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Abstract—This research is aimed to study a two-step iteration
process defined over a finite family of σ-asymptotically
quasi-nonexpansive nonself-mappings. The strong convergence
is guaranteed under the framework of Banach spaces with some
additional structural properties including strict and uniform
convexity, reflexivity, and smoothness assumptions. With similar
projection technique for nonself-mapping in Hilbert spaces, we
hereby use the generalized projection to construct a point within
the corresponding domain. Moreover, we have to introduce the use
of duality mapping and its inverse to overcome the unavailability
of duality representation that is exploit by Hilbert space theorists.
We then apply our results for σ-asymptotically quasi-nonexpansive
nonself-mappings to solve for ideal efficiency of vector optimization
problems composed of finitely many objective functions. We also
showed that the obtained solution from our process is the closest to
the origin. Moreover, we also give an illustrative numerical example
to support our results.

Keywords—σ-asymptotically quasi-nonexpansive nonself-
mapping, strong convergence, fixed point, uniformly convex and
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I. INTRODUCTION

THE theory of fixed point is extensively studied under

the nonexpansivity condition of the maps. Among the

classes of generalized nonexpansive mappings, Goebel and

Kirk [1] introduced the class of asymptotically nonexpansive

self-mappings. Let us recall the definition in the following.

Let C be a nonempty subset of a real normed linear space

E. A mapping T : C → C is said to be asymptotically
nonexpansive if there exists a sequence {kn} ⊂ [1,∞) with
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lim
n→∞ kn = 1 such that

‖Tnx− Tny‖ ≤ kn‖x− y‖
for all x, y ∈ C and n ≥ 1 and they proved that, if C is a

nonempty closed convex subset of a real uniformly convex

Banach space E and T is an asymptotically nonexpansive

self-mapping of C, then T has a fixed point. For more details,

see, [2]–[8], [15] and references therein.

Recently, Pathak et al. [11] introduced the concept of

σ-asymptotically quasi-nonexpansive mappings in Hilbert

spaces and they proved some common minimum-norm

fixed point theorems for σ-asymptotically quasi-nonexpansive

mappings with some applications.

Let E be a real normed linear space and C be a

nonempty subset of E. A mapping T : C → C is said to

be σ-asymptotically quasi-nonexpansive if F (T ) 	= ∅ and

there exist two sequences of real numbers {kn}, {cn} with

lim
n→∞ kn = 0 and

∞∑
n=1

cn < ∞ such that

‖Tnx− x̂‖ ≤ (1 + kn)‖x− x̂‖+ cn

for all x ∈ C, x̂ ∈ F (T ) and n ≥ 1. On the other hand,

in 2006, Censor and Elfving [12] introduced the concept

of a split feasibility problem in finite dimensional Hilbert

space for modelling inverse problems which arise in medical

image reconstruction, image restoration and radiation therapy

treatment planing (see, for example, [10], [12], [13]).

Let B and C be nonempty closed convex subset of real

Hilbert spaces H1 and H2, respectively. The split feasibility
problem is formulated as follows: Find a point x̄ such that

x̄ ∈ B and Ax̄ ∈ C, (1)

where A is a bounded linear operator from H1 to H2.
Clearly, x̄ is a solution to the split feasibility problem if and

only if x̄ ∈ B and Ax̄− PCAx̄ = 0, where PC is the metric

projection from H2 onto C. Set

min
x∈B

ϕ(x) := min
x∈B

1

2
‖Ax− PCAx‖2. (2)

Then x̄ is a solution of the split feasibility problem (1) if and

only if x̄ solves the obtimization problem (2) whics is called

the minimum-norm problem with the minimum equal to zero.

Let C be nonempty closed convex subset of real Hilbert

space H with the inner product 〈·, ·〉 and the induced norm
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‖ · ‖ and T : C → C be a self-mapping. Recall that the metric
projection PC(x) of x onto C is defined as:

PC(x) = min
y∈C

‖x− y‖.

Some authors have studied the iterative approximations of the

minimum-norm fixed points of some nonlinear mappings, for

example, a nonexpansive self-mapping T : C → C and others.

Especially, Yang et al. [14] introduced an explicit scheme

given by

xn+1 = βnTxn + (1− βn)PC [(1− αn)xn]

for each n ≥ 1. They proved that, under certain conditions on

{αn} and {βn}, the sequence {xn} converges strongly to a

minimum-norm fixed point of T in real Hilbert spaces.

Let E be a real Banach space and C be a nonempty

closed convex subset of E. Recently, Alber [9] introduced

a generalized projection mapping ΠC in E that assigns to an

arbitrary point x ∈ E the minimum point of the functional

φ(x, y), where φ(x, y) is defined by

φ(x, y) = ‖x‖2 − 2〈y, Jx〉+ ‖y‖2 (3)

for all x, y ∈ E, that is, for x ∈ E, ΠCx is the solution to the

minimization problem

φ(ΠCx, x) = inf
y∈C

φ(y, x). (4)

Note that, in a Hilbert space H , ΠC = PC and, from the

definition of function φ, it follows that

(‖x‖ − ‖y‖)2 ≤ φ(y, x) ≤ (‖x‖+ ‖y‖)2 (5)

for all x, y ∈ E;

