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An Implicit Methodology for the Numerical
Modeling of Locally Inextensible Membranes

Aymen Laadhari

Abstract—We present in this paper a fully implicit finite element
method tailored for the numerical modeling of inextensible fluidic
membranes in a surrounding Newtonian fluid. We consider a highly
simplified version of the Canham-Helfrich model for phospholipid
membranes, in which the bending force and spontaneous curvature
are disregarded. The coupled problem is formulated in a fully
Eulerian framework and the membrane motion is tracked using
the level set method. The resulting nonlinear problem is solved
by a Newton-Raphson strategy, featuring a quadratic convergence
behavior. A monolithic solver is implemented, and we report several
numerical experiments aimed at model validation and illustrating
the accuracy of the proposed method. We show that stability is
maintained for significantly larger time steps with respect to an
explicit decoupling method.

Keywords—Finite element method, Newton method, level set,
Navier-Stokes, inextensible membrane, liquid drop.

I. INTRODUCTION

THIS work is concerned with the development and

numerical implementation of a fully implicit method

suitable for the modeling of the dynamics of single

fluidic membranes in a surrounding Newtonian fluid. Fluidic

membranes such as phospholipid membranes are abundant in

many real life and industrial applications [18]. They have

a complex assembly of phospholipid bilayers composed by

amphiphilic molecules [26]. In particular, red blood cells,

referred to as RBCs, and vesicles (biomimetic membranes)

are of great interest by several scientific communities [4],

[16], [24]. We consider a highly simplified version of the

Canham-Helfrich model [6], [7], [9] introduced to model

the mechanical properties of RBCs and more generally

biological membranes. In the present work, the simplified

membrane model disregards the bending force and the

spontaneous curvature of the membrane but accounts for the

inhomogeneous surface tension, see [17]. This preliminary

work can be also suitable to model liquid drops and constitutes

one step in our attempt to study the deformations of vesicles

and RBCs under the bending energy.

The aforementioned problem was widely studied in the

literature and several methodologies have been developed,

see e.g. [2]–[4], [11], [12], [15], [24]. However, the most

existing works have used fully explicit decoupling strategies

for the fluid problem and the shape deformation, leading a

severe stability condition. Only few works have proposed

semi-implicit approaches such as [2] for the vesicle problem
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Fig. 1 A sketch for the membrane Γ with a reduced area Ξ2d = 0.6 and
embedded in a square computational domain Λ of size 2L

and [10] for the capillary problem with homogeneous surface

tension coefficient. The fully implicit time discretization

methods are conditionally stable and enable to overcome the

severe restrictions related to the setting of time step. In this

paper, we describe a fully implicit strategy by combining the

level set and Newton methods to solve the nonlinear coupling

between the fluid problem and the membrane mechanics

endowed with the simplified Helfrich force. We focus on

the two-dimensional case, although the three-dimensional

formulation of the tangent problem does not introduce any

changes or additional complexities.

The paper is organized as follows. In Section II, we

introduce some required notations and we provide a

mathematical setting for the coupled nonlinear problem.

Section III presents the semidiscrete finite element

approximation and describes the Newton strategy. A set

of numerical examples showing the main features and the

accuracy of the methodology are described in Section IV.

The conclusions and forthcoming extensions are summarized

in Section V. Details on the linearization are provided in

appendix A.

II. MATHEMATICAL SETTING

A. Notations

Let T > 0 represent the period of the computations. For any

time t ∈ (0, T ), let Ω(t) ⊂ R2 design the intracellular domain

(dense suspension of hemoglobin for RBCs), and having a

Lipschitz continuous boundary Γ(t) = ∂Ω(t). The membrane

is embedded in a larger computational domain Λ (plasma for

RBCs) such that Γ(t) ∩ ∂Λ = ∅ for all t ∈ (0, T ), see Fig. 1.

Let n and ν denote the unit outward normal vector on the

membrane Γ(t) and the external boundary ∂Λ, respectively.

From now, the explicit dependence of Ω and Γ from t will
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be understood. We give two surface operators needed along

this paper. Let κ be a scalar function, v be a vector field and

Id be the identity tensor. Let ⊗ denote the tensorial product

between vectors. The surface gradient and surface divergence

operators are respectively expressed as:

∇sκ = (Id − n⊗ n) ∇κ and divs v = tr(∇sv).

