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 
Abstract—We examine two-dimensional oil displacement by 

water in a petroleum reservoir. The pore fluid is immiscible, and the 
porous media is homogenous and isotropic in the horizontal direction. 
Buckley-Leverett theory and a combination of Laplacian and Darcy’s 
law are used to study the fluid flow through porous media, and the 
Laplacian that defines the dispersion and diffusion of fluid in the sand 
using heavy oil is discussed. The reservoir is homogenous in the 
horizontal direction, as expressed by the partial differential equation. 
Two main factors which are observed are the water saturation and 
pressure distribution in the reservoir, and they are evaluated for 
predicting oil recovery in two dimensions by a physical and 
mathematical simulation model. We review the numerical simulation 
that solves difficult partial differential reservoir equations. Based on 
the numerical simulations, the saturation and pressure equations are 
calculated by the iterative alternating direction implicit method and the 
iterative alternating direction explicit method, respectively, according 
to the finite difference assumption. However, to understand the 
displacement of oil by water and the amount of water dispersion in the 
reservoir better, an interpolated contour line of the water distribution 
of the five-spot pattern, that provides an approximate solution which 
agrees well with the experimental results, is also presented. Finally, a 
computer program is developed to calculate the equation for pressure 
and water saturation and to draw the pressure contour line and water 
distribution contour line for the reservoir. 

 
Keywords—Numerical simulation, immiscible, finite difference, 

IADI, IADE, waterflooding. 

I. INTRODUCTION 

O develop prediction systems for oil recovery, the widely 
used method is modified by Buckley-Leverett theory and it 

is known as the waterflooding technique where water is 
injected into the petroleum reservoir to increase oil production 
[1]. Fig. 1 shows the waterflooding system for injection and 
production wells in two dimensions horizontally. For clear 
observations, the arrangement of the wells should be 
considered because it improves pumping and makes 
calculations easier [2]. 

As water approaches the oil reservoir, the conditions become 
complex because the liquids are immiscible, and only 
numerical methods can calculate the liquid behavior by 
approximation theory [4]. The two main factors are pressure 
and saturation. The relative permeability is also a key factor in 
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controlling the fluid distribution location in the reservoir and is 
a function of water saturation that can be obtained by laboratory 
measurements. The most suitable equation for treating reservoir 
conditions in two dimensions is the Laplace equation under 
Darcy’s law combined with Buckley-Leverett theory [5]. 
Because the partial differential equation of an immiscible 
reservoir is developed, a numerical method is the best way to 
obtain a solution. After that, the reservoir is modeled as a block 
that is divided into meshes because the finite difference 
approximates the equations at every node of the meshes. After 
this system has been developed, calculation of the saturation 
and pressure equations becomes easy. 

II. SIMPLE GEOMETRY OF RESERVOIR CONDITIONS FOR THE 

SIMULATION MODEL 

The reservoir conditions are described by simple geometry. 
The reservoir is 60 cm long and 40 cm wide, and is bounded by 
two impervious boundaries and two constant heads. Fig. 2 
shows a schematic of the geometry including the injection well 
and production wells. The distance between wells is 20 cm in 
the length direction and 10 cm in the width direction. The 
geometry is used to create a simulation model (Fig. 3) for a 
laboratory experiment to investigate the reservoir behavior and 
measure the physical characteristics of the water displacement 
in two dimensions. 

III. EXPERIMENTAL APPARATUS FOR DEMONSTRATING FLUID 

FLOW CHARACTERISTIC IN THEORA SAND  

A regular, flat rectangular simulation model is used 
according to Darcy’s law to calculate fluid flow through a 
uniform aquifer of Theora sand that is 60 cm long, 40 cm wide, 
and 3 cm thick (Fig. 3). The positions of the injection well and 
production wells in the model and the distance between the 
wells are specified. To control the pumping, the wells are 
connected to a piezometer that measures the hydraulic 
differences between wells. This model is designed for studying 
groundwater flow characteristics by measuring the flow of 
water through the sand to investigate groundwater pollution and 
groundwater management. Under the geological assumption, 
two areas with petroleum reservoirs and the same groundwater 
conditions should have the same settling of the reservoirs. 
Hence, this simulation model can be used also for investigating 
petroleum reservoir behavior. First, the model was filled with a 
known amount of Theora sand (unit: grams), and then 
completely saturated with oil. The hydraulic head was fixed 
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according to the piezometer, which was connected to the 
individual wells (Fig. 3). The pumping rate for the injection 
well was changed in steps of 0.275 cm3/s, production wells 
were opened with the initial reservoir condition, and the rate for 

the wells were changed in steps of 0.14–0.19 cm3/s. The 
distance between the injection and production wells was 
constant (22.36 cm), owing to the homogeneity of the reservoir 
so that the breakthrough time could be predicted in every well. 

