
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:1, 2017

80

Abstract—Modern industrial automation relies on service
oriented concepts of Internet of Things (IoT) device modeling in
order to provide a flexible and extendable environment for service
meta-repository. However, state-of-the-art meta-modeling techniques
prefer design-time modeling, which results in a heavy usage of class
sometimes unnecessary static subtyping. Although this approach
benefits from clear-cut object-oriented design principles, it also seals
the model repository for further dynamic extensions. In this paper, a
dynamic multi-level modeling approach is introduced that enables
dynamic subtyping through a more relaxed partial instantiation
mechanism. The approach is demonstrated on a simple sensor
network example.

Keywords—Meta-modeling, dynamic subtyping, DMLA,
industrial automation, arrowhead.

I. INTRODUCTION

HE meta-model based industrial automation frameworks
could be the next wave of solutions to meet the challenges

set by Industry 4.0. The open IoT infrastructure requires a
fully service oriented conceptualization of industrial
automation. Although the service layer interface hides the
internal data structure of concrete embedded devices, data
modeling still remains an important part of the final solution.
The services must be registered in a flexible repository and
they shall be available for look-ups. Therefore, the necessary
modeling efforts must go well beyond the current static nature
of state-of-the-art model building. Clearly, object-oriented
programming or meta-model facilitated subtyping supports
only design time modeling. Although traditional industrial
automation solutions could be easily satisfied by a fixed
categorization of embedded devices, the newer wave of SOA-
based automation frameworks openly embrace System of
Systems (SoS) design concepts of composability. Hence,
corresponding modeling solutions must be researched and
made available. A straight-forward candidate solution could
be dynamic subtyping, which provides both the benefits of
dynamic introduction of new types and the consistency of
already defined types within the (sub-)systems.

In this paper, Section II introduces the Arrowhead
framework, then Section III explains dynamic subtyping.
Next, in Section IV, a dynamic multi-level meta-modeling
approach is introduced in detail. Then, Section V shows how

Zoltan Theisz is with Evopro Innovation, Budapest, Hungary (e-mail:
zoltan.theisz@evopro.hu)

Gergely Mezei is with the Department of Automation and Applied
Informatics at the Faculty of Electrical Engineering and Informatics of
Budapest University of Technology and Economics, Budapest, Hungary (e-
mail: gmezei@aut.bme.hu).

the approach can be applied to come up with a viable
implementation for dynamic subtyping, which is also
demonstrated through a simple example in Section VI. Finally,
Section VII concludes the paper.

II.THE ARROWHEAD FRAMEWORK

The Arrowhead framework [1] aims to become one of the
best technology answers currently available to the general
challenges raised by the Industry 4.0 revolution in industrial
automation. The framework is based on the concept of the
IoT, it clearly follows the principles of the SoS, and it has
been implemented along the well-known guidelines laid out
by Service Oriented Architecture (SOA). All these individual
facets have been united to facilitate collaborative industrial
automation of networked embedded smart devices. The
concept of a service within the framework is defined as a piece
of information that can be exchanged between or among
participating communication systems. Since the final goal of
the framework is to provide SoS features, it must also support
a great variety of different sensors and activators, or any
arbitrarily combinations thereof, through unique and well
defined set of registered interfaces. The services are reusable
and can be provided via various systems by explicitly
declaring them via communication profiles each possessing
the following three main characteristics: transfer protocol,
security mechanism, and data format. Within the framework,
the concept of a system is defined as a composable entity
(according to the well-known principles of SoS) that can
produce and consume services. The system that is producing a
service is labeled as the Service Provider, while the system
that is consuming a service is referred to as the Service
Consumer. Also, a particular Arrowhead system may play the
role of a provider of one or more services or a consumer of
some other services, or even both at the same time.