B. Simplified Membrane Model

To describe the mechanical properties of phospholipid

membranes, Canham [6] and Helfrich [7], [9] introduced

independently a mathematical model that formulates the

physical properties of the cell membrane with respect to the

curvature. Here, we use a highly simplified version of this

energy, in which we disregard the bending and the asymmetry

effect of the membrane and its surrounding environment.

However, we only preserve the inhomogeneities within the

structure of the membrane [17].

The deformations of the fluidic membranes are subject to

specific constraints [18]. First, the incompressibility condition

of the intracellular and extracellular domains results from the

impermeability of the membrane. Second, the membrane is

not allowed to stretch and should preserve consequently its

circumference (surface area in 3D) during the dynamics that

represents to the local inextensibility which corresponds to

a zero surface divergence of the velocity [16], [25]. Hence,

we introduce a local Lagrange multiplier λ that represents

the membrane tension and depends on the position on the

membrane (analogous to the pressure that corresponds to the

fluid incompressibility constraint). Accordingly, we consider

the constrained space of admissible velocities:{
u : divu = 0 in Λ and divsu = 0 on Γ

}
.

Using a shape differentiation methodology [13], the

corresponding force reads:

F Γ = λHn−∇sλ on (0, T )× Γ. (1)

The force F Γ corresponds to the jump of the normal stresses

across the membrane and gives rise to two components

involving the space varying surface tension λ. The first term

is similar to the capillary forces engendered by the surface

tension for drops and bubbles, while the second term is

tangential to the membrane and corresponds to the movement

of particles on the membrane without affecting its shape; that

is known as the Marangoni effect.

C. Level Set Method

We follow the membrane motion in an Eulerian framework

in such a way that the evolving membrane represents the

iso-value zero of a level set function [21]:

Γ(t) =
{
(t,x) ∈ (0, T )× Λ : ϕ(t,x) = 0

}
.

The intracellular domain Ω corresponds to the set ϕ < 0.

For any t ∈ (0, T ), a time-dependant initial value partial

differential equation describes the motion of Γ:

∂ϕ

∂t
+ u ·∇ϕ = 0, in (0, T )× Λ.

This problem is initialized with a suitable distance function

ϕ0 to Γ(0):

ϕ0(x) =

⎧⎨
⎩

inf
y∈Γ(0)

|y − x| if x /∈ Ω(0),

− inf
y∈Γ(0)

|y − x| otherwise.

The mean curvature H is introduced as the sum of the principle

curvatures on the membrane. All geometrical quantities, e.g.

n and H , are naturally encoded in terms of ϕ and are

consequently extended to the entire Λ. We have

n =
∇ϕ

|∇ϕ| and H = divs n = divn.

It is common to introduce a regularization approach that

avoids using meshes that fit the membrane deformation. Let

us introduce a regularization parameter ε proportional to the

mesh size h. The regularized Heaviside function H , Dirac

measure δΓ and sign function S in a banded strip of width 2ε
are respectively given by:

Hε(ϕ) =

⎧⎪⎪⎨
⎪⎪⎩

0, when ϕ < −ε
1

2

(
1 +

ϕ

ε
+

1

π
sin

(πϕ
ε

))
, when |ϕ| � ε,

1, otherwise

δε(ϕ) =
dHε

dϕ
(ϕ) and Sε(ϕ) = 2Hε(ϕ)− 1.

For any given function ξ(·) defined on Γ, an extension ξ̃(·)
to the entire domain Λ is required, and the surface integrals

are approximated by:∫
Γ

ξ(x) ds =

∫
Λ

|∇ϕ| δΓ ξ̃(x) dx ≈
∫
Λ

|∇ϕ| δε (ϕ) ξ̃(x) dx.

The signed distance property is lost after the advection of

the level set, resulting in bad scenarios where the gradient

becomes too large or too small near Γ. That can deteriorate

the accurate computations over Γ. A ”redistancing problem”

commonly helps to re-establish the signed distance property

[21]. At any time t ∈ (0, T ), let τ be a pseudo-time variable.