 

 

Fig. 1 Schematic diagram of the main equipment for a closed-system water injection project [3] 
 

 

Fig. 2 Simple geometry of the reservoir conditions 
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Fig. 3 Experimental apparatus 
 

 

Fig. 4 Five spot pattern: one injection well and four production wells 
 

 

Fig. 5 Five-spot pattern: four injection wells and one production well 
 

To simplify the calculation, the pumping ratio was kept equal 
to the total sum of the production wells. At the end, the total 
volume of oil produced by water injected into the reservoir was 
about 1195 cm3, which was broadly consistent with Buckley- 
Leverett theory. Figs. 4 (a)-(d) and 5 (a)-(d) show photographs 
of the experiment and demonstrate the water displacement of 

the five-spot pattern. The piezometer data for the wells 
observed during operation defined the relationship between 
immiscible water and oil in homogenous porous materials. 
Finally, according to the piezometer head data recorded during 
pumping, the equipotential lines were interpolated by an 
approximation method. The streamline used to determine the 
saturation front was plotted by connecting the pressure drop 
points during production (Figs. 11 (a)-(c) and 12 (a), (b)). 

IV. EQUATION DEVELOPMENT FOR AN INCOMPRESSIBLE FLOW 

OF OIL AND WATER 

According to Darcy’s law, the flow equations of fluid oil and 
water were developed via Buckley-Leverett frontal 
displacement theory. The saturation equation for oil and water 
through porous media with respect to the mobility factor 
between two phases in two dimensions is 
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where kx  and ky  are the intrinsic permeabilities of the medium 

in the x and y directions, respectively, 
w

krw
w  

 and o
kro

o    are 

the mobility factors for oil and water, respectively, and Po and 
pw are the fluid pressures for oil and water, respectively. 

The commune relationship between saturation and pressure 

is 1 ss ow , and pppp
wowo

 . When capillary pressure 

/po w  is neglected because it is small, namely ppp
wo
 , 

water and oil pressure is p , and (1) and (2) take the forms 
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If the oil and water saturation relationship, 1 ss ow , is 
substituted into the right-hand side of (4) and the saturation 
term is canceled, the sum of the oil and water equations of (3) 
and (4) is 
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Fig. 6 Schematic of the boundary condition 
 
Equation (5) is a steady state equation unsuitable for 

unsteady states that show pressure changes over time, and 
where the water saturation is controlled by mobility factors. 

The treatment of kro  and krw  oil and water relative 

permeability that are evaluated at 2

1
k  in a complete form 

applying s
k

w
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IC: p
o

p  in R                                (6) 
 

BC: pp ˆ on s1  Fig. 6.                (7a) 

For evaluating the boundary condition at s2  
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Equation (5) is solved and converted to a finite number. Let 

 owo w
/  upstream. 

V. NUMERICAL SIMULATION 

Analytical solutions are limited to simple idealized 
conditions so that the flow equation can be solved. For 
example, a single well that is homogenous and isotropic in the 
horizontal direction. Numerical simulation is increasingly used 
in the petroleum industry, and its accuracy has been proved by 
comparison with complex partial differential equations for 
petroleum reservoirs [6]. This has demonstrated that Buckley–
Leverett theory for simultaneous two-phase flow is improved 
by using numerical simulations that can solve complex partial 
differential equations for petroleum reservoir. Finite difference 
methods, namely the iterative alternating direction implicit 
(IADI) method and the iterative alternating direction explicit 
(IADE) method, are used to account for the saturation and 
pressure equations, respectively, and to approximate the areal 
distribution of water displacement for oil recovery from the 
reservoir in the region. 

VI. FINITE DIFFERENCE METHOD 

Numerical methods are used to solve the discretized partial 
differential equations considering time and space. The finite 
differences methods approximate the solution of partial 

differential equations of fluid flow of liquid simultaneously 
through porous media in a rectangle divided into a grid, and 
these methods have long been used for decisions about 
production reservoir contents. The finite difference method 
replaces the partial differential equation of flow with a set of 
finite difference equations in discretized time and space (Fig. 7) 
[7]. 

