
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:12, 2016

2105

 
Abstract—Software Defined Networking (SDN) is a new norm

of networks. It is designed to facilitate the way of managing,
measuring, debugging and controlling the network dynamically, and
to make it suitable for the modern applications. Generally,
measurement methods can be divided into two categories: Active and
passive methods. Active measurement method is employed to inject
test packets into the network in order to monitor their behaviour (ping
tool as an example). Meanwhile the passive measurement method is
used to monitor the traffic for the purpose of deriving measurement
values. The measurement methods, both active and passive, are
useful for the collection of traffic statistics, and monitoring of the
network traffic. Although there has been a work focusing on
measuring traffic statistics in SDN environment, it was only meant
for measuring packets and bytes rates for non-web traffic. In this
study, a feasible method will be designed to measure the number of
packets and bytes in a certain time, and facilitate obtaining statistics
for both web traffic and non-web traffic. Web traffic refers to HTTP
requests that use application layer; while non-web traffic refers to
ICMP and TCP requests. Thus, this work is going to be more
comprehensive than previous works. With a developed module on
POX OpenFlow controller, information will be collected from each
active flow in the OpenFlow switch, and presented on Command
Line Interface (CLI) and wireshark interface. Obviously, statistics
that will be displayed on CLI and on wireshark interfaces include
type of protocol, number of bytes and number of packets, among
others. Besides, this module will show the number of flows added to
the switch whenever traffic is generated from and to hosts in the same
statistics list. In order to carry out this work effectively, our Python
module will send a statistics request message to the switch requesting
its current ports and flows statistics in every five seconds; while the
switch will reply with the required information in a message called
statistics reply message. Thus, POX controller will be notified and
updated with any changes could happen in the entire network in a
very short time. Therefore, our aim of this study is to prepare a list
for the important statistics elements that are collected from the whole
network, to be used for any further researches; particularly, those that
are dealing with the detection of the network attacks that cause a
sudden rise in the number of packets and bytes like Distributed
Denial of Service (DDoS).

Keywords—Mininet, OpenFlow, POX controller, SDN.

I. INTRODUCTION

DN is a new technology designed to make our network
more agile. Today's networks are often quite static, slow to

change and dedicated for single services. With SDN one can
create a network with more services in a dynamic fashion

Wisam H. Muragaa and Mohd Fadzli Marhusin are with Faculty of Science

and Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800,
Nilai, Malaysia (e-mail: phd.wisam@gmail.com, fadzli@usim.edu.my).

Kamaruzzaman Seman is with Faculty of Engineering and Build
Environment, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800,
Nilai, Malaysia (e-mail: drkzaman@usim.edu.my).

allowing us to consolidate multiple services onto one common
infrastructure for both service providers and carriers.

The idea behind SDN is the idea of pulling the intelligence
of the network away from the hardware. Decoupling the
intelligence from the network hardware is achieved by
separating the data plane from control plane as Open
Networking Foundation (ONF) has defined [1]. Data plane or
infrastructure layer is the bottom layer in SDN structure and
that is where the network forwarding equipment is situated.
The control layer which is the middle layer in SDN
architecture is responsible for configuring the infrastructure
layer; it does that by receiving a service request from the third
layer which is the application layer. SDN controller is the
intelligence of SDN structure; unlike the traditional networks,
where the intelligence is the Network Operating System
(NOS). OpenFlow controllers in SDN are logically located in
control plane, which is the middle layer meant to control and
manage the requests of top layer (application layer), and to
instruct the bottom layer (infrastructure layer). There are
several types of SDN controllers; it can be mainly categorized
based on the programming language of which the controller is
made and the purpose of innovation [2]. One of it is the
chosen POX controller.

Communications between controller and both upper and
lower layers in SDN structure are done by northbound and
southbound Application Programming Interfaces (APIs).
Northbound APIs are used to communicate between controller
and the running applications over the network; while
southbound APIs are responsible for the communications
between controller and the packet forwarding hardware. The
API presence enables the network to be directly
programmable, and it gives the software developers the
opportunity to develop their own APIs and applications and
implements it instantly [2].

