
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:10, No:12, 2016

1900


Abstract—In this paper, a motion generation algorithm for a six

Degrees of Freedom (DoF) robotic hand in a static environment is
presented. The purpose of developing this method is to be used in the
path generation of the end-effector for edge finishing and inspection
processes by utilizing the CAD model of the considered workpiece.
Nonetheless, the proposed algorithm may be extended to be applicable
for other similar manufacturing processes. A software package
programmed in the application programming interface (API) of
SolidWorks generates tool path data for the robot. The proposed
method significantly simplifies the given problem, resulting in a
reduction in the CPU time needed to generate the path, and offers an
efficient overall solution. The ABB IRB2000 robot is chosen for
executing the generated tool path.

Keywords—Offline programming, CAD-based tools, edge

deburring, edge scanning, path generation.

I. INTRODUCTION

EBURRING processes have been identified as the
bottleneck in many machine industries. The burr removal

methods can induce dimensioning errors to the workpiece if
improperly executed. Burrs are caused by many machining
processes including milling, drilling, turning, and broaching.
An amazing transformation of edge finishing has occurred over
the past 50 years trying to mimic the adaptive nature of human
intelligence in order to replace manual deburring.
Anthropomorphous robots are the best state-of-the-art
compromise between performance and flexibility for automated
deburring tasks [2]. They provide larger work volumes, safety
and efficiency at a lower cost than CNC machines.

Several methodologies for robotic deburring have been
actually been proposed in the literature. Some are based on
servo control and compliance control to stabilize the deburring
condition [3]–[6]. These methods focused not on the path
generation itself but on the improvement of the tool path. As for
the off-line path generation, while most of the robots are
controlled under a teaching-playback mode, some research has
been done on generating a tool path based on the contour of a
workpiece, such as teaching method [7], computer vision [8],
CAD/CAM approach [2], [9], [6]. However, these researches

E. I. Konukseven is with Mechanical Engineering Department, Middle East

Technical University, 06800, Ankara, Turkey (corresponding author to provide
phone: +90-533-2331806; fax: +90-533-2102536; e-mail:
konuk@metu.edu.tr).

M. Nemer was with Mechanical Engineering Department, Middle East
Technical University, 06800, Ankara, Turkey (e-mail:
mahmoudhnimer@gmail.com).

either focus on planar workpieces or include some user input
and feedback in order to achieve an overall collision-free path.
The main difficulty in this subject is the generation of collision-
free motions that are able to move the end-effector from one
edge to another on the same workpiece.

There are many different known algorithms in the literature
[10] to yield an efficient collision-free path. One popular
approach for the case of robotic manipulators in static
environments is the probabilistic roadmaps planner [11], which
is a probabilistically complete algorithm. Khatib [12] offered a
very interesting algorithm known as an artificial potential field
approach; however, the main drawback of this method is the
possibility of sticking in local minima; that is, the algorithm is
not necessarily complete. Another algorithm inspired by the
Khatib is the artificial force field approach. Many papers
discuss slightly different models of such an algorithm, and [13]
is one example; nonetheless, the main idea is that obstacles
apply forces on the robot links in such a way that they repel the
robot dynamically. Unfortunately, this method has the
possibility of sticking in local minima, similar to the artificial
potential field method. On the other hand, due to the nature of
the problem in hand, a novel but simple approach is going to be
discussed in this study.

In this paper, there are two main objectives. The first is the
introduction of a simple yet effective path generation algorithm
that tries to overcome the difficulty and complexity of finding
a collision-free path between two edges on the same workpiece.
The second is a full implementation of the algorithm in order to
perform an off-line path planning by utilizing the CAD model
of the considered workpiece; where such a plan will generate a
nominal collision-free path for the end-effector to go over the
desired edges to be deburred.

The paper is organized as follows. First is Section II in which
a Retraction-Free-Approach (RFA) motion algorithm is
introduced. In Section III, a fully connected path for performing
edge deburring and/or inspection is generated by the use of
RFA motion. In Section IV, the experimental setup and
experimental results are presented, while the conclusions are
drawn in Section V.