 

 

Fig. 7 Scheme of finite differences in two dimensions 
 

Equation (5) is the two-phase flow, which describes the 
mobility ratio and pressure gradient in two dimensions in an 
isotropic-homogeneous incompressible medium with respect to 
the mobility ratio and pressure gradient. 

A general schematic of the finite difference method is shown 
in Fig. 7. The partial differential equation of the transient flow 
of oil and water under Laplacian equation (7b) now can be 
transformed into a finite difference equation that considers the 
mobility ratio that controls the fluid distribution and the 
pressure gradients that includes p. 
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Fig. 8 Scheme for stream direction 

 
The coefficients A1 to A4 and B1 to B4 are introduced to 

clarify the region of flow in finite differences, Fig. 8 illustrates 
the locations of the coefficients. 
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Thus, the mobility factors for AU upstream and AD downstream 
in the x direction and BU  upstream and B D  downstream in the 
y direction are shown by specific coefficients. Let, 
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The time step level for computing p was selected at 2/1k  

because the pressure change in flow (15) and (16) should be 
evaluated between k  and 1k . 
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converge). Solve water saturation (3). Recall that 
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Coefficients BA 41
~  are the same as in (10). Let 
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VII. IADI METHOD 

One popular method of solving nodal equations iteratively is 
the IADI method [8], which is used for calculation iterations of 
rows and columns in the matrix based on the equation. The 
calculation procedure is shown below. 

Equation (5) is solved as follows by the IADI method. Let 
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The coefficients AA 41
~  are evaluated at 2/1k and BB 41

~  are 
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VIII. PRESSURE DISTRIBUTION IN THE RESERVOIR IN 

TWO-DIMENSION 

We examine oil displacement by water in two dimensions 
horizontally in a homogenous, isotropic medium with no mass 
transfer under the Laplace equation. The system has a five-spot 
pattern that includes an injection well and production wells, 
where the injection rate is equal to the total of the production 
rates in the steady sate. The pressure calculation according to 
(12) starts at time ݐ ൌ 0, and then it increases gradually until it 
converges. The calculation is based on a computer program. 
The space differences ∆ݔ  and ∆ݕ  are assumed to be equal 
intervals in the x and y-directions (Fig. 9). In homogenous 
porous media, the pressure is equal around the injection well at 
equal time intervals (Table I), which creates buffer contour 
lines (Fig. 10). As breakthrough approaches, the fluid flow 
pressure is dropped down. The water saturation and the water 
distribution contour line is directly affected by fluid flow 
pressure. 

IX. WATER SATURATION CONTOUR LINE 

As the water saturation equation is improved by the partial 
differential equation (14), it is considered to solve numerically 
the nonlinearity of the water saturation equation in two 
dimensions in a homogenous, isotropic medium horizontally. If 
the equation is solved by numerical simulation, the finite 
difference method is used to approximate the diffusion and 
dispersion of water and oil displacement in the reservoir with 
the Laplacian equation. However, developing a computer 
program for the finite difference equation of water saturation is 

difficult because the dispersion of water changes slightly in 
every portion of soil. A five-spot pattern arrangement of 
injection and production wells is used to observe the oil 
displacement by water in a petroleum reservoir. More details of 
the five-spot pattern are discussed elsewhere [9]. 

 

 

Fig. 9 Scheme of general grid construction for IADI 
 

 

Fig. 10 Schematic of pressure contour lines drawn by a computer 
program 

 
The injection well in the center has a rate 0.27 cm3/s and the 

production wells in each quadrant have a rate of 0.14–0.19 
cm3/s. 

The pumping operation started at time t = 0 and continued to 
86 min, and the total volume of oil collected was about 1193.28 
cm3 from the total amount of oil of 3154.7 cm3. 

Based on the piezometer data for the wells (Figs. 11 (a)-(c), 
Table II) the equipotential line is drawn by the interpolation 
approximation method (Fig. 11 (a)). Streamlines are assumed to 
be perpendicular to the equipotential line [10], and a cross 
section (A-Á) is plotted (Fig. 11 (b)) showing the hydraulic 
head from the piezometer. The streamlines for the water 
distribution (blue, curved lines) are plotted according to the 
pressure drop interpolated across the production wells. Our 
results show that in two dimensions, approximately 39% of the 
total oil is recovered. To increase the amount of oil recovered 
from the reservoir, the pattern of the wells should be altered. 

