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 
Abstract—For the stability and control demand of offshore small 

floating platform, a 2-HUS/U parallel mechanism was presented as 
offshore platform. Inverse kinematics was obtained by institutional 
constraint equation, and the dynamic model of offshore 2-HUS/U 
parallel platform was derived based on rigid body’s Lagrangian 
method. The equivalent moment of inertia, damping and driving 
force/torque variation of offshore 2-HUS/U parallel platform were 
analyzed. A numerical example shows that, for parallel platform of 
given motion, system’s equivalent inertia changes 1.25 times 
maximally. During the movement of platform, they change 
dramatically with the system configuration and have coupling 
characteristics. The maximum equivalent drive torque is 800 N. At the 
same time, the curve of platform’s driving force/torque is smooth and 
has good sine features. The control system needs to be adjusted 
according to kinetic equation during stability and control and it 
provides a basis for the optimization of control system. 

 
Keywords—2-HUS/U platform, Dynamics, Lagrange, Parallel 

platform 

I. INTRODUCTION 

HE common offshore floating platforms are mainly oil 
drilling platforms and wind power equipment platforms 

[1]-[3]. These resource platforms mostly have the foundation 
and large size, and work a long time at the same offshore 
position. Offshore equipment likes unmanned ships and aircraft 
carrier [4], have advanced control system and communication 
systems, which can be able to complete sea area task, but their 
range of motion is limited, and they are still large as targets, 
which cannot be carried as detection equipment or protection 
equipment. So, a small portable offshore platform should be 
designed currently, which can be carried by aircraft of 
submarine. 

The offshore platform will produce attitude deflection of a 
certain level because of the interference of marine environment 
(including wave and ocean current). The attitude deflection 
mainly includes roll and pitch [5]. For the load equipment of the 
offshore platform, the attitude deflection will have influence on 
the accuracy and stability of the information collected. 
Therefore, the offshore platform needs a stabilizing mechanism 
which can offset or suppress the sea platform deflection caused 
by wave interference. Common stable platforms include 
six-axis stable platform [6], [7] and less degrees of freedom 
(DOFs) stable platform such as three-axis stable platform [8], 
[9]. They are able to effectively isolate pitching and rolling of 
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the waves. But, the sea floating platform referred here is 
different from the common stable platform because of 
limitations of size and sea environment. 

According to the requirements of small sea platform, a small 
offshore 2-HUS/U parallel platform is proposed. This space 
parallel platform has two DOFs, and is driven by ball screw. In 
this paper, variations of equivalent inertia, damping and driving 
forces with time are emphatically investigated. 

II. OFFSHORE 2-HUS PARALLEL PLATFORM ANALYSIS 

A. Parallel Platform Structure Description 

The structure of offshore 2-HUS/U parallel platform is 
shown in Fig. 1. Its up-platform PA1A2 and base OC1C2 are 
all shape disk, and are driven by two driving branched chain 
and a driven branched chain. The driving branched chain 
consists of one screw pair (H), one hooke hinge (U), and one 
ball joint (S), and the driven branched chain consists of one 
hooke hinge (U). The centers of ball joint (A1, A2) and hooke 
hinge (P) are located on the up platform, and the points (A1, 
A2, P) form isosceles right triangle whose Cartesian point is P. 
The fixed coordinate system O-XYZ is established. The point 
O is located on the base, and Z axis is vertical upward, and Y 
axis is located on the angle bisector, and X axis is determined 
by the right-handed coordinate system. The moving coordinate 
system P-XYZ is established at the center P of the moving 
platform, and the initial orientation coincides with the fixed 
coordinates system. 

 

 

Fig. 1 Sketch diagram of offshore parallel platform 

B. Parallel Platform Location Analysis 

Offshore 2-HUS/U parallel platform is a space platform and 
it contains many components. From the amendment of 
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Grubler-Kutzbach formula [10], it is easily understood that the 
platform is a two-DOF mechanism. Therefore, the two Euler 
angles (β,γ) are selected as the generalized coordinates [11]. 

Suppose that the radius of the moving platform and the base 
is R, and the length of the link B1C1 and B2C2 is L, and the 
distance between the point P and O is H. Then, the coordinate 
of points A1, A2 in moving coordinate system are: 

According to the coordinate transformation, the equation is 
established 
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According to the coordinate transformation, the equation is 

established 
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Pi iA A P T                                       (1) 

 

where O
PT is the coordinate transformation matrix, P is the 

distance between the moving coordinate system and the base, 
and O

iA represents the coordinate of point Ai  in base. 
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Referring to (1), the coordinate of A1 and A2 in base can be 

obtained. 
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The screw cap of B vertically moves along the screw. Then, 

the coordinate of points B1, B2 in base coordinate system are: 
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The length of the link remains the same in the process of 

platform moving, and so constraint equation can be obtained: 
 

2 O O 2( )i i iL A B                                   (4) 

Bringing the coordinate of Ai , Bi in base system into (4), it 

can be obtained: 
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By simplifying (5), it can be obtained: 
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By taking a derivative with respect to (6), the movement 

relationship between the input speed of the link and the 
generalized coordinates of the moving platform can be 
obtained. 
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where c represents cos(.), and s represents sin (.). 