φ(x, z) = φ(x, y) + φ(y, z) + 2〈x− y, Jy − Jz〉 (6)

for all x, y ∈ E;

φ(x, y) = 〈x, Jx− Jy〉+ 〈y − x, Jy〉
≤ ‖x‖‖Jx− Jy‖+ ‖y − x‖‖y‖ (7)

for all x, y ∈ E;

φ(x, J−1(λJy+(1−λ)Jz)) ≤ λφ(x, y)+(1−λ)φ(x, z) (8)

for all x, y, z ∈ E and λ ∈ (0, 1).
It is known that, if E is a reflexive, strictly convex and

smooth Banach space, then, for all x, y ∈ E, φ(x, y) = 0 if

and only if x = y. In a Hilbert space H , φ(x, y) = ‖x − y‖
for all x, y ∈ H and ΠC is reduced to the metric projection

PC .
A mapping T : C → C is said to be closed if, for any

sequence {xn} ⊂ C with xn → x and Txn → y, then Tx =
y.

Let E be a real Banach space and C be a nonempty closed

convex subset of E. A mapping T : C → E is said to

be σ-asymptotically quasi-nonexpansive nonself-mapping if

there exist two sequences {kn}, {cn} with lim
n→∞ kn = 0 and

∞∑
n=1

cn < ∞ such that

φ(T (ΠCT )
n−1x, x̂) ≤ (1 + kn)φ(x, x̂) + cn (9)

for all x ∈ C, x̂ ∈ F (T ) and n ≥ 1.
Let E be a real Banach space, C be a nonempty closed

convex subset of E and T : C → E be a σ-asymptotically

quasi-nonexpansive nonself-mappings with respect to {kn}
and {cn}. We define the iterative scheme {xn} as follows:

for any x1 ∈ C,
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1 ∈ C,

yn = ΠC [(1− αn)xn],

xn+1 = J−1
(
βn,0Jxn +

N∑
i=1

βn,iJTi(ΠCTi)
n−1yn

)

(10)

for all n ≥ 1, where ΠC is the generalized projection from

E onto C ⊂ E, {αn} ⊂ (0, 1), {βn,i} ⊂ [a, b] ⊂ (0, 1) and
N∑
i=0

βn,i = 1.

We denote the set of fixed points of T by F (T ) =: {x ∈
C : Tx = x}.

In this paper, we use the iterative scheme (10) to study and

prove some strong convergence theorems in framework real

uniformly convex and uniformly smooth Banach space and

give one application of the main results in this paper.

II. SOME LEMMAS

Lemma 1. [9] Let E be a reflexive, smooth and strictly convex
Banach space C be a nonempty closed and convex subset of
E. Then the following conclusions hold:

(1) φ(x,ΠCy) + φ(ΠCy, y) ≤ φ(x, y) for all x ∈ C and
y ∈ E;

(2) If x ∈ E and z ∈ C, then z = ΠCx if and only if
〈z − y, Jx− Jz〉 ≥ 0 for all y ∈ C;

(3) For all x, y ∈ E, φ(x, y) = 0 if and only if x = y.

Lemma 2. [19] Let E be a uniformly convex Banach space,
r > 0 be a positive number and Br(0) be a closed ball of
E. There exits a continuous, strictly increasing and convex
function g : [0,∞) → [0,∞) with g(0) = 0 such that

∥∥∥
N∑
i=1

(αixi)
∥∥∥
2

≤
N∑
i=1

(αi‖xi‖2)− αiαjg(xi − xj)

for all x1, x2, x3, · · · , xN ∈ Br(0) = {x ∈ E : ‖x‖ ≤ r} and

α1, α2, α3, · · · , αN ∈ (0, 1) such that
N∑
i=1

αi = 1.

The function V : E × E∗ → R defined by

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉+ ‖x∗‖2

for all x ∈ E and x∗ ∈ E∗, which was studied by Alber [9],

that is, V (x, x∗) = φ(x, J−1x∗) for all x ∈ E and x∗ ∈ E∗.

Lemma 3. [9] Let E be a reflexive, strictly convex and smooth
Banach space with E∗ as its dual. Then

V (x, x∗) + 2〈J−1x∗ − x, y∗〉 ≤ V (x, x∗ + y∗)

for all x ∈ E and x∗, y∗ ∈ E∗.

Lemma 4. [16] Let E be a uniformly convex and smooth
Banach space and {xn}, {yn} be two sequences of E. If
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φ(xn, yn) → 0 and either {xn} or {yn} is bounded, then
‖xn − yn‖ → 0.

Lemma 5. [17] Let {an} be a sequence of nonnegative real
numbers satisfying the following inequality:

an+1 ≤ (1− α)an + αnδn

for each n ≥ n0, where {αn} ⊂ (0, 1) and δ ⊂ R satisfy

the following conditions: lim
n→∞αn = 0,

∞∑
n=1

αn = ∞ and

lim sup δn ≤ 0. Then lim
n→∞ an = 0.

Lemma 6. [18] Let {an} be a sequence of real numbers
such that there exists a subsequence {ni} of {n} such that
ani

≤ ani+1 for all i ∈ N. Then there exists a nondecreasing
sequence {mk} ⊂ N such that mk → ∞ and the following
properties are satisfied by all numbers for all k ∈ N:

amk
≤ amk+1 and ak ≤ amk+1.