In SDN terminology, communication that occurs between
control layer and forwarding layer is called southbound
communication. The standard mechanism that allows them to
communicate with each other is known as OpenFlow protocol.
OpenFlow protocol allows the controller to have a direct
access to and manipulation of the forwarding devices of data
plane. OpenFlow has different versions; the one that will be
used in this study is OpenFlow 1.1.0, where POX controller
currently supports this version [2]-[3].

As a related work, the authors in [4] concentrate on
measuring non-web traffic statistics in SDN environment.
Their method collects port and flow statistics from the running
switch(s) and presents these statistics on a web interface called
weathermap. Their method focuses on the rate of the packets

A POX Controller Module to Collect Web Traffic
Statistics in SDN Environment
Wisam H. Muragaa, Kamaruzzaman Seman, Mohd Fadzli Marhusin

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:12, 2016

2106

and bytes. Some of port statistics collected from their study
include received and transmitted packets rate, received and
transmitted bit rate and received and transmitted dropped
packets among others; while the collected main flow statistics
include byte and packet rates, action, duration per second,
hard timeout and some other statistics. In fact, these statistics
are too many; as they are not meant for any specific purpose.

In this study, we have prepared an accurate and concise list
of most important statistics elements to be used for further
researches; particularly, those that are related to networking
traffic disruption.

II. MEASURING IN SDN

Every measurement technique in the traditional networks
requires the separation of hardware installation or software
configuration. It makes the implementation of this technique a
tedious and expensive task. Meanwhile, OpenFlow networks
provide necessary interfaces to implement most of the
traditional measuring methods at a lower cost and higher
efficiency [5]. Statistics collection in this study is going to be
achieved by using two OpenFlow protocol messages described
in the OpenFlow specifications [3]. The two OpenFlow
messages are statistics request message and statistics reply
message. Statistics request message is a message sent from the
controller to the switch requesting its current ports and flow
statistics. While the statistics reply message is the message
sent back from the switch to the controller in reply to its
request.

Network measurements are often performed on application
layer or network layer [6]. Application layer measurements are
designed to measure the application performance. Network
layer measurements are meant to use infrastructure forwarding
components (such as switches and routers) [7].

The aim of this study is to get actual network traffic
information that can be used in verifying any variation that
might happen in the network performance.

III. DESIGN AND DEVELOPMENT

In this paper, we have created a Python module to work on
POX OpenFlow controller, and it is specifically designed to
collect web traffic statistics as well as non-web traffic
statistics to be a more comprehensive work. This study is
aimed to extract specific types of statistics from the generated
traffic in the network using POX controller. The designing and
the development of this module are described in the next two
paragraphs.

A. Design

Due to the design of OpenFlow, flow entries are stored in
the switch flow tables and then forwarded to their destinations
based on the instructions received from the OpenFlow
controller. One of the switch flow table entries is counters
entry. Counters entry contains packet counter and byte
counter. All received packets and bytes in SDN are stored in
these two counters. Our module is designed to extract the
actual numbers stored in these two counters, and it is used to
give the numbers of flows that contain these counters

repeatedly and in a very short time.

B. Development

In order to create the presented design, Python
programming language is used. The reason behind using
Python is that POX OpenFlow controller is a Python-based. In
this module, a statistics collecting function is implemented on
POX controller in order to query the packet and byte counters
periodically. The numbers accumulated in these counters, as
well as the number of flows, will be displayed on the CLI in a
short period of time. The interval time between each
appearance and the next for the statistics is five seconds.
Wireshark built-in tool is used to analyze the traffic in order to
show a depth detailed list. This list shows the type of protocol
used to generate the traffic, source IP address, destination IP
address and some extra information about segmenting.
Wireshark and CLI are used simultaneously. Mainly, this POX
controller module is developed to measure web traffic
statistics; but at the same time, it can be used to measure non-
web traffic as well. This module concentrates on measuring
HTTP requests that use the application layer in SDN. TCP and
ICMP requests that use network layer can be measured by
using this module as well. Thus, our POX controller module
can be considered as a multi-functional module.