Retraction Free Motion Approach and Its Application
in Automated Robotic Edge Finishing and Inspection

Processes
M. Nemer, E. I. Konukseven

D

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:10, No:12, 2016

1901

II. RFA MOTION

This approach is going to be used to generate non-processing
motions. Non-Processing motion is a motion of which is needed
to change the end-effector position after processing an edge to
go to another one. Such motion does not include any actual
processing (deburring or scanning), and therefore, it is not
bounded to a specific trajectory, as far as the trajectory is
collision-free.

A. Calculating RFA Motions

One may take an advantage from the nature of the working
space in hand. Notice that if the manipulator assumes an upper
arm configuration throughout its motion, there will not be any
collision between the part and the robotic hand as long as the
end-effector is above the bounding box of the workpiece. There
are eight vertices of such a box, the ones adjacent to the top
plane share an elevation of	ݖ ൌ ଴. Adding half the width of theݖ
tool holder, it can be guaranteed that the manipulator will not
collide with the part as long as the end-effector’s elevation (z-
axis component of the location of the end-effector) is above	ݖ ൌ
଴ݖ ൅ .଺ is the maximum width of the tool holderݓ ଺, whereݓ0.5
Therefore, a collision-free motion can be generated by finding
a retraction motion that takes the end-effector from the starting
position to free space and an approach motion to place the end-
effector from free space to the goal position.

Fig. 1 The bounding box of an arbitrary part

Fig. 2 Outline representation of the non-processing motion generation
algorithm

Notice that the starting and ending positions of the non-

processing motions are actually also the starting positions of the
processing motions. From the reachability test it is guaranteed
that there are not any collisions at these positions.

There are two scenarios when the end-effector’s location is
under the safety level. First, only the last link is below	ݖ ൌ ଴ݖ ൅
 ଺. The second scenario is to have the last link to be fullyݓ0.5
immersed and a portion of the fifth link be below	ݖ ൌ ଴ݖ ൅
 .଺ݓ0.5

For the first case, since the manipulator has six DoF, it is
possible to retract the end-effector with a constant orientation

along ݑሬԦଷ
ሺ଺ሻ from the start position to the safety level with a

guarantee that this motion is collision-free. Mathematically, the
orientation of the end-effector remains constant through the
motion, ܥଵ ൌ ଶܥ ൌ ሺ଴,଺ሻ. While the location of the endܥ

position is ̅ݎଶ
ሺ଴ሻ ൌ ଵݎ̅

ሺ଴ሻ െ is found using simple ݏ .തଷݑሺ଴,଺ሻܥݏ
trigonometry as follows:

ݏ ൌ
௭బା଴.ହ௪లି௥భ,య

ୡ୭ୱఉ
 (1)

where

 cos ߚ ൌ
௥భ,యି௪భ,య

ௗల
 (2)

 is the third component	ଵ,ଷݓ ଵ andݎ̅ is the third component of	ଵ,ଷݎ
of ݓഥଵ. holder.

Fig. 3 Trigonometry used to find the value of s

For the second case, this motion can be divided into two

segments. First one moves the end-effector from the start
position to the wrist point with an orientation similar to the
initial orientation of the fifth link. A collision test is to be
performed at this case to make sure it is a safe motion. As for
the second segment, the end-effector moves with a constant

orientation along the new ݑሬԦଷ
ሺ଺ሻ until it reaches safety level.

Mathematically, the end position of the first segment motion
can be defined by the initial orientation of the fifth link, ܥଶ ൌ
 ,ሺ଴,ସሻ. While the location is equal to the initial wrist pointܥ

ଶݎ̅
ሺ଴ሻ ൌ ଵݎ̅

ሺ଴ሻ െ ݀଺ܥሺ଴,଺ሻݑതଷ. Consequently, for the second
segment, the start position is basically the end position of the
first segment. The end position, on the other hand, consists of
the same orientation as with the start position, ܥଷ ൌ ଶ, and theܥ

location point	̅ݎଷ
ሺ଴ሻ ൌ ଶݎ̅

ሺ଴ሻ െ is found from (1) and ݏ .തଷݑሺ଴,଺ሻܥݏ
(2).