In fact, {mk} = max{j ≤ k : aj < aj+1}.

III. STRONG CONVERGENCE THEOREMS

Now, we give our main results in this paper,

Theorem 1. Let E be a real uniformly smooth, strictly convex
and reflexive Banach space and C be a nonempty closed
convex subset of E. Let T : C → E be a closed and
σ-asymptotically quasi-nonexpansive nonself-mappings with
two sequences {kn} and {cn} of nonnegative real numbers

with lim
n→∞ kn = 0 and

∞∑
n=1

cn < ∞. Then F (T ) is a closed

and convex subset of C.

Theorem 2. Let E be a real uniformly convex and uniformly
smooth Banach space, C be a nonempty closed convex subset
of E, Ti : E → C be a finite family of closed and
σ-asymptotically quasi-nonexpansive nonself-mappings with
two sequences {kn,i}, {cn,i} of nonnegative real numbers with
limn→∞ kn,i = 0,

∑∞
n=1 cn,i < ∞ for each 1 ≤ i ≤ N and

F =:
N⋂
i=1

F (Ti) is nonempty. Let {αn} and {βn,i} are the

sequences in (0, 1) satisfying the following conditions:

(i) lim
n→∞αn = 0 and

∞∑
n=1

αn = ∞;

(ii)
N∑
i=0

βn,i = 1 for all n ≥ 1 and lim inf
n→∞ βn,0βn,i > 0

for each 1 ≤ i ≤ N.

Then the sequence {xn} defined by (10) converges strongly to
a common minimum-norm point of F.

If we assume that N = 1 in Theorem 2, then we have the

following results:

Corollary 1. Let E be a real uniformly convex and uniformly
smooth Banach space, C be a nonempty closed convex subset
of E and T : C → E be a closed and σ-asymptotically
quasi-nonexpansive nonself-mapping with two sequences {kn}
and {cn} of nonnegative real numbers with limn→∞ kn = 0

and
∑∞

n=1 cn < ∞. Suppose that F (T ) is nonempty. Let {xn}
be a sequence in C generated by
⎧⎪⎨
⎪⎩

x1 ∈ C,

yn = ΠC [(1− αn)xn],

xn+1 = J−1
(
βnJxn + (1− βn)(JT (ΠCT )

n−1yn)
)
(11)

for all n ≥ 1, where two sequences {αn} and {βn} satisfy
the following conditions:

(i) {αn} ⊂ (0, 1), lim
n→∞αn = 0 and

∞∑
n=1

αn = ∞;

(ii) {βn} ⊂ [a, b] ⊂ (0, 1) and lim inf
n→∞ βn > 0

for each n ≥ 1.

Then the sequence {xn} converges strongly to a common
minimum-norm point of F (T ).

If we assume that each Ti is an asymptotically nonexpansive

nonself-mapping and nonexpansive nonself-mapping in

Theorem 2 for each 1 ≤ i ≤ N , then, from Theorem 2, we

have the following results:

Corollary 2. Let E be a real uniformly convex and uniformly
smooth Banach space, C be a nonempty closed convex subset
of E and Ti : C → E be a finite family of asymptotically
nonexpansive nonself-mappings with a sequence {kn,i} of
nonnegative real numbers with limn→∞ kn,i = 0 for each

1 ≤ i ≤ N. Suppose that F :=
N⋂
i=1

F (Ti) is nonempty. Let

{xn} be a sequence in C generated by
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1 ∈ C,

yn = ΠC [(1− αn)xn],

xn+1 = J−1
(
βn,0Jxn +

N∑
i=1

βn,iJTi(ΠCTi)
n−1yn

)

(12)

for all n ≥ 1, where two sequences {αn} and {βn,i} satisfy
the following conditions:

(i) lim
n→∞αn = 0 and

∞∑
n=1

αn = ∞;

(ii)
N∑
i=0

βn,i = 1 for all n ≥ 1 and lim inf
n→∞ βn,0βn,i > 0

for each 1 ≤ i ≤ N.

Then the sequence {xn} converges strongly to a common
minimum-norm point of F.

Corollary 3. Let E be a real uniformly convex and uniformly
smooth Banach space, C be a nonempty closed convex subset
of E and Ti : C → E be a finite family of nonexpansive
nonself-mappings with a sequence {kn,i} of nonnegative real
numbers with limn→∞ kn,i = 0 for each 1 ≤ i ≤ N. Suppose

that F :=
N⋂
i=1

F (Ti) is nonempty. Let {xn} be a sequence in

C generated by
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1 ∈ C,

yn = ΠC [(1− αn)xn],

xn+1 = J−1
(
βn,0Jxn +

N∑
i=1

βn,iJTi(ΠCTi)yn
) (13)
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for all n ≥ 1, where two sequences {αn} and {βn} satisfy
the following conditions:

(i) lim
n→∞αn = 0 and

∞∑
n=1

αn = ∞;

(ii)
N∑
i=0

βn,i = 1 for all n ≥ 1 and lim inf
n→∞ βn,0βn,i > 0

for each 1 ≤ i ≤ N.

