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 
Abstract—The traditional k-means algorithm has been widely 

used as a simple and efficient clustering method. However, the 
algorithm often converges to local minima for the reason that it is 
sensitive to the initial cluster centers. In this paper, an algorithm for 
selecting initial cluster centers on the basis of minimum spanning tree 
(MST) is presented. The set of vertices in MST with same degree are 
regarded as a whole which is used to find the skeleton data points. 
Furthermore, a distance measure between the skeleton data points with 
consideration of degree and Euclidean distance is presented. Finally, 
MST-based initialization method for the k-means algorithm is 
presented, and the corresponding time complexity is analyzed as well. 
The presented algorithm is tested on five data sets from the UCI 
Machine Learning Repository. The experimental results illustrate the 
effectiveness of the presented algorithm compared to three existing 
initialization methods. 
 

Keywords—Degree, initial cluster center, k-means, minimum 
spanning tree. 

I. INTRODUCTION 

HE goal of clustering is to partition data points into clusters 
according to the similarity between data points to 

maximize the similarity between the data points in the same 
cluster while minimizing the similarity between the data points 
in different clusters [1], [2]. Clustering algorithms can be 
broadly classified into hierarchical and nonhierarchical 
clustering algorithms [3]–[5]. The k-means algorithm’s 
simplicity and efficiency render it the leading nonhierarchical 
clustering algorithm in various fields [6]. However, the 
k-means algorithm is especially sensitive to initial cluster 
centers, thus, after a bad initialization it easily gets trapped in 
poor local minima. To solve this problem, numerous improved 
methods have been presented. MacQueen took the first k data 
points from the data set as the centers [7]. An obvious drawback 
of this method is its sensitivity to data ordering. Gonzalez 
proposed the maximin method, which selects the data point that 
has the greatest minimum distance to the previously selected 
centers [8]. However, this method selects the first center 
arbitrarily, which leads to unstable clustering results. Khan [9] 
proposed Cluster Center Initialization Algorithm (CCIA) to 
solve cluster initialization problem. It initiates with calculating 
the mean and the standard deviation for data attributes, and then 
separates the data with a normal curve into a certain partition. 
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The experimental results demonstrate the effectiveness and 
robustness of CCIA for several clustering problems. However, 
the time complexity of CCIA increases with the increase of the 
dimensionality of the data set. Redmond et al. [10] first 
constructs a kd-tree of the data points to perform density 
estimation and then uses a modified maximin method to select 
K centers from densely populated leaf buckets. Yet kd-tree is 
known to scale poorly with the dimensionality of the dataset. 
Like maximin method, David Arthur et al. [11] proposed 
k-means++ method which aims to avoid the unlikely event of 
choosing two centers that are close to each other. However, this 
method selects the first center arbitrarily, which leads to 
unstable clustering results. Cao et al. [12] selected the point 
with maximum density as the first initial cluster center. 
However, the point also may be a boundary point among 
clusters. Reddy [13] proposed an MST-based cluster 
initialization for k-means which bridges the k-means and the 
MST-based clustering algorithms. Huang et al. [14] used the 
Kruskal algorithm to generate the MST of all data points and 
then deletes k-1 edges according to the order of their weights. 
In summary, selecting proper initial cluster centers is an NP 
problem, and numerous improved methods have not yet been 
widely applied [15]. Therefore, the selection of initial cluster 
centers requires further research. 

MST is a useful graph for detecting clusters of a given set of 
data points. MST has been well suited for clustering in the 
fields of pattern recognition, image processing, and 
computational biology. The MST-based clustering algorithm 
was initiated by Zahn [16]. In this paper, the MST on the given 
data set is constructed using prim algorithm. Then, the concept 
of skeleton point based on the MST is introduced. Furthermore, 
for the distance between skeleton points, a novel definition of 
distance metric is introduced instead of the traditional 
Euclidean distance. Finally, the initialization method based on 
MST is proposed to compute initial cluster centers for the 
k-means algorithm. The proposed algorithm is applied to five 
data sets with different dimensions to compute the initial cluster 
centers for the k-means algorithm. Compared with CCIA, 
kd-tree and k-means++ methods, the proposed algorithm 
demonstrates superior clustering performance. 

II. MST-BASED INITIALIZATION METHOD 

A. Construction for Data Set 

Let X be a data set with K clusters and n data points; that is, 
{ |i iX x x= ∈ , 1, 2, , }PR i n=  . To apply the MST to the 

initialization problem, data set X should be represented by the 
undirected complete weighted graph ),(= EVG , where 
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1 2{ , , , }nV v v v=  ,
( 1)

| |
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n n
E

-
= . Each data point xi in data set 

X corresponds to a vertex 
iv ∈V  in graph G, and there is a 

one-to-one correspondence between data point xi (i = 1, 2,..., n) 
and vertex vi (i = 1, 2,..., n). The number of vertices in graph G 
is equal to the number of data points xi in data set X. Edge 
weights between any two vertices are the Euclidean distance 
between the corresponding two data points. 