Equations (3) and (4) are the location and velocity 
relationship between the driving screw cap and the generalized 
coordinates of the moving platform. 

III.  DYNAMIC ANALYSIS OF OFFSHORE PARALLEL PLATFORM 

Analysis of the relationship between generalized coordinates 
and driving force of offshore parallel platform is related to 
stress analysis of multi-component. For overcoming the 
complex features of multi-binding analysis, Lagrangian method 
[12], [13] is selected. Rigid Lagrange equation is: 

 

d

dt i
i i
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q q
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where L is the Lagrangian function, iq is the generalized 

coordinate, iQ is the generalized force which is acting on the ith 

generalized coordinate. 
Therefore, the relationship between the kinetic or potential 

energy of each part and the generalized coordinate is mainly 
analyzed. 

A. Analysis of the Kinetic and Potential Energy of up 
Platform 

The movement of up-platform has two DOFs around a fixed 
point. R is the transformation matrix from the Euler coordinate 
system to the coordinate system of moving platform. sm is the 

quality of moving platform, and SI  is the inertia moments. So, 

the angular velocity of moving platform in P system is 

S =R   , and then the kinetic energy of moving platform is 
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The up-platform rotates around the point P. Without 

considering the friction, its potential energy remains constant, 
namely S s HV m g . 

B. Analysis of the Kinetic and Potential Energy of the Load 

The load equipment is fixedly connected with the moving 
platform, and so its motion state is the same with the moving 
platform, without higher center of gravity. 

fm  is the quality of the load. fI is the inertia moments. fd is 

the distance between the centroid of the load and the moving 
platform.  Then, the kinetic energy of the load is 
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The height of the centroid is converted to system coordinate 

system. 

f f cos cosH d                                   (11) 
 
Then the potential energy of the load is 
 

f f f cos cosV m gd                               (12) 

C. Analysis of the Kinetic and Potential Energy of Driving 
Screw 

The driving screw is driven by motor and transfers driving 
force to system. So the screw only has rotational kinetic energy, 
and potential energy remains constant. 
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where gm is the quality of the screw, gl is the inertia moments, 

gH is the height of centroid, and ds is the pitch. 
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where 1J  is the inverse of Jacobian matrix. 

D. Analysis of the Kinetic and Potential Energy of Screw Cap 

The screw cap moves along the screw vertically, and only 
has line speed along Z axis. Then, the kinetic energy of screw 
cap is 
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where mm is the quality of screw cap. 
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Then, the potential energy of screw cap is 
 

m ( 1 2)m mV g L L                                 (15) 
 
where 1L  ( 2L ) is the displacement of screw cap. 

E. Analysis of the Kinetic and Potential Energy of Link 

On end of the support link is hooke hinge (U), and the other 
is ball joint (S). The movement law of the link’s centroid can be 
obtained by hooke hinge and ball joint of both ends. The motion 
state of hooke hinge remains the same with the screw cap, and 
the motion state of ball joint remains the same with the point Ai 
on the up platform. 
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The line speed of the link’s centroid is 
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Known from the theorem of rotation, 
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Then, the kinetic energy of link is 
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where Zm i（i=1、2） is the quality of the support link, ZiI (i=x

、y、z) is the principal inertia moments of the support link. 
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The height of the link’s centroid along Z axis is  
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Then, the potential energy of the link is 
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F. Lagrange Dynamic Equation 

Lagrangian function can be determined from (9)-(25). 
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Bringing (26) into (8), dynamic equation can be obtained. 
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where ( )M   is the inertia matrix of the system. ( , )C    is the 

Coriolis matrix of the system, which contains Coriolis forces 
and centrifugal forces during movement. ( , )N   is the 

potential force of the system. If friction is present in system, 
( , )N   also contains conservative force generated by friction. 

The Coriolis matrix [14] can be obtained by the inertia 
matrix. 
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In (27),  is the generalized force corresponding to the 

generalized coordinate. ( )M  is the equivalent inertia of 

system and it is related to the shape and size of the platform, 
thus it is affecting the dynamic characteristics of the offshore 
parallel platform. 