Then, the sequence {xn} converges strongly to a common
minimum-norm point of F.

Corollary 4. Let E be a real uniformly convex and uniformly
smooth Banach space, C be a nonempty closed convex subset
of E and T : C → E be an asymptotically nonexpansive
nonself-mapping with a sequences {kn} of nonnegative real
numbers with limn→∞ kn = 0. Suppose that F (T ) is
nonempty. Let {xn} be a sequence in C generated by
⎧⎪⎨
⎪⎩

x1 ∈ C,

yn = ΠC [(1− αn)xn],

xn+1 = J−1
(
βnJxn + (1− βn)(JT (ΠCT )

n−1yn)
)
(14)

for all n ≥ 1, which {αn} and {βn} satisfy the following
conditions:

(i) {αn} ⊂ (0, 1), lim
n→∞αn = 0 and

∞∑
n=1

αn = ∞;

(ii) {βn} ⊂ [a, b] ⊂ (0, 1) and lim inf
n→∞ βn > 0

for each n ≥ 1.

Then the sequence {xn} converges strongly to a common
minimum-norm point of F (T ).

Corollary 5. Let E be a real uniformly convex and uniformly
smooth Banach space, C be a nonempty closed convex subset
of E and T : C → E be a nonexpansive nonself-mapping
with a real sequence {kn} with limn→∞ kn = 0. Suppose that
F (T ) is nonempty. Let {xn} be a sequence in C generated
by⎧⎪⎨
⎪⎩

x1 ∈ C,

yn = ΠC [(1− αn)xn],

xn+1 = J−1
(
βnJxn + (1− βn)(JT (ΠCT )

n−1yn)
)
(15)

for all n ≥ 1, which two sequences {αn} and {βn} satisfy
the following conditions:

(i) {αn} ⊂ (0, 1), lim
n→∞αn = 0 and

∞∑
n=1

αn = ∞;

(ii) {βn} ⊂ [a, b] ⊂ (0, 1) and lim inf
n→∞ βn > 0 for n ≥ 1.

Then the sequence {xn} converges strongly to a common
minimum-norm point of F (T ).

If E = H is a real Hilbert space, then E is uniformly

convex and smooth real Banach space. In this case, J = I (:

the identity mapping) on H and ΠC = PC (: the projection

mapping from H onto C). Thus, we have the following result:

Corollary 6. Let H be a real Hilbert space, C be a nonempty
closed convex subset of H and Ti : E → C be a finite
family of closed and σ-asymptotically quasi-nonexpansive
nonself-mappings with two sequences {kn,i}, {cn,i} of
nonnegative real numbers with limn→∞ kn,i = 0,

∑∞
n=1 cn,i < ∞ for each 1 ≤ i ≤ N . Suppose that

F :=
N⋂
i=1

F (Ti) is nonempty. Let {xn} be a sequence in C

generated by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1 ∈ C,

yn = PC [(1− αn)xn],

xn+1 = βn,0xn +
N∑
i=1

βn,iTi(PCTi)
n−1yn

(16)

for all n ≥ 1, where two sequences {αn} and {βn,i} satisfy
the following conditions:

(i) {αn} ⊂ (0, 1), lim
n→∞αn = 0 and

∞∑
n=1

αn = ∞;

(ii) {βn,i} ⊂ [a, b] ⊂ (0, 1) and lim inf
n→∞ βn,0βn,i > 0

for each n ≥ 1 and 1 ≤ i ≤ N.

Then the sequence {xn} converges strongly to minimum-norm
point of F

IV. APPLICATIONS

In this section, we apply our main result to the

minimum-norm in Banach spaces.

Corollary 7. Let E be a real uniformly convex and uniformly
smooth Banach space. Let Ai : C → R be a continuously
Fréchet differentiable convex function with Ti := ΠC(I −
μ∇Ai) be nonexpansive nonself-mapping for some μ > 0 and
for each 1 ≤ i ≤ N. Let {xn} be a sequence in C generated
by ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

x1 ∈ C,

yn = ΠC [(1− αn)xn],

xn+1 = βn,0xn +
N∑
i=1

βn,i[ΠC(I − μ∇Ai]yn

(17)

for all n ≥ 1, where two sequences {αn} and {βn,i} satisfy
the following conditions:

(i) {αn} ⊂ (0, 1), lim
n→∞αn = 0 and

∞∑
n=1

αn = ∞;

(ii) {βn,i} ⊂ [a, b] ⊂ (0, 1) and lim inf
n→∞ βn,0βn,i > 0

for n ≥ 1 and 1 ≤ i ≤ N ,
where ∇Ai denotes the gradient of Ai at x ∈ C.
Then the sequence {xn} converges strongly to a common
minimum-norm point of F.