The MST of G can be generated by using the prim algorithm 
which can be described as performing the following steps: 
Step 1. Pick any vertex iv  from the graph G to be the root of the 

tree. 
Step 2. Grow the tree by one edge: of the edges that connect the 

tree to vertices not yet in the tree, find the 
minimum-weight edge from G and transfer it to the tree. 

Step 3. Repeat Step 2 (until the tree contains all vertices in the 
graph G). 

B. The Proposed Algorithm 

Let ( , )TT V E=  be a MST of ),(= EVG , where 

1 2{ , , , }nV v v v=  , 1 2 1{ , , , }T nE e e e -=  , ie ∈ ( )E G . 

Definition 1. (Number of adjacent data points) Let iU  be the 

set of vertices of T with degree i and iW  be the complementary 

set of iU , that is, \i iW V U= . For iU , the number of adjacent 

data points, denoted as if , is the number of vertex in iW  being 

adjacent to vertex in iU . Note that, only add 1 to if  under the 

circumstance of one vertex in iW  being adjacent to more than 

one vertices in iU . 

Lemma 1. If any one vertex in 1W  is adjacent to one and only 

one vertex in 1U , then 1 1| |f U= , otherwise 1 1| |f U< . 

The proof of this lemma is obvious. 
Definition 2. Skeleton point) Suppose the maximum degree of 
T be m, then, 1V U= ∪ 2U ∪∪ mU . Let arg max ( )i iF f= . 

The skeleton point, denoted as is , is the vertex of T with degree 

being greater than or equal to F. 
 

 

Fig. 1 MST with 150 vertices 
 

 

Fig. 2 Degree vs. fi 
 
The concept of the skeleton point is further explained in Fig. 

1. As shown in Fig. 1, a dataset with 150 data points is 
randomly generated and constructed the corresponding MST 

( , )TT V E= . The vertices with degree 1, 2, 3, 4 are marked by 

triangle, circle, rectangle and star, respectively. The maximum 
degree of T is 4. And the numbers of adjacent data points f1, f2, 
f3, f4 are 33, 51, 60, 8, respectively. Correspondingly, F=3. 
Therefore, the vertices of T with degree 3 or 4 are skeleton 
points marked by rectangle and star in Fig. 1. It can be seen 
from Fig. 1 that, the selected skeleton points, which represent 
the basic skeleton of the data set, can be seen as the candidates 
of the initial cluster centers. In contrast, the unselected data 
points correspond to the trivial detail of the data set. For 
instance, the data points with degree 1 are the leaves of T. 

The skeleton points are chosen as the candidates of the initial 
cluster centers. Too many skeleton points will increase the time 
complexity of the presented algorithm, whereas a few skeleton 
points will influence clustering performance. Therefore, the 
number of skeleton points will influence both of running time 
and the clustering performance. Suppose two extreme cases, 
F=1 or F=m. As for F=1, the number of skeleton points is equal 
to the number of data points, which leads to too many 
candidates. As for F=m, the data points with maximum degree 
are chosen as skeleton points, which leads to a few skeleton 
points. However, the above two cases rarely happen. To 
illustrate, eight data sets are selected and their corresponding 

1 2, , , mf f f  are calculated, as shown in Fig. 2, in which the 

result of F is marked by star. Fig. 2 shows that in eight data sets, 
the values of F for six data sets are 3 and that for the other two 
data sets are 2. In summary, the value of F for eight data sets do 
not belong to one of the above two case. 
Definition 3. (Distance measure) Let the Euclidean distance 

between two skeleton points is  and js  be ( , )i jd s s . Let the 

degree of is  and js  be id  and jd , respectively. The distance 

measure between is  and js  is defined as 

( , ) ( )* ( , )i j i j i jh s s d d d s s= + . Correspondingly, the set of 

distance is denoted as 
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1 2 1 3 1 2 3 1{ ( , ), ( , ), , ( , ), ( , ), , ( , )}m m mH h s s h s s h s s h r r h r r -=   , 

where m is the number of skeleton points. 
In the process of determining initial cluster centers for 

k-means, the main purpose of various initialization methods is 
to make the Euclidean distance between initial centers large 
enough, which avoids selecting data points among the same 
cluster as the cluster centers. Yet such methods will lead to the 
result that outliers may be selected as cluster centers; the main 
reason for this lies in that the factor of the density is not taken 
into consideration. To tackle this issue, a new distance measure 
in Definition 3 is defined, in which two factors of Euclidean 
distance and degree are considered in the calculation of the 
distance between two data points. Here, the concept of degree 
in graph G is similar to the density. For instance, given three 
skeleton points is , js  and ks , their corresponding degrees be 

id , jd  and kd , which satisfies j kd d> , ( , ) ( , )i j i kd s s d s s= . 