We shall solve until convergence the problem:{
∂φ

∂τ
(τ, ·; t) + Sε(ϕ(t, ·))

( |∇φ(τ, ·; t)| − 1
)
= ζ(τ, ·; t),

φ(0, ·; t) = ϕ(t, ·),

where Sε(ϕ) enables to impose a zero-displacement on the

membrane, and ζ(τ, ·; t) is an explicit Lagrange multiplier

which acts as a constraint enforcing the unphysical shifting of

the membrane during the redistancing process. We follow the

redistancing method described in [16]. When the convergence

is achieved, the level set function ϕ(t, ·) is updated with

the solution φ(∞, ·; t). At the numerical level, we use

a first order combined characteristic and finite difference

discretization method to approximate the advection term

in the redistancing problem. In addition, we consider the

Gauss-Lobatto quadrature formula which guaranties further

stability for the characteristics method [5], [23].
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D. Statement of the Nonlinear Coupled Problem

Let us consider a Newtonian fluid in both sides of the

fluidic membrane Γ. We assume a constant density ρi for

the inner fluid and ρo for the ambient fluid, see Fig. 1.

Analogously, we introduce the constant viscosities μi and μo.

Let 1Ω represent the characteristic function of Ω. The global

density function is given with respect to the level set function

by ρ(ϕ) = ρi1ϕ<0 + ρo1ϕ�0. Similarly, the global viscosity

function μ(ϕ) is introduced. Let σ(u, p, ϕ) = 2μ(ϕ)D(u)−pI
and D(u) = (∇u+∇uT )/2 be the fluid Cauchy stress tensor

and the strain tensor, respectively.

We consider two complementary subsets ΣD and ΣN of

the boundary ∂Λ on which essential or natural boundary

conditions are assigned, respectively. Let ub represent the

velocity field on ΣD and ϕb be the level set on the

upstream boundary Σ− =
{
x ∈ ∂Λ : u · ν(x) < 0

}
.

We introduce the following spaces of admissible velocities,

pressures, membrane tension and level set:

V(ub) =
{
v ∈ (

H1 (Ω)
)d

: v = ub on ΓD

}
,

Q =

{
q ∈ L2 (Ω) :

∫
Ω

q dx = 0

}
, W = H−1/2(Γ)

and X(ϕb) =
{
ψ ∈W 1,∞ (Λ) : ψ = ϕb on Σ−

}
.

Let us denote by [u]+− = u+ − u− and [σn]+− = σ+n −
σ−n the jumps in the velocity and normal stress across the

membrane, respectively. Collecting the elements above, we

end with the following coupled model describing the iteration

between the membrane and the surrounding fluid:

P : find the velocity u, pressure p, membrane tension λ
and level set ϕ such that

ρ(ϕ)

(
∂u

∂t
+ u.∇u

)
− divσ(u, p, ϕ) = 0 in (0, T )× (Λ\Γ),

div u = 0 in (0, T )× Λ

divs u = 0 on (0, T )× Γ

[u]
+
− = 0 on (0, T )× Γ

[σn]+− = ∇sλ− λHn on (0, T )× Γ

∂ϕ

∂t
+ u.∇ϕ = 0 in (0, T )× Λ

ϕ = ϕb, on (0, T )× Σ−
u = ub, on (0, T )× ΣD

σν = 0 on (0, T )× ΣN .

Initial data are given by u(0) = u0 and ϕ(0) = ϕ0, and

the shape of the membrane Γ is assumed sufficiently regular

during the dynamics. The normal stress discontinuity across

the membrane is obtained using the Green transformations and

is calibrated by the mean curvature and the membrane tension.

We thereafter proceed with the non-dimensionalization

of problem P . Let U and D represent the maximum

instantaneous velocity on ΣD and the diameter of a circle

having the same perimeter as the membrane, respectively.

We introduce the Reynolds number Re = ρUDμ−1
i which

compares the membrane forces to the viscous effects. In

addition, the cell confinement is given by ς = D/(2L),

see Fig. 1. The viscosity ratio μ� = μo/μi expresses

the extracellular viscosity with respect to the intracellular

viscosity. Thus, the dimensionless and regularized viscosity

function reads:

με(ϕ) = μ�Hε(ϕ) + 1− Hε(ϕ). (2)

In addition, we introduce two dimensionless shape parameters

that measure the cell deflation: the reduced area and the excess

length. They are given by the following expressions:

Ξ2d = 4π
|Ω(0)|
|Γ(0)| and Δ2d = |Γ(0)|

√
2π

|Ω(0)| − 2π.

The reduced area Ξ2d compares the enclosed area |Ω| to the

area of a circle having the same perimeter |Γ|. The excess

length Δ2d measures the shape difference with respect to the

fully circular shape.

In what follows, all the quantities are dimensionless

and we keep using the same previous notations for the

new non-dimensionalized variables for ease of exposition.