IV. EXAMPLE ANALYSIS OF OFFSHORE PARALLEL PLATFORM 

The materials of each part are steel, and the material density 
is 7800 kg/m3. The length of the link is 300 mm. The pitch of 
the screw is 1. The rest parameters of the system are shown in 
Table I. It is assumed that the moving platform rotates 
continuously, and its movement is 
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TABLE I 

PARAMETERS OF EACH PART  

Part 
Quantity 

(kg) 
Ixx 

(kg*m2) 
Iyy 

(kg*m2) 
Izz 

(kg*m2) 

Up platform 30 0.47 0.47 0.95 

Screw 4.3 × × 0.00076 

Screw cap 7.5 × × 0.02 

Link 10 0.04 0.04 0.05 

Load 140 20 20 25 
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Fig. 2 The position curve of the driving screw cap 
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Fig. 3 Velocity curve of the driving screw cap 
 
For the given movement of the up-platform, the movement 

of the link can be obtained by the inverse kinematics. Figs. 2 
and 3 are the position and velocity curve of the driving screw 
cap on the up platform, respectively. From these figures, it can 
be seen that the movement of two caps is in line with the sine 
law, but the position of the cap 2 near the apex will generate a 
certain degree of distortion, as the same with the velocity of the 
cap 2. The reason is that the movement of the nut 2 is coupled 
with two DOFs. 

For the given movement, the curves of 11M , 12M , 21M , 

22M are shown in Fig. 4. Obviously, these equivalent inertias 

are the function of the size and shape of the system, and their 
values are constantly changing as the movement of system. 
Compared to the 11M , the equivalent inertia 22M  changes 

dramatically, and the maximum change is 1.25 times. But the 
change characteristic of the primary inertia remains the same 
with the movement of the system. In Fig. 4 (b), for the 
equivalent inertia matrix is symmetric matrix, the equivalent 
inertia 12M  completely coincides with 21M . Compared to the 

primary inertia, their variation produces a certain distortion at 
the extremes on the basis of the sine curve. The change 
characteristics of the equivalent inertia also determine the 
dynamic motion characteristics of the system. As shown in Fig. 
5, damping curves keep good sinusoidal characteristic. 

 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:11, No:2, 2017

249

 

 

Th
e 
e
qu
i
va
l
en

t 
i
ne
r
ti
a
（
m/
s
2 ）

Time（ms）  

(a) 
 

Th
e 
eq
ui
va
le
nt
 i

ne
rt
ia
（
m/
s2
）

Time（ms）  

(b) 

Fig. 4 Equivalent inertia curve of parallel platform 
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Fig. 5 Damping curve of parallel platform 
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Fig. 6 Equivalent driving force curve of parallel platform 
 
For the given movement of the up platform, the variation 

curves of two generalized driving force (torque) of the screw 
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cap are shown in Fig. 6. Fig. 6 (a) is the variation curve of the 
driving force over time, and Fig. 6 (b) is the variation curve of 
the driving force over angular velocity. During the movement 
of the parallel platform, the driving force changes within 800 N. 
It is easier to select the driving motor for the little range. The 
phase difference of the variation curve is 30°, and the curves 
have good sine law, forming a central symmetry, which prove 
the correctness of derivation of kinetic equations and the 
reasonableness of system architecture design. As can be seen 
from the above analysis, within 30° variation width, for the load 
of 140kg, the maximum driving speed of the system is less than 
100m/s, and the maximum driving force is less than 800N, 
which meet the needs of three sea conditions. 

V. CONCLUSION 

A small offshore 2-HUS/U parallel platform structure is 
presented. For the two degrees of freedom hooke hinge, the 
structural characteristics were analyzed, and the inverse 
kinematics and velocity solution of the driving screw cap are 
obtained. Using Lagrangian method, a dynamic model of the 
offshore 2-HUS/U parallel platform is created, and then the 
variation of the equivalent inertia and equivalent driving force 
of the system are analyzed. Through the examples, the position 
and velocity curves of driving screw cap are given, and the 
variation curve of the equivalent inertia and generalized driving 
force (torque) are given. The variation curve describes the 
correctness of derivation of kinetic equations and the 
reasonableness of system architecture design, and at the same 
time, through a drastic change of the equivalent inertia shows 
the strong relationship between the equivalent inertia and the 
shape or size of the mechanism. Therefore, when selecting the 
driving source and control system parameters, it should adapt to 
the variation of the equivalent inertia and driving force. 
Through the whole analysis of the system, the new platform can 
meet the steady demand for offshore swing amplitude 30°. 
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