Core Arrowhead mechanisms make use of three mandatory
framework-wide services: Service Registry, Orchestrator and
Authorization. These three basic services combined with the
above definition of components within the system(s)
establishes an SoS adapted version of SOA principles in order
to enable a new wave of industrial automation facilitated by
smart embedded devices. As can be seen in Fig. 1, firstly, the
Service Registry stores all meta-data of any registered services
and provider systems. Secondly, Management sets up and
orchestrates the communication channels in order to combine
the services into application systems, eventually also
incorporating their reconfigurability. Finally, Authorization
ensures that only properly authorized systems may provide
and/or consume services within the framework.

Multi-Level Meta-Modeling for Enabling Dynamic
Subtyping for Industrial Automation

Zoltan Theisz, Gergely Mezei

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:1, 2017

81

Fig. 1 Arrowhead’s interpretation of SoS adapted SOA

III. DYNAMIC SUBTYPING

A. Need for Dynamic Subtyping
The Service Registry is the central modeling repository of

the Arrowhead framework: it ties together both design-time
and run-time aspects of service models covering the full life
cycle of any particular service an industrial automation system
may consist of. Hence, it is of paramount importance that it
keeps on remaining both extendable and flexibly constrained.
Thus, only proper services such as new compatible sensor
instances are allowed to be inserted in or deleted from. On one
hand, proper subtyping shall be needed to constrain the meta-
data structure of the registered instances in the repository. On
the other hand, it must be practical in the sense that new types
may be defined dynamically by step-by-step addition of new
or removal of already existing structural items in the defined
meta-data structure. Moreover, sometimes particular service
meta-data instances may be reused as templates for subtypes
that extend those concrete values with further data structures.
Hence, although legacy meta-model based subtyping is an
effective workhorse for any object-oriented repository
implementation, it may become very difficult to provide an
extendable and type-correct internal mechanism for its
opening towards the needs of Arrowhead compatible SoS
based SOA.

B. Multi-Level Instantiation
Classical object-oriented modeling principles effectively

restrict the number of meta-modeling levels to two: one of
them being the class level where the data structure is defined,
and the other one being the object level where those instances
are stored which comply to the data structures. This restriction
ultimately means that subtyping must be a “vertical” relation
between the entities at the class level, while instantiation
connects the class level entities to their corresponding
instances at the object level. An unfortunate consequence of
this strict isolation is that the class level gets frozen in design-

time and cannot be further extended by new entities in run-
time. However, in a multi-level meta-modeling architecture
instantiation are allowed to take place across multiple levels.
These techniques usually distinguish between two options:
shallow instantiation means that the structural information is
defined on the nth modeling level and it is used on the
immediate instantiation (n+1)th level, while deep instantiation
allows defining the information on the nth modeling level and
use it on the (n+x)th (x > 0) modeling level [2]. Object-
oriented instantiation principles support only shallow
instantiation, which results in a rigid and unnecessary
separation between class level and object level. This is the
reason behind the fact that subtyping and instantiation are split
and cannot be directly related to each other, one being
“horizontal” and the other “vertical”. Hence, legacy subtyping
is static and instantiation is dynamic in nature, respectively.
Therefore, dynamic subtyping should combine “horizontal”
and “vertical” aspects by providing a means to be able to
introduce new attributes and operations to the existing model
entities in a precisely controlled manner. In a sense, the new
dynamic subtyping concept will become a “horizontal”
instantiation, in other words, it is carried out through the
insertion of an extra meta-level.

IV. DYNAMIC MULTI-LEVEL ALGEBRA

Dynamic Multi-Layer Algebra (DMLA) [3]-[5] is the
theoretical framework facilitating the introduction of dynamic
subtyping. It consists of three constituent parts: the first one
defines the modeling structure and also establishes the ASM
[6] functions declared on this structure. The second part
creates the initial set of modeling constructs, the so-called
minimal set of built-in entities which are needed to bootstrap
any further modeling. Finally, the third part validates and also
safeguards the correctness of the instantiation mechanism.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:1, 2017