IV. EXPERIMENT AND RESULTS

Capable network topologies in SDN can be achieved by
Mininet. Mininet [9] is network emulation software that
allows the creation of a realistic virtual network and
running end-hosts, switches, routers and application codes on
a single Linux kernel. Controllers, switches, and hosts all can
be launched by Mininet in seconds with a single command on
a virtual machine known as Mininet VM.

We use Mininet CLI to create our topology in the SDN
environment. The topology used in this experiment contains
one OpenFlow controller, one OpenFlow switch and four end-
hosts as presented in Fig. 1.

The OpenFlow controller used in this experiment is POX
controller. POX is originated from NOX where NOX is the
original OpenFlow controller. The POX repository has
multiple branches. And for this experiment, we use POX (dart)
branch. After the network topology is created, the POX
controller must be run on another terminal. As shown in Fig.
2, when POX controller works, the OpenFlow switch is
connected to the network directly to be ready to receive the
instructions or the modification messages.

Our module is meant to be run along with the
forwarding.l2_learing component.

Reading state messages in SDN structure is done by using
two messages: OFPT_STATS_REQUEST message and
OFPT_STATS_REPLY message [3]. During the running of
the system, the datapath may be queried about its current state
using the OFPT_STATS_REQUEST message; while the
switch responds with one or more OFPT_STATS_REPLY
messages. In both the request and response messages, the type
field specifies the kind of information being passed and
determines how the body field is being interpreted.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:12, 2016

2107

Fig. 1 Topology used in the experiment

Fig. 2 Switch connected and ready to receive instructions

In order to get switch statistics in SDN, OpenFlow provides
port level functionalities. Using its mechanism, the OpenFlow
switch generates the response message "OFPortStatsReply"
when it receives an "OFPortStatsRequest" message requesting
its current statistics. By using these two messages, more
details about packets that are generated in the network can be
collected. "OFPortStatsRequest" message requests port
statistics either for a single port by specifying the exact port
number in port_no field or for all switch ports by typing
"OFPP_ANY" in the same field [3]. By querying the ports
iteratively, the controller can be notified with the updated
numbers of packets and bytes that are stored in the statistics
counters after each using of the switch ports. Even more, port
statistics can give more information about both (transmit and
receive state) such as a number of dropped packets and bytes,
errors, and collisions which can be used to measure the path
loss rate in the network [8]. The body of the reply is consisting
of number of received packets, number of transmitted packets,
number of received bytes and number of transmitted bytes [3].

Flow statistics in SDN can be either requested for
individual flows or multiple flows. Information about
individual flows is requested with the OFPST_FLOW stats
request "ofp_flow_stats_request". The body of the reply is
partly consisting of the number of packets and bytes in each
individual flow [3].

(a) Sending HTTP requests from host 1

(b) Received HTTP requests on host 2

Fig. 3 Web traffic generated between host 1 and host 2

In OpenFlow, we use aggregate flow statistics (request and
reply) messages for querying the number of flows in the
OpenFlow switch table. Information about multiple flows is
requested with the OFPST_AGGREGATE stats request
"ofp_aggregate_stats_request". The body of the reply consists

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:12, 2016

2108

of the number of flows. The number of packets and bytes in all
flows are mentioned in the same reply message as well [3].

From the Mininet VM terminal where our network topology
was created, we open four terminals for host 1, host 2, host 3
and host 4. Host 1 works as a web server to generate HTTP
traffic to the host 2 that works as a receiver to this web traffic
as shown in Figs. 3 (a) and (b).