 

 

BC X

Y
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TABLE I 
CALCULATION RESULTS FROM PRESSURE EQUATION 

0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,3 0,3 0,3 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 

0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,3 0,3 0,3 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 

0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,3 0,3 0,3 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 

0,2 0,2 0,2 0,2 0,3 0,3 0,3 0,3 0,3 0,4 0,3 0,3 0,3 0,3 0,3 0,2 0,2 0,2 0,2 

0,2 0,2 0,2 0,2 0,3 0,3 0,3 0,3 0,3 0,4 0,3 0,3 0,3 0,3 0,3 0,2 0,2 0,2 0,2 

0,2 0,2 0,2 0,2 0,3 0,3 0,3 0,3 0,3 0,4 0,3 0,3 0,3 0,3 0,3 0,2 0,2 0,2 0,2 

0,2 0,2 0,2 0,2 0,3 0,3 0,3 0,3 0,3 0,4 0,3 0,3 0,3 0,3 0,3 0,2 0,2 0,2 0,2 

0,2 0,2 0,2 0,2 0,3 0,3 0,3 0,3 0,3 0,4 0,3 0,3 0,3 0,3 0,3 0,2 0,2 0,2 0,2 

0,2 0,2 0,2 0,2 0,3 0,3 0,3 0,3 0,3 0,4 0,3 0,3 0,3 0,3 0,3 0,2 0,2 0,2 0,2 

0,2 0,2 0,2 0,2 0,3 0,3 0,3 0,3 0,3 0,4 0,3 0,3 0,3 0,3 0,3 0,2 0,2 0,2 0,2 

0,2 0,2 0,2 0,2 0,3 0,3 0,3 0,3 0,3 0,4 0,3 0,3 0,3 0,3 0,3 0,2 0,2 0,2 0,2 

0,2 0,2 0,2 0,2 0,3 0,3 0,3 0,3 0,3 0,4 0,3 0,3 0,3 0,3 0,3 0,2 0,2 0,2 0,2 

0,2 0,2 0,2 0,2 0,3 0,3 0,3 0,3 0,3 0,4 0,3 0,3 0,3 0,3 0,3 0,2 0,2 0,2 0,2 

0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,3 0,3 0,3 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 

0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,3 0,3 0,3 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 

 
TABLE II 

PIEZOMETER DATA FOR THE FIVE-SPOT PATTERN INCLUDING ONE INJECTION WELL AND FOUR PRODUCTION WELLS 

Pattern No 
First At Time At Time At Time  At Time At Time At Time At Time At Time At Time At Time At Time 

0m 5 m 11 m 27 m 38:30 m 47 m 50 m 58:30 m 1 h 3 m 1 h 10 m 1 h 14 m 1 h 23 m 

1 6,2 0 0 0 0 0 0 0 0 0 0 0 

2 6,2 -4,8 -5 0,2 1,6 0,5 0,7 0,7 0,8 0,9 1 0 

3 6,6 0 0 0 0 0 0 0 0 0 0 0 

4 6 -3 6 7 4 3 3,4 3,4 3,5 3,5 3,4 1,5 

5 6 12 15,5 12,8 10,5 9,9 8,6 8,5 8,9 8,5 8,3 4,5 

6 6 -3,3 8,8 7,8 4,5 3,5 4 3,7 4,5 4 3,5 1,8 

7 5,8 0 0 0 0 0 0 0 0 0 0 0 

8 5,6 -4,5 -5 -2 -4,6 -0,6 0,4 0,5 1,3 1 1 -0,5 

9 5 0 0 0 0 0 0 0 0 0 0 0 

Up Stream 0 0 0 0 0 0 0 0 0 0 0 0 
Down 
Stream 

0 0 0 0 0 0 0 0 0 0 0 0 

 
TABLE III 

PIEZOMETER DATA FOR THE FIVE-SPOT PATTERN INCLUDING FOUR INJECTION WELLS AND ONE PRODUCTION WELL 

Pattern No  
  A time A time A time A time A time A time A time A time A time A time A time A time A time A time A time A time 

Fist 
time 

1 min 4 min 9 min 13 min 17 min 21 min 25 min 29 min 35 min 40 min 45 min 50 min 56 min 1 hour 1h:10min 1h:19min