Moreover, we suppose without loss of generality that the fluid

has the same density inside and outside the membrane, i.e.

ρi = ρo. Indeed, including different densities is very easy in

such an Eulerian framework (similarly to (2)). This assumption

will be used in the numerical examples in Section IV.

III. NUMERICAL APPROXIMATION

A. Time Discretization

Let us divide [0, T ] into N subintervals [tn, tn+1), n =
0, . . . , N − 1 of uniform time steps Δt. For any n � 1, the

unknowns un, pn, λn and ϕn at time step n are computed

iteratively. The surface divergence operator is approximated at

tn in such a way that divns v stands for (Id − nn ⊗ nn) : ∇v,

in which nn is an approximation of the normal vector n at tn.

Analogously, the surface gradient operator ∇n
s is introduced.

To write the variational formulation, the problem P is

tested with suitable test functions and we shall integrate the

momentum equation in both Ω and Λ\Ω separately. The Green

formulation for closed surface integrals is subsequently used

such that:∫
Γn

∇n
sλ

n · v +

∫
Γn

λn divns v −
∫
Γn

λn div(nn)nn · v = 0.

Therefore, the semi-discretized problem P reads:

Pn: find un, pn, λn and ϕn such that

Re

∫
Λ

(
un − un−1

Δt
+ un.∇un

)
· v −

∫
Γn

λn divns v

+

∫
Λ

2με(ϕ
n)D (un) : D(v)−

∫
Λ

pn div v = 0, (3)∫
Λ

q div un = 0, (4)∫
Γn

η divns u
n = 0, (5)∫

Λ

ϕn − ϕn−1

Δt
ψ +

∫
Λ

(un · ∇ϕn)ψ = 0, (6)

for all v ∈ V(0), q ∈ Q, η ∈ W and ψ ∈ X (0). Let

us denote by χ the global vector of unknowns (u, p, λ, ϕ),



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:10, No:12, 2016

683

and let Ψ = (v, q, η, ψ) be the corresponding test function.

All surface integrals in Pn are transformed into integrals

over Λ as aforementioned in Section II-C. We introduce the

operator R (χ) as the global residual vector corresponding to

the regularized problem. Let 〈., .〉 stand for the duality product.

The problem (3)-(6) reads in a compact form:

find χn such that

〈R (χn) ,Ψ〉 =
(
〈Rχ (χn) ,v〉V(0)′,V(0), 〈Rp(u

n), q〉Q′,Q,

〈Rλ(u
n), ξ〉W′,W, 〈Ru,ϕ(u

n, ϕn), ψ〉X(0)′,X(0)
)T

= 0, ∀Ψ.

B. Newton-Raphson Method

The Newton-Raphson method reduces the nonlinear

problem R (χn) = 0 (3)-(6) into a sequence of linear

sub-problems [14]. Given the starting value χn
0 = χn, the

algorithm computes iteratively the solution χn
k with k > 0.

Indeed, the velocity, pressure, surface tension and level set

increments δχn
k = (δun

k ; δp
n
k , δλ

n
k , δϕ

n
k ) are computed at each

sub-iteration k � 1 such that:

〈DR (χn
k ) [δχ

n
k ] ,v〉 = −〈R (χn

k ) ,v〉, (7)

where DR (χ) [δχ] represents the directional derivative of R
in the direction δχ. The solution is then explicitly updated by

χn
k+1 = χn

k + δχn
k .

Since the Newton algorithm has only local convergence

properties, we use a second order extrapolation of the solution

of previous time steps to assign the starting values χn
0 . The

method is applied recursively until the stopping criteria based

on the computation of the global residual is satisfied. At the

numerical level, a tolerance equal to 10−8 is considered.

To simplify the derivation of the tangent problem, the

regularized problem Pn is simplified based on the signed

distance property obtained by solving until convergence

the redistancing problem. Accordingly, the signed distance

assumption |∇ϕn| = 1 everywhere enables to simplify

the Jacobian matrix, reducing then the computational

cost. However, we emphasize that the expected quadratic

convergence of the Newton strategy may be significantly

deteriorated if the redistancing problem is not solved until

convergence. In fact, the Jacobian system becomes inexact

and the missing terms corresponding to |∇ϕ| 
= 1 should

be considered to re-establish the second-order convergence

behavior.
For ease of exposition, we will drop the superscript n

whenever it is clear from the context, and we rather write k as
a superscript. We introduce the following multi-linear forms:

a(u,v;w) =

∫
Λ

2wD(u) : D(v); b(u, q;T) = −
∫
Λ

qT : ∇u;

c(u,v;w) =

∫
Λ

(
(u ·∇)w + (w ·∇)u

)
· v;

d(ϕ,v;w) =

∫
Λ

w∇ϕ · v;h(ϕ,v;w,w) = a(w,v;wϕ);

m(u,v) =

∫
Λ

u · v; g(ϕ,v;w) =

∫
Λ

ϕv ·w;

e(ϕ,ψ;w) =

∫
Λ

wϕψ; k(ϕ,v;w,P) =

∫
Λ

(w ·∇ϕ) (P : ∇v);

l (ϕ,v;w) =

∫
Λ

(∇ϕ⊗w +w ⊗∇ϕ
)
: ∇v;

i(ϕ,ψ;w) =

∫
Λ

ψw ·∇ϕ; j(ϕ,ψ;w, w̃) = l(ϕ,w;ψw̃);

defined for all u,v,w, w̃ ∈ V; q ∈ Q; ϕ, ψ ∈ X; w ∈ L∞(Λ)
and P ∈ (L∞(Λ))

2×2
.

The residuals of the coupled system (3)-(6) are given by:

〈Rχ

(
χk

)
,v〉V(0)′,V(0) = Re

Δt
m
(
uk − un−1,v

)
+

Re

2
c
(
uk,v;uk

)
+ a

(
uk,v;με

(
ϕk

) )
+ b

(
v, pk; Id

)
+ b

(
v, λk; δε

(
ϕk

) (
Id −∇ϕk ⊗∇ϕk

))
,

〈Rp

(
uk

)
, q〉Q′,Q = b

(
uk, q; Id

)
,

〈Rλ

(
uk

)
, η〉Q′,Q = b

(
uk, η; δε

(
ϕk

) (
Id −∇ϕk ⊗∇ϕk

) )
,

〈Rϕ

(
ϕk,uk

)
, ψ〉X(0)′,X(0) =

1

Δt
e
(
ϕk − ϕn−1, ψ; 1

)
+ d

(
ϕk,uk;ψ

)
.

Finally, the tangent problem corresponding to the system

(3)-(6) is expressed in a compact form as:

Given χk, find δχk =
(
δuk, δpk, δλk, δϕk) such that

Re

Δt
m

(
δuk,v

)
+ Re c

(
δuk,v;uk

)
+ a

(
δuk,v;με

(
ϕk

) )
+b

(
v, δpk; Id

)
+ b

(
v, δλk; δε

(
ϕk

) (
Id −∇ϕk ⊗∇ϕk

) )
+b

(
v, δϕk;λkδ′ε

(
ϕk

) (
Id −∇ϕk ⊗∇ϕk

) )
+(μ� − 1)h

(
δϕk,v; δε

(
ϕk

)
,uk

)
+ l

(
δϕk,v;λkδε

(
ϕk

)∇ϕk
)

= −〈Rχ

(
χk

)
,v〉V(0)′,V(0), (8)

b
(
δuk, q; Id

)
= −〈Rp

(
uk

)
, q〉Q′,Q, (9)

b
(
δuk, η; δε

(
ϕk

) (
Id −∇ϕk ⊗∇ϕk

) )
− e

(
δϕk, η; δ′ε

(
ϕk

) (
Id −∇ϕk ⊗∇ϕk

)
: ∇uk

)
+ j

(
δϕk, η;uk, δε

(
ϕk

)∇ϕk
)
= −〈Rλ

(
uk

)
, η〉Q′,Q,

(10)

1

Δt
e
(
δϕk, ψ; 1

)
+ i

(
δϕk, ψ;uk

)
+g

(
ψ, δuk;∇ϕk

)
= −〈Rϕ

(
ϕk,uk

)
, ψ〉X(0)′,X(0), (11)

for all test functions v, q, η and ψ.
Regarding the finite element approximation, the

Taylor-Hood finite element is considered for the velocity

and pressure, while the Lagrange polynomials of degree 1

are used to approximate the surface tension and level set

function [5]. At the implementation level, we only consider

in the global matrix of the linear system the non-zero

coefficients corresponding to the Lagrange multiplier λ in a

small surrounding of Γ.