82

A. Modeling Structure
DMLA represents the model as a Labeled Directed Graph

(LDG), where each node and edge can have labels attached.
Those labels define the attributes of the model elements of the
LDG. For simplicity, we apply dual field notation in labeling
for Name/Value pairs. The data representation of the model
elements is defined by the below labels:

XName: name of the model element
XID: globally unique ID of the model elementv
XMeta: ID of the meta-model definition
XCardinality: cardinality of the model element
XValue: value of the model element
XAttributes: list of attributes

Now, let us define the algebra over those labels. The
superuniverse of a state of the Multi-Layer Algebra
consists of the following universes:

UBool: containing logical values {true/false}
UNumber: containing rational numbers and a special symbol
∞ representing infinity
UString: containing character sequences of finite length
UID: containing all the possible entity IDs
UBasic: containing elements from { UBool U UNumber U UString
U UID }

Additionally, all universes contain a special element, undef,
which refers to an undefined value. The labels of the entities
take their values from the following universes:

XName: UString
XID: UID
XMeta: UID
XCardinality: [UNumber , UNumber]
XValue: UBasic
XAttributes: UID []

The label Attrib is an indexed list of IDs, which refers to
other entities. Now, let us have a simple example:

SensorID=69, SensorMeta=42, SensorCardinality=[0, inf],
SensorValue=undef, SensorAttrib=[]

The above definition describes a Sensor entity with its ID
set to 69, and the ID of its meta-model being 42. From now
on, the same semantics will be shown in a more compact
representation (both tuples and lists by square brackets).
{“Sensor”, 69, 42, [0, inf], undef,[]}

B. ASM Functions
ASM functions are used to control how one can change the

states within the ASM. DMLA relies on both shared and
derived functions. Shared functions show the current attribute
configuration of a model entity. DMLA allows the values of
these functions to be modified either by the algebra or by its
environment. Derived functions represent calculations which
cannot change the model; they only obtain or restructure
existing entity information. The vocabulary ∑ of DMLA
consists of the following shared functions (for technical details
see [5]):

Name(ID)
Meta(ID)
Card (ID)
Attrib(ID,Idx)

Value(ID)
Contains(ID1,ID2)
DeriveFrom(ID1,ID2)

C.Bootstrap Mechanism
The ASM functions have defined the basic structure of the

algebra and the means to query and change the model.
However, some initial built-in constructs are also needed for
any practical modeling. As a minimum, the bootstrap creates
the basic types and the so-called principal entities. The basic
types correspond to DMLA’s defining universes such as
Basic, Bool, Number, String, and ID. Besides these, the first
two types of like entities are also defined: Attribute and Base.
They act as root entities of all other attributes and node meta-
types, respectively. Furthermore, a third entity, AttribType, is
also defined that restricts, by corresponding validation
formulae, the value of the attributes within the instances.
Namely, the label Value of an AttribType specifies which type
may be used within the instance given by the referred
attribute. However, AttribType and its Value field must only
be filled in if the given attribute has been instantiated;
otherwise, AttribType can be totally left out. Nevertheless,
AttribType can only be applied for attributes.

The principal entities of DMLA are defined as follows:

{“Attribute”, IDAttribute, IDAttribute,
[0,inf], undef,
[
{“Attributes”, IDAttributes, IDAttribute,

[0, inf], undef,[]}
]}

{“Base”, IDBase, IDBase,
[0, inf], undef,
[
{“Attributes”, IDAttributes, IDAttribute,
[0, inf], undef,[]}

{“Links”, IDLink, IDAttribute,
[0, inf], undef,[]}

]}

{“AttribType”, IDAttribType,IDAttribute,
[0,1],undef,
[
{“AType”, IDAType, IDAttribType,
[0,1],IDID,[]}

]}

{“Node”, IDNode, IDBase,
[0, 0], undef,
[
{“Attributes”, IDAttributes, IDAttribute,
[0, inf], undef,[]}

]}

D.Validation Formulae
During the instantiation process, only those instances are

allowed to be created that do not violate any constraints set by
the meta-definitions. Thus, DMLA distinguishes between
valid and invalid models, where validity checking is based on

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:1, 2017

83

formulae. Hence, it is assumed that whenever external actors
change the state of the algebra, those formulae must be
evaluated. This dynamic property enables DMLA to be
applied both in design-time and run-time. The mathematical
details of the formulae are published in [4].