As presented in Fig. 4, our POX controller module begins
sending its requests to the switch to collect statistics every five
seconds iteratively. If there is any traffic generated between
hosts in the network, the module can detect this traffic and list
the statistics obtained from the switch on the CLI. If the
packets generated between hosts are increased or decreased,
our POX module can show that clearly on its list. We notice
that there is no traffic in the network if the module shows the
list with empty fields as manifested in Fig. 4. Empty fields
mean the fields carrying no numbers.

Fig. 4 Statistics obtained by the POX controller module

Fig. 5 Details about sending and receiving HTTP requests and TCP segments in between

While POX module is collecting the statistics from the
switch, the traffic generated between host 1 and host 2 is
analyzed by wireshark software. Each sending and receiving
of HTTP request is displayed in details on the wireshark
interface. Fig. 5 shows that the traffic is divided into TCP
segments after sending the HTTP request, and it is
reassembled again at the receiving side to create a text/html
file. Moreover, our POX module has the capability to measure
ICMP and TCP traffic, as well as HTTP traffic
simultaneously. Therefore, our module is more comprehensive
in terms of giving more statistics about the traffic generated in
the network. And it also displays it on the CLI and wireshark
interfaces. While the HTTP traffic is being generated between

host 1 and host 2, we run a small Python program to generate
ICMP traffic from host 3 to host 4. Running ICMP Python
generator on host 3 is presented in Fig. 6.

To approve that our module can measure traffic generated
by different protocols at the same time, one must see what is
displayed on wireshark interface as shown in Fig. 7. The
screen shot shows a number of ICMP requests and replies, a
number of OpenFlow stats and reply messages, a number of
OpenFlow instructions and modification messages and HTTP
requests with TCP segments.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:12, 2016

2109

Fig. 6 Details of sending ICMP requests from host 3 to host 4 using a
Python program created to achieve the purpose

V. CONCLUSION

In this paper, an attempt is made to produce a feasible
method for measuring statistics of both web and non-web
traffic. This study is aimed to provide the developers, who
deal with the detection and mitigation of network attacks, with
an accurate statistics list. It is a concise list of the most
important statistics in the network (packets and bytes). This
list can be used as an indicator of any sudden or unjustified
rise in the network progress. By keeping the network
controller updated with any changes that might happen in the
network, any network developer or network administrator can
intervene, in order to find a solution to any problem that tends
to arise in the network.

Fig. 7 Measuring statistics for traffic generated by different network protocols

REFERENCES
[1] Open Networking Foundation “Software Defined Networks: The new

Norm of Networks” White paper 2012 Available at:
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/white-papers/wp-sdn-newnorm.pdf

[2] POX controller. Available: http://www.noxrepo.org/pox/about-pox/
[3] Pfaff, B. (2011). OpenFlow Switch Specification Version 1.1. 0

Implemented (Wire Protocol 0x02). URL: http://www. openflow.
org/documents/openflow-spec-v1, 1.

[4] Hsu, C. Y., Tsai, P. W., Chou, H. Y., Luo, M. Y., & Yang, C. S. (2014).
A Flow-based Method to Measure Traffic Statistics in Software Defined

Network. Proceedings of the Asia-Pacific Advanced Network, 38, 19-
22.

[5] Yu, C., Lumezanu, C., Zhang, Y., Singh, V., Jiang, G., & Madhyastha,
H. V. (2013, March). Flowsense: Monitoring network utilization with
zero measurement cost. In International Conference on Passive and
Active Network Measurement (pp. 31-41). Springer Berlin Heidelberg.

[6] Yassine, A., Rahimi, H., & Shirmohammadi, S. (2015). Software
defined network traffic measurement: Current trends and
challenges. IEEE Instrumentation & Measurement Magazine, 18(2), 42-
50.

[7] Mohan, V., Reddy, Y. J., & Kalpana, K. (2011). Active and passive
network measurements: a survey. International Journal of Computer
Science and Information Technologies, 2(4), 1372-1385. J.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:12, 2016

2110

[8] Hu, F. (Ed.). (2014). Network Innovation through OpenFlow and SDN:
Principles and Design. CRC Press.

[9] Mininet. Available: http://mininet.org/