IV. NUMERICAL RESULTS

The present method has been implemented using

the C++ library for scientific computing Rheolef [23].
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Fig. 2 Tank treading regime: Snapshots showing the dynamics of a
membrane in simple shear flow (shape and velocity profile Ω) characterized

by Ξ2d = 0.65, μ� = 1, Re = 10−3 and ς = 1/2 at successive times
t ∈ {

0, 0.05, 0.15, 0.2, 1, 5
}

, respectively

|Γ|(0)

|Ω|(0)

 0  5 10 

Time t

|Γ|(t)
|Ω|(t)

Fig. 3 Tank treading regime: Temporal evolution of the area and perimeter

π/4

θ*

π/2

 0  5 10 

TT inclination angle θ(t)

Time t

Fig. 4 Tank treading regime: Time evolution of the inclination angle

Distributed-memory parallelism relies on MPI [19]. Meshes

have been generated using the software Gmsh [8]. The

package Mumps [1], [20] is used for the factorization and as

direct solver on distributed memory architectures. Numerical

results are displayed graphically using the softwares Paraview

[22] and Gnuplot [27].

A. Dynamics of Membranes under Simple Shear Flow

We consider a membrane having the reduced area Ξ2d =
0.65 and placed in a square computational domain such that

the confinement is ς = 1/2. We consider a simple shear flow

where the upper and lower boundaries move horizontally with

opposite constant velocities ub(·,±L) = (±V, 0), see Fig. 1.

A free-stress boundary condition σν = 0 is imposed on the

remaining boundaries and the fluid is initially stationary.

We consider a Reynolds number Re = 10−3 characterizing

vesicles in small capillaries [24]. Let us consider a small

viscosity ratio μ� = 1 between the interior and exterior

fluid. The membrane undergoes the so-called tank-treading

(TT) like motion, in which the membrane preserved a fixed

inclination angle with respect to the horizontal position and its

steady-state shape remains indeformable. Snapshots showing

the membrane deformation are provided in Fig. 2. Fig. 3

clearly shows that the area of the interior domain and the

interfacial length are well preserved. In Fig. 4 (bottom), the

Fig. 5 Tumbling regime: Snapshots showing the dynamics of a membrane in
simple shear flow (shape and velocity profile Ω) characterized by

Ξ2d = 0.65, μ� = 10, Re = 10−3 and ς = 1/2 at successive times
t ∈ {

0, 1.25, 1.75, 2.5, 3, 4.25, 4.75, 5.51, 6.5
}

, respectively

|Γ|(0)

|Ω|(0)

 0  10  20 30 

Time t

|Γ|(t)
|Ω|(t)

Fig. 6 Tumbling regime: Temporal evolution of the area and perimeter

-π/2
-π/4

0
π/4
π/2

 0  10  20 30 

TB inclination angle θ(t)

Time t

Fig. 7 Tumbling regime: Time evolution of the inclination angle

time evolution of the inclination angle is provided and the

inclination angle in the steady state is called θ�.

We now consider a large viscosity ratio μ� = 10. This

value is beyond a threshold value and it is known that this

choice leads to a change in the membrane regime. In fact,

the interior domain behaves more rigid and the membrane

undergoes consequently a tumbling (TB) regime characterized

by the rotation of the membrane around its center of mass.

In Fig. 5, snapshots showing the tumbling dynamics and the

temporal evolution of the inclination angle θ are provided.

Fig. 6 depicts the good preservation of the area and membrane

length during the tumbling motion. The time evolution of the

inclination angle is provided in Fig. 7.

B. Validation Tests

In this section, we proceed with a numerical comparison

with some available results in the published literature. We
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Fig. 8 Equilibrium inclination angle for membranes with different Ξ2d and
undergoing a TT regime, comparisons with respect to [25], [28] and [11]

emphasize that the full expression of the Helfrich force is

considered in the other works. However, the capillary number

is usually considered larger that 100, which corresponds

to a factor smaller 10−2 in front of the bending force.

Accordingly, our setting corresponds to the use of too large

capillary numbers. We first consider a membrane undergoing

a tank treading dynamics in a simple shear flow. The physical

parameters are set as follows: μ� = 1, Re = 10−3 and

ς = 1/4. We plot in Fig. 8 the equilibrium inclination angle

with respect to the reduced area. Comparisons against some

other numerical results show that a similar pattern is obtained.