Validation formulae take an Instance entity and a MetaType
entity, and then check if the Instance entity is a valid instance
of the MetaType entity. However, the formula φMeta takes
only one parameter and validates if the given entity has
enough valid instances according to the cardinality label.

φIsInstantiated(C, I): checks if I is instantiated in C
φInstCounter(C,a1,a2): checks if two attributes in the same
container C are originated from the same meta definition
φCardinalityCheck(C, I): checks if an attribute I violates the
cardinality constraints in the container C
φTypecheck(T, v): checks if a specific value v violates the
type constraint T
φAttribCheck(I, a): checks if an attribute a is a valid
instantiation of a meta attribute of the meta of container I
φLabelCheck(I, M): checks the correct usage of Meta label
φEntityIns(I, M): checks if at least one of the attributes is
instantiated, or has its value set
φAttribSrc(I, M): checks if there is an attribute violating the
cardinality constraint or not having a valid meta definition
in the meta of the entity
φValueCheck(I, M): checks the validity of the AttribType
definitions
φLink(I, M): checks if instances of Base have the correct
number of links
φMeta(M): checks the cardinality limits
φIsValid(I, M): checks the validity of the new ASM state is
by combining φLabelCheck(I, M), φAttribSrc(I, M), φEntityIns(I,
M), φAttribType(I, M) and φLink(I, M)

V.DYNAMIC SUBTYPING VIA DMLA
DMLA provides the means for dynamic subtyping by

simply constraining the generic instantiation mechanism to a
special subcase. Namely, dynamic subtyping is only allowed
to modify the structure of the meta-entity, but no value
substitution must take place there. More precisely, the original
formula of φAttribCheck(I, a) used to be:

φAttribCheck(I, a):
φIsValid(a, Meta(a))

j: Attrib(Meta(I), j)=a
{ m, k: m=Attrib(Meta(I), k) Value(m)=Value(a)

Name(m) = Name(a) Meta(m) = Meta(a) (i: Attrib(a,i)
Attrib(m,i))}}

The formula has three parts which check if an attribute is:
either a valid instantiation
or a copy
or a meta

of a meta attribute of the meta of container I. Therefore, if this
formula is slightly modified it can easily grasp the essence of
dynamic subtyping in the following way:

φAttribCheck'(I, a):=
{ m, k: m=Attrib(Meta(I), k) Value(m)=Value(a)

Name(m) = Name(a) Meta(m) = Meta(a) (i: Attrib(a,i)
Attrib(m,i))}}

In other words, dynamic subtyping only copies existing
structures or introduces new structures if related cardinality
constraints allow that. Hence, DMLA can be easily incorporate
dynamic subtyping by restricting its original instantiation
formula.

VI. EXAMPLE

In order to showcase the subtyping and the instantiation
mechanism of DMLA, let us examine a simplified Arrowhead
network device scenario. In this scenario, an “abstract”
SensorType service entity is defined that allows an arbitrary
number of wireless communication channels for data
collection and also provides a single IP address for network
traffic.

{“SensorType”, IDSensorType, IDNode,
[0, inf], undef,
[

{“WirelessChannel”,IDWirelessChannel,IDAttribute,
[0,inf],undef,
[
{“WCType”,IDWCType,IDAttribType,
[0,inf], IDString,[]}

]
}

{“IPAddr”,IDIPAddr,IDAttribute,
[1,1],undef,
[
{“IPType”,IDIPType,IDAttribType,
[0,inf], IDString,[]}

]
}

]}

This SensorType service entity is only a meta-type
definition; therefore, a service must first instantiate it, for
example, by assigning a particular IP address to its network
interface, in order for it to be registered into the Service
Registry.