It can be realized that the approach motion for a given

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:10, No:12, 2016

1902

position can be generated by simply reversing its retraction
motion.

Fig. 4 Different snap shots of the first segment of the retraction
motion from a critical position where both last two links are under the

safety level

Fig. 5 Outline representation of the non-processing motion generation
algorithm

Therefore, given a starting and an ending positions to
generate a non-processing motion between them, all is needed
is to first generate the retraction and approach motion for the
corresponding positions. Then, connect these two motions with
a straight line motion in free-space. Such algorithm will be
referred to as the RFA Motion. This approach significantly
reduces the complexity that most collision-free path generation
methods suffer from. The one disadvantage is that this approach
might overlook some edges, if found unreachable by the robot
manipulator.

The RFA motion may not be the shortest possible collision-
free path between two given positions. Nonetheless, it offers a
very efficient solution regarding CPU time and path length.

B. Collision Detection Test

The manipulator’s links are modeled as cuboids, as shown in
Fig. 6. Such a model is conservative, which can accommodate
for some deviations. Also, it is faster to maneuver cuboids in
SolidWorks which will require fewer memory and time
compared to using an actual geometric model.

The non-processing motions generated between each two
positions need to be collision-free. Only the retraction and
approach parts of the RFA motion need to be checked. Since
the portion of the RFA motion made in free space is by
definition free of collisions.

It is critical to realize that both the approach and retract
motions for a given critical position is in fact the same motion
but reversed in the order of execution. Therefore, the collision
detection test boils down to checking the retraction motion of
each critical position separately.

Fig. 6 Geometric model of the robotic arm used for performing the collision detection test

The test nature is similar with the one performed on

processing motions. That is, the motion is discretized into a
number of poses that in turn covers the whole range of motion.
Figs. 4 and 5 show an example of such discretization of a
retraction motion.

While checking for collisions, the program will also be

monitoring the joints’ angles. If an angle exceeds its physical
limitation, then such motion cannot be performed by the robot.

III. RFA MOTION’S APPLICATION IN EDGE FINISHING AND

INSPECTION

The RFA motion algorithm is going to be used to generate

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:10, No:12, 2016

1903

the non-processing motions type in the overall nominal tool
path of an edge finishing process.

The overall path of the end-effector is going to be generated
in order to be later executed by the robotic manipulator. Starting
with the preparation stage, the edges needed to be scanned or
deburred are selected from the CAD model. Next, for each
selected edge the corresponding needed motion of the end-
effector in order to process that specific edge is generated, such
motions will be referred to as processing motions. Then, all
possible combination of motions that connect these separated
processing motions together are generated using RFA
algorithm, such motions will be referred to as non-processing
motions. After that, a search algorithm is applied on the
constructed graph to select a subset of the non-processing
motions.

A. Processing Motion Generation

Each process motion corresponds to one edge on the part;
therefore, these motions are fixed. Two types of edges are
considered in this study, namely, Straight edges and Circular
ones.

In case of a straight line, these motions can be found by
taking the desired offset value and direction (approach angle)
from both ending vertices of that edge. The offset value is the
relative distance between the edge and end-effector during the
processing motion, such parameter is numerically entered by
the user. While the offset direction can be chosen as either the
average of the adjacent faces’ normals, check Fig. 7 (a), or
normal to the direction of the formed burr, Fig. 7 (b). Generally,
the burr forms in the direction normal to both the normal vector
of the later machined face between the two adjacent faces and
the direction of the edge itself [10].

Fig. 7 (a) Illustration of an offset direction, Ԧ݀, that is equal to the
average of the two normals of the adjacent faces of the edge, ሬ݊Ԧଵ and

ሬ݊Ԧଶ (b) Illustration of an offset direction, Ԧ݀, in the normal direction to
the formed burr

As for the tip point orientation, it is found as follows, the

opposite direction of the offset vector, Ԧ݀, is taken to be the z-
axis of the end-effector. The y-axis is oriented such that it is
parallel to the edge, the sign of the direction is decided such that
the x-axis will be pointing downwards with respect to the global
coordinates, using the right-hand rule. Fig. 8 gives a good
example of such calculation.