We now focus on the deformation of a membrane in

the steady state of a tank treading regime. The deformation

parameter is evaluated by D = (L − B)/(L + B), where L
and B represent the major and minor semi-axes of an ellipse

having the same inertia tensor as the membrane. We compare

our numerical results with the prediction model introduced

by Seifert [26] for vesicles undergoing a tank treading like

motion. The model predicts that the deformation parameter at

equilibrium D� scales as
√

Δ2d. We choose the parameters

μ� = 1, Re = 10−3 and ς = 1/4. In Fig. 9, we plot

the deformation D� at equilibrium for several values of the

shape parameter Δ2d. Results show a good agreement with the

theoretical prediction of Seifert [26] but with a small shifting.

Overall, although a highly simplified version of the Helfrich

energy has been used, acceptable results are obtained. Indeed,

the observed differences with the existing results can be

explained by the use of different numerical methods, the

simplified version of the bending energy, the use of different

boundary conditions (periodic, Neumann, ...) and the effect of

the confinement on the dynamics of the membrane.

C. Convergence Properties of the Newton Method

We proceed now with a study of the convergence properties

of the Newton method. We consider several values of the time

step size, and we plot the residuals’ convergence curves in the

semi-logarithmic scale in Fig. 10. In addition, we evaluate in

Table I the order of convergence ROC of the residuals using

the following expression:
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Fig. 9 The deformation parameter D� for RBC in TT regime with respect
to the excess length parameter Δ2d: Comparison with model introduced by

[26]
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Fig. 10 Convergence curves of the residuals for several time step sizes:
Results are plotted in the semi-logarithmic scale

ROC =

ln

(
|R (χn

k ) |V′(0)

|R (
χn

k−1

) |V′(0)

)

ln

(
|R (

χn
k−1

) |V′(0)

|R (
χn

k−2

) |V′(0)

) , for k > 2.

From Fig. 10 and Table I, we observe that the second-order

convergence behavior is almost obtained. However, the number

of iterations required to achieve the convergence increases

when larger time steps are used. Indeed, the Newton strategy is

known to have local convergence properties, and the algorithm

only converges if the starting values are close enough to the

expected solutions. When increasing Δt, the starting value

becomes far from the solution and the convergence can be

deteriorated if too large time steps are used. There exist several

strategies in the literature that enable to address this issue,

such as the initialization by a fixed point algorithm or the line

search algorithm. That is beyond the scope of this work.

D. Grid Convergence

We now perform the simulation of a membrane having

a reduced area Ξ2d = 0.8 and undergoing a tank treading

regime at the steady state. We study the spatial accuracy of the

numerical approximations by computing normalized errors in

the energy norms on successively refined meshes with respect

to a highly accurate reference solution (obtained with a mesh
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TABLE I
ORDERS OF CONVERGENCE OF THE RESIDUALS FOR SEVERAL VALUES

OF THE TIME STEP SIZE

k Δt = 5× 10−3 5× 10−2 10−2 0.1 0.2 0.3

3 2.0024 1.5497 0.4281 1.3849 2.3955 3.2582
4 1.8466 1.3017 1.2575 1.3946 0.3742
5 1.2608 1.8534 2.7267 1.0060
6 0.8732 1.0743
7 2.7319 1.2558
8 1.5564 1.6363
9 1.9303
10 1.9054

TABLE II
SPATIAL CONVERGENCE IN THE NATURAL NORMS FOR A MEMBRANE

WITH Ξ2d = 0.8 AND UNDERGOING A TANK-TREADING REGIME AT THE

STEADY STATE

1/h E(u) ROCu E(p) ROCp

20 1.952E-1 6.154E-1
40 1.033E-1 0.918 1.935E-1 1.669
80 8.917E-2 1.130 9.050E-2 1.096

1/h E(λ) ROCλ E(ϕ) ROCϕ

20 7.117E-1 9.067E-2
40 3.205E-1 1.151 5.907E-2 0.618
80 1.695E-1 0.919 3.352E-2 0.817

size of h = 1/160). Let ‖ · ‖0,2,Λ and ‖ · ‖1,2,Λ design the

L2-norm and the semi-norm H1, respectively. These errors are

computed at the final time T = 10 when the steady regime is

reached and are given by:

E(u) =
‖uh − ũ‖1,2,Λ

‖ũ‖1,2,Λ , E(p) =
‖ph − p̃‖0,2,Λ

‖p̃‖0,2,Λ ,

E(λ) =
‖λh − λ̃‖0,2,Γ

‖λ̃‖0,2,Γ
and E(ϕ) =

‖Hε(ϕh)− Hε(ϕ̃)‖0,2,Λ
‖Hε(ϕ̃)‖0,2,Λ .