1 7 9,7 25 23 23 23 23 23 22,5 22,2 22,2 22 22 21,5 21,2 21,1 20,9 

2 7,2 6,3 6,2 6,7 6,6 7 7 7 7,3 10,5 13,5 15,3 16 16,2 16,2 16,2 16,2 

3 7,3 9,9 25 25 25 25 25 24,8 24,5 24,2 24 24 23,7 23,5 23 23 23 

4 7,35 1,6 2,4 4 3,5 4,5 4,6 4,6 4,4 4 3,8 3,7 3,5 3,3 2,7 2,9 2,9 

5 7,3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 7,4 2,2 2,4 3,9 3,6 4,9 4,9 4,8 4,8 4,5 4,3 4,2 3,9 3,8 3,4 3,4 3,4 

7 7,4 23 26 23 22,5 23 23 23 23 22,1 21,8 21,6 21,5 21 20,9 20,4 20,6 

8 7,4 1,5 7,4 7,4 7,2 7,2 7,2 7,2 7,2 9,4 14,9 14,7 14,8 14,8 14,7 14,6 14,6 

9 7,4 25 25 25 26 25 25 25,5 25,4 24,8 24,5 24,2 24 23,7 23,5 23,4 23,4 

Up Stream 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,95 6,9 6,9 6,7 6,7 
Down 
Stream 

7 7 7 7 7 7 7 7 7 7 7 7 7 6,9 6,9 6,7 6,7 

 
Fig. 12 (a) shows the five-spot pattern displacement of oil for 

four injection wells and one production well. The pink contour 
lines represent the equipotential pressure line in the reservoir 
and the blue line perpendicular to the equipotential line state is 
the streamline. The interpolation calculation is based on the 

piezometer data in Table III from the laboratory measurements 
(section II). Cross section (A-Á) (Fig. 12 (b)) is improved for 
the four injection wells to define the immiscible fluid 
relationship. 
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(a) 
 

 

(b) 
 

 

(c) 

Fig. 11 (a) Schematic of water discharge contour lines of the five-spot 
quadrant side with a constant distance between the injection well and 

four production wells (b) Cross section of the equipotential line of 
dimensionless press (c) Water saturation contour lines with shaded 

areas for the five-spot quadrant side with a constant distance between 
the injection and production wells 

 

 

(a) 
 

 

(b) 

Fig. 12 (a) Scheme of equipotential line and streamlines of the 
five-spot quadrant side with constant distance between injection and 

production wells (b) Cross section of the equipotential line of 
dimensionless pressure. 

X. CONCLUSION 

A numerical simulation was used to obtain the solutions for 
pressure and water saturation equations to determine the 
pressure distribution and the water dispersion and distribution 
in two dimensions. A scaled laboratory model was used to 
measure the effect of the factors on water displacement during 
pumping. A five-spot pattern in a simulation model based on 
Darcy’s law was used to create the injection and production 
wells system (Fig. 2). We predicted the water flooding 
mechanism by comparing the numerical simulation results with 
the laboratory measurements. The theory is typically used to 
treat fluid flow equations; however, we used Laplacian theory, 
which describes the dispersion and diffusion of fluid in two 
dimensions through the sand, under Darcy’s law combined with 
Buckley-Leverett theory. The prediction of the saturation front 
was improved by the approximation method, in which the 
constant pressure points were connected (Figs. 11 (a)-(c) and 
12 (a), (b)). When waterflooding is performed, the two main 
factors that must be controlled are water saturation and 
distribution in the reservoir, which requires the pressure to be 
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maintained during pumping. The immiscible displacement in 
two dimensions became complex. Analytically, it is sometimes 
difficult to solve this type of problem, but numerical 
simulations solved the most difficult immiscible reservoir 
equation that was presented in this paper. The finite difference 
method was used, which discretizes time and space and 
replaces the partial differential equations in the grid. The IADI 
method and IADE method were used because the equations for 
pressure and saturation were nonlinear. To develop an efficient 
recovery system, the pattern arrangement should be based on 
seismology information and geological investigation. Finally, a 
computer program was developed to speed up the calculation, 
and the results of pressure contour line were plotted (Fig. 11). 
However, for the saturation calculation, the program introduced 
errors into the partial differential equation. Thus, experimental 
piezometer data were used to plot interpolated equipotential 
lines, including the cross section, with approximation theory. 
Perpendicular to the equipotential lines, stream lines were 
drawn arbitrarily (Figs. 11 (a), 12 (b)), and the results showed 
good agreement with the laboratory measurements. 
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