V. NUMERICAL EXAMPLE

Now, we give an example of a σ-asymptotically

quasi-nonexpansive mapping that satisfies the conditions of

Theorem 2 and some numerical experiment results to explain

the conclusion of the theorem as follows:

Let E = R = H, C = [0,∞), J be the identity mapping

and ΠC = PC with PCx = x. Assume that Tix = x
9 , 1 ≤ i ≤

N for x ∈ C. Let kn,i =
1

2i(n2+1) and cn,i =
1

2in2 for n ≥ 1
and 1 ≤ i ≤ N, we have

‖Tix− Tiy‖ − (1− ki,n)‖x− y‖ − ci,n

≤ ‖x− y‖ − (1− ki,n)‖x− y‖ − ci,n

≤ 0
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for n ≥ 1 and 1 ≤ i ≤ N with limn→∞ kn,i =
0 and

∑∞
n=1 cn,i < ∞, so Ti is a σ-asymptotically

quasi-nonexpansive mapping. Clearly, F =
N⋂
i=1

F (Ti) = {0}.
Set

αn =
1

n+ 2
and βn,i =

1

3i
(

1

n+ 3
).

Thus, the conditions of Theorem 2 are fulfilled. Therefore,

we can invoke Theorem 2 to demonstrate that the iterative

sequence {xn} defined by (10) converges strongly to 0. We

have the numerical analysis tabulated in Table I and shown in

Fig. 1.

TABLE I
NUMERICAL EXPERIMENT

n xn

1 10
2 2.5617
3 0.6419
4 0.1605
5 0.0401
6 0.0100
7 0.0025
8 0.0006
9 0.0002

10 0.0000

Fig. 1 The iteration chart with initial value x1 = 10

VI. CONCLUSION

Our iteration can be used for proving strong convergence

theorems of the proposed sequence {xn} in real uniformly

convex and uniformly smooth Banach spaces.

APPENDIX A

PROOF OF THE THEOREM 1

Let {xn} be a sequence in F (T ) with xn → v as n → ∞.

Since Txn = xn → v, by the closednes of T , we have v =
Tv, that is, v ∈ F (T ). This shows that F (T ) is closed.

Next, we prove that F (T ) is convex. For any x, y ∈ F (T )
and t ∈ (0, 1), putting u = tx + (1 − t)y. We prove that

u ∈ F (T ). Let {vn} be a sequence generated by

v1 = Tu, v2 = TΠCv1 = T (ΠCT )u,

v3 = TΠCv2 = T (ΠCT )
2u, · · · ,

vn = TΠCvn−1 = T (ΠCT )
n−1u, · · ·

for each n ≥ 1. By the definition of φ(x, y), we have

φ(u, vn) = ‖u‖2 − 2〈u, Jvn〉+ ‖vn‖2
= ‖u‖2 − 2〈tx+ (1− t)y, Jvn〉+ ‖vn‖2
= ‖u‖2 − 2t〈x, Jvn〉 − 2(1− t)〈y, Jvn〉+ ‖vn‖2
= ‖u‖2 + tφ(x, vn) + (1− t)φ(y, vn)− t‖x‖2
− (1− t)‖y‖2.

(18)

Also, we have

tφ(x, vn) + (1− t)φ(y, vn)

≤ t[(1 + kn)φ(x, u) + cn] + (1− t)[(1 + kn)φ(y, u) + cn]

= t[(1 + kn)(‖x‖2 − 2〈x, Ju〉+ ‖u‖2) + cn]

+ (1− t)[(1 + kn)(‖y‖2 − 2〈y, Ju〉+ ‖u‖2) + cn]

= t(1 + kn)‖x‖2 + (1− t)(1 + kn)‖y‖2
− (1 + kn)‖u‖2 + cn

= (1 + kn)[t‖x‖2 + (1− t)‖y‖2 − ‖u‖2] + cn.
(19)

From (18) and (19), it follows that

φ(u, vn) ≤ ‖u‖2 + (1 + kn)[t‖x‖2 + (1− t)‖y‖2 − ‖u‖2]
+ cn − t‖x‖2 − (1− t)‖y‖2 → 0

as n → ∞. Thus vn → u as n → ∞, which implies that

vn+1 → u. Since T is closed and vn+1 = T (ΠCT )
nu =

T (ΠCT )(ΠCT )
n−1u = TΠCvn, we have u = TΠCu. Since

ΠCu = u for for any u ∈ C, we have u = Tu and so F (T )
is convex. This completes the proof.

APPENDIX B

PROOF OF THE THEOREM 2

Let x̂ = ΠF(0) ∈ F, that is, ‖x̂‖2 = φ(x̂, 0) =
min
y∈F

φ(y, 0) = min
y∈F

‖y‖2 and let kn = max
1≤i≤N

{kn,i} and

cn = max
1≤i≤N

{cn,i}. It follows from (10), Lemma 1 and the

property of φ that

φ(x̂, yn) = φ(x̂,ΠC((1− αn)xn))

≤ φ(x̂, (1− αn)xn)

= φ(x̂, J−1(αnJ0 + (1− αn)Jxn))

= ‖x̂‖2 − 2〈x̂, αnJ0 + (1− αn)Jxn〉
+ ‖(1− αn)Jxn‖2

≤ ‖x̂‖2 − 2〈x̂, αnJ0〉 − 2(1− αn)〈x̂, Jxn〉
+ αn‖J0‖2 + ‖(1− αn)xn‖2

= αnφ(x̂, 0) + (1− αn)φ(x̂, xn).