Since ( , ) ( , )i j i kd s s d s s= , is ’s distance to js  and ks  is equal 

according to the traditional distance measure. Whereas, if the 
distance is calculated according to Definition 3, since j kd d> , 

it follows that ( , ) ( , )i j i kh s s h s s> , which further improves the 

discriminative of distance. 
Algorithm 1. Algorithm for determining the initial cluster 
centers. 
Step 1. Input the data set 1 2{ , ,..., }nX x x x=  with K clusters in 

which the initial cluster center need to be determined. 
Step 2. Generate MST for data set 1 2{ , ,..., }nX x x x=  using 

prim algorithm. 

Step 3. Calculate the skeleton point is  according to Definition 

2 and further constitutes the set of skeleton points 

1 2{ , , , }mS s s s=  , where m is the number of skeleton 

points. 
Step 4. Calculate the distance between any two skeleton points 

according to Definition 3 and further constitutes the set 
of distance H. 

Step 5. Select the skeleton point is  with the highest degree 

from S as the first initial cluster center. Denote the set of 
initial cluster centers as { }iC s= . 

Step 6. Select the rest skeleton point si from S satisfying, 
max (min ( ( , )))

i is cs c i ih s c   , denotes the set of initial 

cluster centers as C={ri}∪C. This step is repeated until 
the number of initial cluster centers is equal to K. 

C. Time Complexity Analysis 

The time complexity of the initialization method is analyzed 
as follows. In Step 2, the time complexity for generating MST 

through prim algorithm is 2( )O n . In Step 3, computation of the 

set of skeleton points S is ( )O n . In Step 4, the time complexity 

for calculating the set of distance H is 2( 1)
( ) ( )

2

m m
O O m

-
= . In 

step 5 and step 6, the time complexity for determining the initial 
cluster centers is ( )O km . Because k≪m , m n< , the entire 

complexity of the presented algorithm is 2( )O n . This result 

illustrates that the time complexity of the presented algorithm is 
proportional to the square of n. 

III. EXPERIMENTS AND RESULTS 

The proposed algorithm is evaluated on the Wine, 
Soybean-small, Iris, Glass and Haberman from the University 
of California at Irvine (UCI), as shown in Table I. The 
clustering results derived from the k-means algorithm are 
compared by using four initialization methods: The proposed 
algorithm, CCIA, kd-tree and k-means++. To test the 
effectiveness of the proposed algorithm, the following five 
evaluation indexes were adopted to obtain the clustering 
validity index (CVI): accuracy (AC), adjusted Rand index 
(ARI), Rand index (RI), Mirkin metric Index (MI), and 
Hurber’s Γ index (HI). For all indexes except MI, higher CVI 
values indicate more favorable clustering; the opposite is true 
for MI. The experimental results are summarized in Tables 
II-VI. 

 
TABLE I 

DESCRIPTION OF THE FIVE DATA SETS 

Data set # Points(N) # Attributes(D) # Classes(K) 

Wine 178 13 3 

Soybean-small 47 35 4 

Iris 150 4 3 

Glass 214 10 7 

Haberman 306 3 2 

A. Wine Data Set 

This data set is the result of a chemical analysis of wines 
grown in the same region in Italy but derived from three 
different cultivars. The analysis determined the quantities of 13 
constituents found in each of the three types of wines. There are 
overall 178 objects. There are 59, 71, 48 objects in class I, class 
II and class III, respectively. The experimental results are 
summarized in Table II. 

B. Soybean-Small Data Set 

The soybean-small data set has 47 objects, each of which is 
described by 35 attributes. Each object is labeled as one of the 
four diseases: Diaporthe Stem Canker, Charcoal Rot, 
Rhizoctonia Root Rot, and Phytophthora Rot. Except for 
Phytophthora Rot which as 17 objects, all other diseases have 
10 objects each. The experimental results are summarized in 
Table III. 