In addition, we evaluate the rate of convergence ROC with

respect to the corresponding refinement level, referred to as a

superscript l. It is given by:

ROC =

ln

(
El−1

El

)

ln

(
hl−1

hl

)
The computed errors are reported in Table II, along with

the corresponding rates of convergence. Results show that

suboptimal convergence rates are obtained for the errors in

u, p and λ. The error E(ϕ) converges with almost a linear

convergence behavior.

E. Comparison with an Explicit Decoupling Scheme

We finally perform a comparative study with a fully

explicit decoupling scheme, usually used in the literature

for free-interface problems. The explicit method consists

in decoupling and solving the fluid problem and the level

equation in a segregated fashion. The velocity, pressure and

surface tension are first computed by solving the fluid problem,

TABLE III
EVALUATION OF THE MAXIMAL TIME STEP ΔtMAX ALLOWED BY THE

PRESENT METHOD AND THE EXPLICIT METHOD FOR SEVERAL VALUES

OF THE MESH SIZE

1/h Δtmax(Explicit) Δtmax(Implicit)

20 5.65× 10−2 0.78
40 2.40× 10−2 0.61
80 6.34× 10−3 0.17
160 1.07× 10−4 4.75× 10−3

in which the surface operators are evaluated using the level

set solution at the previous time step. The level set function is

advected afterwards using the computed velocity. We consider

a membrane having the reduced area Ξ2d = 0.6 and placed in a

linear shear flow characterized by μ� = 1 and Re = 10−2. We

set the confinement level to ς = 1/2. We measure in Table III

the maximum time step size allowed by both schemes. Results

show that the present method allows to use significantly larger

time steps compared to those allowed by the explicit method.

In particular, it is possible to obtain a stable solution for

time steps 45 times larger than those allowed by the explicit

method.

V. CONCLUSION

In the present paper, we have introduced a fully implicit and

monolithic finite element method for the numerical simulation

of inextensible fluidic membranes immersed in a Newtonian

fluid. The method is based on the use of the Newton method

in a fully Eulerian framework. We have used a highly

simplified version of the Canham-Helfrich energy, in which

the bending forces and the asymmetry of the membrane and its

enclosing environment are disregarded, but we have preserved

the modeling of an inhomogeneous membrane tension.

A consistent Newton-Raphson linearization is performed.

Numerical results show that the quadratic convergence of the

Newton method has been obtained. In addition, the method

allows to use significantly larger time steps with respect to

the fully explicit decoupling strategy.

This work is part of a larger and ongoing project aimed

at modeling the dynamics of red blood cells under the effect

of the full Canham-Helfrich force. Some other extensions of

the present method are being currently explored. In particular,

we are focusing on the development of a cubically convergent

Newton variant and the construction of robust preconditioners

that would allow substantial savings in computational effort.

APPENDIX A

USEFUL DERIVATIVES AND LINEARIZATION EXPRESSIONS

We consider the signed distance assumption resulting from

the resolution until convergence of the redistancing problem.

In this Appendix, we provide the directional derivatives of

some quantities in the direction of the increment δχ.

Dn[δχ] = D∇ϕ[δϕ] = ∇δϕ,

DH[δχ] = D divn[δϕ] = DΔϕ[δϕ] = Δδϕ.
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The linearization of the global viscosity function reads:

Dμε(ϕ)[δχ] = (μ� − 1)δε(ϕ)δϕ.

The linearization of the term evolving the membrane tension

in the momentum equation reads:

Dλδε (ϕ) divs v[δχ] = Dλ [div v − (n ·∇v) · n] δε (ϕ) [δχ]
= δλ δε (ϕ) divs v + λ δ′ε (ϕ) δϕ divs v

− λ
(
(∇δϕ ·∇v) ·∇ϕ+ (∇ϕ ·∇v) ·∇δϕ

)
δε (ϕ) .

The linearization of the regularized inextensibility constraint

reads:

D δε (ϕ) divs u[δχ] = D [divu− (n ·∇u) · n] δε (ϕ) [δχ]
= δε (ϕ) divs δu + δ′ε (ϕ) δϕ divs u

−
(
(∇δϕ ·∇u) ·∇ϕ+ (∇ϕ ·∇u) ·∇δϕ

)
δε (ϕ) .
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Zürich, Switzerland. His current research interests

include mathematical modeling and software development of new
computational methods for the simulation of biomedical phenomena.