(20)
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Then, we have

φ(x̂, xn+1)

= φ(x̂, J−1(βn,0Jxn +
N∑
i=1

βn,iJTi(ΠCTi)
n−1yn))

= ‖x̂‖2 − 2〈x̂, βn,0Jyn +

N∑
i=1

βn,iJTi(ΠCTi)
n−1yn〉

+ ‖βn,0Jyn +
N∑
i=1

βn,iJTi(ΠCTi)
n−1yn‖2

≤ ‖x̂‖2 − 2βn,0〈x̂, Jyn〉 − 2
N∑
i=1

βn,i〈x̂, JTi(ΠCTi)
n−1yn〉

+ βn,0‖Jyn‖2 +
N∑
i=1

βn,i‖JTi(ΠCTi)
n−1yn‖2

− βn,0βn,i‖Jyn − JTi(ΠCTi)
n−1yn‖

≤ βn,0φ(x̂, yn) +
N∑
i=1

βn,iφ(x̂, Ti(ΠCTi)
n−1yn)

− βn,0βn,i‖Jyn − JTi(ΠCTi)
n−1yn‖

≤ βn,0φ(x̂, xn) +
N∑
i=1

βn,iφ(x̂, Ti(ΠCTi)
n−1yn)

≤ βn,0φ(x̂, xn) + (1− βn,0)[(1 + kn)φ(x̂, yn) + cn]

≤ βn,0φ(x̂, xn) + (1− βn,0)[(1 + kn){αnφ(x̂, 0)

+ (1− αn)φ(x̂, xn)}+ cn]

= βn,0φ(x̂, xn) + (1− βn,0)(1 + kn)αnφ(x̂, 0)

+ (1− βn,0)(1 + kn)(1− αn)φ(x̂, xn) + (1− βn,0)cn

= [βn,0 + (1− βn,0)(1 + kn)(1− αn)]φ(x̂, xn)

+ (1− βn,0)(1 + kn)αnφ(x̂, 0) + (1− βn,0)cn

= [1− αn(1− βn,0) + kn(1− βn,0)

− αnkn(1− βn,0)]φ(x̂, xn)

+ (1− βn,0)(1 + kn)αnφ(x̂, 0) + (1− βn,0)cn

= [1− (1− βn,0)(αn − kn + αnkn)]φ(x̂, xn)

+ (1− βn,0)(1 + kn)αnφ(x̂, 0) + (1− βn,0)cn

= [1− (1− βn,0)(αn(1 + kn)− kn)]φ(x̂, xn)

+ (1− βn,0)(1 + kn)αnφ(x̂, 0) + (1− βn,0)cn

≤
( n∏

i=1

βi,0

)
φ(x̂, xn) + (1− βn−1,0)φ(x̂, 0) +

n∑
j=1

cj

= Θ1φ(x̂, xn) + (1−Θn−1)φ(x̂, 0) +
n∑

j=1

cj ,

(21)

where Θ1 =
n∏

i=1

βi,0, Θn−1 = βn−1,0βn−2,0βn−3,0 · · ·β1,0

and
n∑

j=1

cj = c1 + c2 + c3 + · · ·+ cn. From (8) and Lemma 3,

it follows that

φ(x̂, yn)

≤ φ(x̂, (1− αn)xn)

= V (x̂, J(1− αn)xn)

≤ V (x̂J(1− αn)xn + αnJx̂)

− 2〈J−1J(1− αn)xn − x̂, αnJx̂〉
= φ(x̂, J−1(J(1− αn)xn + αnJx̂))

− 2〈(1− αn)xn − x̂, αnJx̂〉
≤ (1− αn)φ(x̂, xn) + αnφ(x̂, x̂)

− 2αn〈(1− αn)xn − x̂, Jx̂〉
= (1− αn)φ(x̂, xn)− 2αn〈(1− αn)xn − x̂, Jx̂〉.

(22)

From (21) and (22), we have

φ(x̂, xn+1)

≤ βn,0φ(x̂, xn) + (1− βn,0)(1 + kn)[(1− αn)φ(x̂, xn)

− 2αn〈(1− αn)xn − x̂, Jx̂〉]
+ (1− βn,0)cn − βn,0βn,ig(‖Jxn − JTi(ΠCTi)

n−1yn‖)
=

(
1− θn

αn

)
φ(x̂, xn) +

θn
αn

(1 + kn)[(1− αn)φ(x̂, xn)

− 2αn〈(1− αn)xn − x̂, Jx̂〉]
+

θn
αn

cn − βn,0βn,ig(‖Jxn − JTi(ΠCTi)
n−1yn‖)

=
(
1− θn

αn

)
φ(x̂, xn) +

θn
αn

(1 + kn)(1− αn)φ(x̂, xn)

− 2θn(1 + kn)〈(1− αn)xn − x̂, Jx̂〉
+

θn
αn

cn − βn,0βn,ig(‖Jxn − JTi(ΠCTi)
n−1yn‖)

=
[
1− θn

αn
+

θn
αn

(1 + kn)(1− αn)
]
φ(x̂, xn)

− 2θn(1 + kn)〈(1− αn)xn − x̂, Jx̂〉
+

θn
αn

cn − βn,0βn,ig(‖Jxn − JTi(ΠCTi)
n−1yn‖)

=
[
1− θn

αn
+

θn
αn

(1 + kn)− θn
αn

(1 + kn)αn

]
φ(x̂, xn)

