. in 2010 Third International
Conference on Software Testing, Verification and Validation. 2010.
IEEE.

[9] Sarmiento, E., J.C.S. do Prado Leite, and E. Almentero. C&L:
Generating model based test cases from natural language requirements
descriptions. in Requirements Engineering and Testing (RET), 2014
IEEE 1st International Workshop on. 2014. IEEE.

[10] Escalona, M., et al., An overview on test generation from functional
requirements. Journal of Systems and Software, 2011. 84(8): p. 1379-
1393.

[11] Hametner, R., D. Winkler, and A. Zoitl. Agile testing concepts based on
keyword-driven testing for industrial automation systems. in IECON
2012-38th Annual Conference on IEEE Industrial Electronics Society.
2012. IEEE.

[12] Carvalho, G., et al. Test case generation from natural language
requirements based on SCR specifications. in Proceedings of the 28th
Annual ACM Symposium on Applied Computing. 2013. ACM.

[13] Lucassen, G., et al. Forging high-quality user stories: towards a
discipline for agile requirements. in 2015 IEEE 23rd international
requirements engineering conference (RE). 2015. IEEE.

[14] North, D., Introducing bdd. Better Software, March, 2006.
[15] North, D., What's in a story. 2007, February.
[16] Saravana. K.M, G.N.B., Rajkumar, Dr. A. Kovalan, “ Case Study On

Agile User Stories Prioritization Using Imaginative Standard”. IJERA
Vol. 2(no. 5): p. pp. 472-480.

[17] Cucumber, https://cucumber.io/. Retrieved June, 2015.
[18] JBehave, http://jbehave.org/. Retrieved July, 2015.
[19] Testing, C., http://www.jackkinsella.ie/2011/09/26/why-bother-with-

cucumber-testing.html. Access Date, March 2016.
[20] Drawbacks, C., https://www.jimmycuadra.com/posts/please-don-t-use-

cucumber/. Access Date, March 2016.
[21] Yue, T., L.C. Briand, and Y. Labiche. A use case modeling approach to

facilitate the transition towards analysis models: Concepts and empirical
evaluation. in International Conference on Model Driven Engineering
Languages and Systems. 2009. Springer.

[22] Praphamontripong, U. and J. Offutt. Applying Mutation Testing to Web
Applications. in ICST Workshops. 2010.

[23] Framework, P.M.t., A PHP 5.3+ Mutation Testing framework.
https://github.com/padraic/mutagenesis, January 2016.