{“MySensor”, IDMySensor, IDSensorType,
[0, inf], undef,
[

{“WirelessChannel”,IDWirelessChannel,IDAttribute,
[0,inf],undef,
[
{“WCType”,IDWCType,IDAttribType,
[0,inf], IDString,[]}

]
}

{“IPAddress”, IDIPAddress, IDIPAddr,
[1,1], “192.168.0.1”, []
}

]}

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:1, 2017

84

In a classical subtyping implementation, the type of the
service cannot change any longer, but if dynamic subtyping
has been enabled, then

either a new “concrete” type can be derived from
SensorType
or the MySensor instance can dynamically change its
structure

by changing the cardinality of WirelessChannel. Let us
assume that entity SpecificSensor must have at least five
wireless channels and the maximum amount is eight. In the
first case, the result looks like as follows:

{“SpecificSensor”, IDSpecificSensor, IDSensorType,
[0, inf], undef,
[

{“WirelessChannel”,IDWirelessChannel,IDAttribute,
[5,8],undef,
[
{“WCType”,IDWCType,IDAttribType,
[0,inf], IDString,[]}

]
}

{“IPAddr”,IDIPAddr,IDAttribute,
[1,1],undef,
[
{“IPType”,IDIPType,IDAttribType,
[0,inf], IDString,[]}

]
}

]}

In the latter case, the definition is the following:

{“MySensor”, IDMySensor, IDSensorType,
[0, inf], undef,
[

{“WirelessChannel”,IDWirelessChannel,IDAttribute,
[5,8],undef,
[
{“WCType”,IDWCType,IDAttribType,
[0,inf], IDString,[]}

]
}

{“IPAddress”, IDIPAddress, IDIPAddr,
[1,1], “192.168.0.1”, []
}

]}

Note that the ID of the entity remains the same; however,
the new structure allows it to be further instantiated, hence the
registered service can now spawn sub-services within the set
cardinality limits.

VII. CONCLUSION

Object-oriented modeling artificially limits subtyping to the
design time domain only. Although traditional industrial
automation solutions used to live with fixed categorization of
embedded device types, the new wave of SOA based
automation frameworks openly embrace SoS concepts and
thus open up the up till now closed world of available sensors

and actuators. Hence, a corresponding modeling approach
must be put in place in order to facilitate controlled dynamic
subtyping that may be lead to higher flexibility without any
incurred backdrop on type precision. In this paper, we have
proposed a candidate solution which is based on a simple
relaxation of a formula of the multi-level meta-modeling
approach called DMLA. The applicability of the proposed
solution has been showcased by a simple sensor example. The
practical implementation of the solution is still work in
progress, though it may later become a standard element of
any model based implementation of the Service Registry used
by the Arrowhead framework.

REFERENCES

[1] F. Blomstedt, "Arrowhead Framework Cookbook," 2014.
[2] C. Atkinson és T. Kühne, „The Essence of Multilevel Metamodeling,”

The Unified Modeling Language. Modeling Languages, Concepts, and
Tools, Volume 2185, pp. 19-33, 2001

[3] Z. Theisz, G. Mezei, „An Algebraic Instantiation Technique Illustrated
by Multilevel Design Patterns,” in MULTI@MoDELS, Ottawa, Canada,
2015.

[4] Z. Theisz és G. Mezei, „Multi-level Dynamic Instantiation for Resolving
Node-edge Dichotomy,” in Proceedings of the 4th International
Conference on Model-Driven Engineering and Software Development,
Rome, Italy, 2016.

[5] Z. Theisz és G. Mezei, „Towards a novel meta-modeling approach for
dynamic multi-level instantiation,” in Automation and Applied
Computer Science Workshop, Budapest, Hungary, 2015.

[6] E. Boerger and R. Stark, Abstract State Machines: A Method for High-
Level System Design and Analysis, Springer-Verlag Berlin and
Heidelberg GmbH & Co. KG, 2003.