− 2θn(1 + kn)〈(1− αn)xn − x̂, Jx̂〉
+

θn
αn

cn − βn,0βn,ig(‖Jxn − JTi(ΠCTi)
n−1yn‖)

=
[
1− θn(1 + kn) +

θn
αn

((1 + kn)− 1)
]
φ(x̂, xn)

− 2θn(1 + kn)〈(1− αn)xn − x̂, Jx̂〉
+

θn
αn

cn − βn,0βn,ig(‖Jxn − JTi(ΠCTi)
n−1yn‖)

= [1− θn(1 + kn)]φ(x̂, xn) +
θn
αn

[(1 + kn)− 1]φ(x̂, xn)

− 2θn(1 + kn)〈(1− αn)xn − x̂, Jx̂〉
+

θn
αn

cn − βn,0βn,ig(‖Jxn − JTi(ΠCTi)
n−1yn‖)

≤ (1− θn)φ(x̂, xn)− 2θn〈(1− αn)xn − x̂, Jx̂〉
+ [(1 + kn)− 1]M +

θn
αn

cn

− βn,0βn,ig(‖Jxn − JTi(ΠCTi)
n−1yn‖)

≤ (1− θn)φ(x̂, xn)− 2θn〈(1− αn)xn − x̂, Jx̂〉
+ [(1 + kn)− 1]M +

θn
αn

cn

(23)

for some M > 0, where θn = αn(1− βn,0) for n ≥ 1.
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Now, we consider the following two cases.

Case I. Suppose that there exists N ∈ N such that

{φ(x̂, xn)} is nonincreasing for all n ≥ N. Then {φ(x̂, xn)}
is convergent and so, from (23),

βn,0βn,ig(‖Jxn − JTi(ΠCTi)
n−1yn‖) → 0

as n → ∞. From lim inf
n→∞ βn,0βn,i > 0, we have

g(‖Jxn − JTi(ΠCTi)
n−1yn‖) → 0

as n → ∞. Thus, by the property of g, we have

lim
n→∞ ‖Jxn − JTi(ΠCTi)

n−1yn‖ = 0 (24)

for each 1 ≤ i ≤ N . Since J−1 is uniformly norm-to-norm

continuous on each bounded set, we have

lim
n→∞ ‖xn − Ti(ΠCTi)

n−1yn‖ = 0. (25)

From (7), (24) and (25), we obtain

lim
n→∞φ(xn, Ti(ΠCTi)

n−1yn) = 0. (26)

Moreover, it follows from (26) that

φ(xn, xn+1)

= φ(xn, J
−1

(
βn,0Jxn +

N∑
i=1

βn,iJTi(ΠCTi)
n−1yn)

)

≤ βn,0φ(xn, xn) +
N∑
i=1

βn,iφ(xn, Ti(ΠCTi)
n−1yn)

≤
N∑
i=1

βn,iφ(xn, Ti(ΠCTi)
n−1yn) → ∞

(27)

as n → ∞. Since lim
n→∞αn = 0, it follows that

φ(xn, yn) = φ(xn,ΠC((1− αn)xn)) ≤ φ(xn, (1− αn)xn)

= φ(xn, J
−1(αnJ0 + (1− αn)Jxn)

≤ αn(xn, 0) + (1− αn)φ(xn, xn)

= αn(xn, 0) → 0
(28)

as n → ∞. From (26)–(28) and Lemma 4, we have

lim
n→∞ ‖xn − Ti(ΠCTi)

n−1yn‖ = 0, lim
n→∞ ‖xn − yn‖ = 0,

lim
n→∞ ‖xn − xn+1‖ = 0.

(29)

Furthermore, J is uniformly norm-to-norm continuous on each

bounded set, it follows that

lim
n→∞ ‖yn − Ti(ΠCTi)

n−1yn‖ = 0,

lim
n→∞ ‖Jyn − JTi(ΠCTi)

n−1yn‖ = 0,

lim
n→∞ ‖yn − yn+1‖ = 0, lim

n→∞ ‖yn − yn+1‖ = 0.

From (7), it follows that

lim
n→∞φ(yn, yn+1) = 0, lim

n→∞φ(yn, Ti(ΠCTi)
n−1yn) = 0

(30)

for each 1 ≤ i ≤ N and, from (6), we have

φ(yn, Tiyn)

= φ(yn, yn+1) + φ(yn+1, Tiyn)

+ 2〈yn − yn+1, Jyn+1 − JTiyn〉
= φ(yn, yn+1) + φ(yn+1, Ti(ΠCTi)

nyn+1)

+ φ(Ti(ΠCTi)
nyn+1, Ti(ΠCTi)

nyn) + 2〈Ti(ΠCTi)
nyn+1

− Ti(ΠCTi)
nyn, JTi(ΠCTi)

nyn − JTiyn〉
+ 〈yn+1 − Ti(ΠCTi)

nyn+1, JTi(ΠCTi)
nyn+1 − JTiyn〉

+ 2〈yn − yn+1, Jyn+1 − JTiyn〉
+ φ(Ti(ΠCTi)

nyn, Tiyn).
(31)

Since φ(yn, (ΠCTi)
nyn) ≤ φ(yn, Ti(ΠCTi)

n−1yn), it follows

from (31) that

lim
n→∞φ(yn, (ΠCTi)

nyn) = 0.