C. Iris Data Set 

This data set has often been used as a standard for testing 
clustering algorithms. This data set has three classes that 
represent three different varieties of Iris flowers namely Iris 
setosa, Iris versicolor and Iris virginica. Fifty objects are 
obtained from each of the three classes, thus a total of 150 
objects are available. Every object is described by four 
attributes, viz. sepal length, sepal width, petal length and petal 
width. The experimental results are summarized in Table IV. 
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D. Glass Data Set 

This data set has 214 objects and 10 attributes. There are 
seven clusters (70 building windows, 17 vehicle windows, 76 
building windows, zero vehicle windows, 13 containers, 9 
tableware and 29 headlamps) that can be grouped in two bigger 
clusters (163 Window glass, 51 Non-window glass). In this 
experiment, suppose that the number of clusters is two. The 
experimental results are summarized in Table V. 

E. Haberman Data Set 

The Haberman data set contains cases from a study that was 
conducted on the survival of patients who had undergo surgery 
of breast cancer. It contains two clusters, 306 objects, and three 
attributes. The experimental results are summarized in Table 
VI. 

 
TABLE II 

WINE DATA SET 

 AC ARI RI MI HI 

CCIA 0.5674 0.3347 0.6855 0.3145 0.3709 

kd-tree 0.5674 0.3347 0.6855 0.3145 0.3709 

k-means++ 0.5674 0.3347 0.6855 0.3145 0.3709 

proposed 0.7022 0.3711 0.7187 0.2813 0.4373 

 
TABLE III 

SOYBEAN-SMALL DATA SET 

 AC ARI RI MI HI 

CCIA 0.7234 0.5452 0.8316 0.1684 0.6633 

kd-tree 0.7234 0.5452 0.8316 0.1684 0.6633 

k-means++ 0.7021 0.5949 0.8205 0.1795 0.6411 

proposed 0.7234 0.5452 0.8316 0.1684 0.6633 

 
TABLE IV 

IRIS DATA SET 

 AC ARI RI MI HI 

CCIA 0.8933 0.7302 0.8797 0.1203 0.7595 

kd-tree 0.8933 0.7302 0.8797 0.1203 0.7595 

k-means++ 0.8933 0.7302 0.8797 0.1203 0.7595 

proposed 0.8933 0.7302 0.8797 0.1203 0.7595 

 
TABLE V 

GLASS DATA SET 

 AC ARI RI MI HI 

CCIA 0.5421 0.2552 0.6659 0.3341 0.3318 

kd-tree 0.4626 0.2096 0.7064 0.2936 0.4128 

k-means++ 0.4907 0.2446 0.5930 0.4070 0.1861 

proposed 0.5421 0.2702 0.6764 0.3236 0.3527 

 
TABLE VI 

HABERMAN DATA SET 

 AC ARI RI MI HI 

CCIA 0.5196 -0.0037 0.4991 0.5009 -0.0017 

kd-tree 0.5000 -0.0037 0.4984 0.5016 -0.0033 

k-means++ 0.5196 -0.0037 0.4991 0.5009 -0.0017 

proposed 0.5196 -0.0037 0.4991 0.5009 -0.0017 

 
Table II shows that, for the Wine data set, the performance of 

CCIA, kd-tree and k-means++ methods remain the same 
according to the five evaluation indexes, whereas the proposed 
method outperforms the other three initialization methods. For 
the Soybean-small data set, it can be seen from Table III that, 

the performance of the proposed algorithm is comparable to 
CCIA and kd-tree. Except for ARI, the performance of the 
proposed algorithm is better than k-means++ for AC, RI, MI 
and HI. Table IV shows that for the Iris data set, the 
performance of four initialization methods remains the same. 
For the Haberman data set, it can be seen from Table VI that, 
the performance of the proposed algorithm, CCIA and 
k-means++ is better than that of kd-tree. For the Glass data set, 
it can be seen from Table V, the proposed algorithm has better 
performance than the other three initialization method for AC 
and ARI. Yet for RI, HI and MI, kd-tree has better performance. 
The reason is that the distribution of the glass data set does not 
satisfy the principle of “small intra-cluster distances and large 
inter-cluster distances”. Overall, the presented algorithm is 
superior to the other initialization methods. 

IV. CONCLUSION 

This paper presents MST-based initialization method for the 
k-means algorithm. The skeleton point is defined based on the 
feature of MST. Furthermore, a new distance measure between 
the skeleton data points is defined, which makes the distance 
discrimination between data points higher and takes 
consideration of both degree and distance. The clustering 
results of the k-means algorithm are compared for the presented 
algorithm, CCIA, kd-tree and k-means++ methods on the Wine, 
Soybean-small, Iris, Glass and Haberman data sets from UCI. 
Regarding the results of the five indexes (i.e., AC, ARI, RI, MI, 
and HI), the clustering performance of the k-means algorithm 
with the presented algorithm is the most favorable among the 
four methods. 
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