By Lemma 4, we have lim
n→∞ ‖yn − (ΠCTi)

nyn‖ = 0, that is,

lim
n→∞φ((ΠCTi)

nyn, yn) = 0. Since φ(Ti(ΠCTi)
nyn, Tiyn) ≤

(1 + kn)φ((ΠC)
nyn, yn) + cn, we have

lim
n→∞φ(Ti(ΠCTi)

nyn, Tiyn) = 0. (32)

Applying (30), (32) and the definition of Ti, we have

lim
n→∞φ(yn, Tiyn) = 0. (33)

By Lemma 4, we get

lim
n→∞ ‖yn − Tiyn‖ = 0 (34)

for each 1 ≤ i ≤ N . Let {xnk
} be a subsequence of the

sequence {xn} such that

lim sup
n→∞

〈(1− αn)xn − x̂, Jx̂〉 = lim
k→∞

〈(1− αn)xnk
− x̂, Jx̂〉

and xnk
→ w. Then, from (28), it follows that xnk

→ w.
Hence, By Lemma 1 (ii), we have

lim sup
n→∞

〈(1− αn)xn − x̂, Jx̂〉 = lim
k→∞

〈(1− αn)xnk
− x̂, Jx̂〉

= 〈w − x̂, Jx̂〉 ≥ 0.

Now, we show that xn+1 → x̂ as n → ∞. Since Ti is

closed, it follows from (34) that that w ∈ F (Ti) foe each

1 ≤ i ≤ N and w ∈
N⋂
i=1

F (Ti). Then, from (23), we have

φ(xn+1, x̂) ≤ (1− θn)φ(x̂, xn)− 2θn〈(1− αn)xn − x̂, Jx̂〉
+ [(1 + kn)− 1]M +

θn
αn

cn.

Note that lim
n→∞ θn = 0 and

∞∑
n=1

θn = ∞. By Lemma 5, we

have φ(x̂, xn) → 0 as n → ∞ and, consequently, xn →
x̂, n → ∞.

Case II. Suppose that there exists a subsequence {ni} of

{n} such that

φ(x̂, xni
) ≤ φ(x̂, xni+1)
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for each i ∈ N. Then, by Lemma 6, there exists a

nondecreasing sequence {mk} ⊂ N such that mk → ∞,

φ(x̂, xmk
) ≤ φ(x̂, xmk+1), φ(x̂, xk) ≤ φ(x̂, xmk+1)

for all k ∈ N. Then, from (23) and θn → 0, it follows that

βmk,0βmk,ig(‖Jxmk
− JTi(ΠCTi)

mk−1ymk
‖)

≤ (1− θmk
)φ(x̂, xmk

)− φ(xmk+1, x̂)

− 2θmk
〈(1− αn)xmk

− x̂, Jx̂〉
+ [(1 + kmk

)− 1]M +
θmk

αmk

cmk
.

This implies that

g(‖Jxmk
− JTi(ΠCTi)

mk−1ymk
‖) → 0

as n → ∞. Hence, following the method of Case I, we have

‖xmk
− ymk

‖ → 0 as k → ∞ and ‖ymk
− Tiymk

‖ → 0 as

k → ∞ for each 1 ≤ i ≤ N. Thus there exists w1 ∈ F such

that
lim sup
n→∞

〈(1− αmk
)xmk

− x̂, Jx̂〉
= lim

k→∞
〈(1− αmk

)xmk
− x̂, Jx̂〉

= 〈w1 − x̂, Jx̂〉
≥ 0.

(35)

It follows from (23) that

φ(xmk+1, x̂)

≤ (1− θmk
)φ(x̂, xmk

)− 2θmk
〈(1− αn)xmk

− x̂, Jx̂〉
+ [(1 + kmk

)− 1]M +
θmk

αmk

cmk
.

(36)

Since φ(xmk
, x̂) ≤ φ(xmk+1, x̂), (36) implies that

θmk
φ(x̂, xmk

)

≤ φ(x̂, xmk
)− φ(xmk+1, x̂)− 2θmk

〈(1− αn)xmk
− x̂, Jx̂〉

+ [(1 + kmk
)− 1]M +

θmk

αmk

cmk

≤ −2θmk
〈(1− αn)xmk

− x̂, Jx̂〉
+ [(1 + kmk

)− 1]M +
θmk

αmk

cmk

(37)

In particular, since θmk
> 0, it follows that

φ(x̂, xmk
) ≤ −2〈(1− αn)xmk

− x̂, Jx̂〉+ kmk

θmk

M +
cmk

αmk

.

(38)

Hence, from (36) and the fact that kmk
→ 0, k → ∞ and

cmk
→ 0 as k → ∞, it follows that φ(x̂, xmk

) → 0 as k →
∞, which together with (37) gives φ(x̂, xmk+1) → 0 as k →
∞. But, since φ(xmk

, x̂) ≤ φ(xmk+1, x̂) for all k ∈ N, we

obtain xk → x̂ as k → ∞. Therefore, from the two Cases, we

can conclude that {xn} converges strongly to the minimum

norm point of F. This completes the proof.
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