In case of an arc edge, the corresponding processing motion
can be sufficiently defined by the start and end positions of the

end-effector along with a middle position. A similar approach
with the straight line edge can also be applied to calculate the
processing motion for an arc edge.

Fig. 8 (a) Calculating the orientation of the end-effector of the robotic
arm (b) Simulation representation

Fig. 9 Calculating the orientation of the end-effector of the robotic
arm in the case of an arc edge

Collision detection test is performed on each of these

calculated motions. The test nature is similar with the one
performed on RFA motions. Note that such motions are
necessary to perform the task, either scanning or deburring.
Hence, if any of these motions turns to have a collision it means
that the corresponding edge cannot be processed as far as the
part in hand is positioned in the given orientation in space.

B. Non-Processing Motion Generation

The non-processing motion between two positions is
generated by the RFA algorithm. However, two special cases
are treated differently for better results.

The first case is when both start and end positions share the
same vertex, check Fig. 10. The motion is a direct one (straight
line in the configuration space). Such motion is collision-free
since the shared vertex is reachable.

Fig. 10 Illustration of the non-processing motion when both start and
end positions point at the same vertex

The second case is when both positions share a reachable

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:10, No:12, 2016

1904

edge. A direct motion can be made by utilizing the previously
generated processing motion of the shared edge, see Fig. 11.
This motion is also collision-free, since it is constructed of
smaller collision-free motions calculation.

For generating the non-processing motion between two given
positions, the algorithm will first check if these two positions
share a vertex or an edge, if so the method explained above is
used to generate the path of the end-effector. Otherwise, an
RFA motion is generated.

Fig. 11 Illustration of the non-processing motion when both the start
and end positions share a reachable edge

Fig. 12 An example of three processing-motions (PM) and the
representing graph for finding route solution of the modified TSP

“The non-processing motions between the home position and other
poses are not shown for simplicity”

This approach reduces the complexity of finding all possible

non-processing motions from O(n2) to O(n). Instead of
generating a motion between each pair of critical positions, the
problem is reduced to calculate one retraction motion for each
critical position space.

C. Overall Path Planning

After generating all possible non-processing motions, the
next step is to select a subset of them that creates a connected
path together with the processing motions. In fact, such problem
is a TSP (Traveler Salesman Problem).

To further understand this representation, refer to Fig. 12.
Notice that each node in the graph represents a starting or an
ending position of the end-effector, while the connected edges

represent the processing motions and finally the dashed ones is
for the non-processing motions. Unfortunately, general TSP is
known to be an NP-complete problem. There is not a systematic
approach to reach the optimum solution in a polynomial time
algorithm.

In this study, the nearest neighbor algorithm is adopted and
implemented in the software. The solution of the TSP will
correspond to a collision-free motion trajectory which
represents the overall path to be executed by the robotic
manipulator.

Fig. 13 The solution of the TSP graph given in Fig. 12 using nearest
neighbor algorithm

IV. EXPERIMENTAL RESULTS

In this section two sample workpieces are presented to test
the practical functionality of the study. The test setup consists
of the ABB IRB2000, working table and the workpiece to be
processed. In addition, for the two last parts, a spindle holder
and a flex attachment spindle (Dremel 225) are used, see Fig.
14. As for the computer connected to ABB IRB200 it has an
Intel® Core™ i7-4700HQ CPU processor working at 2.4 GHz.

Fig. 14 Test Setup Illustration

A. Sample Part 1

This workpiece is an arbitrary part that was manufactured for
the sole purpose of testing and confirming the overall algorithm
of the study, see Fig. 15. The bounding box of the part is
125mmx95mmx70mm.

To further understand this representation, refer to Fig. 15.
Notice that each node in the graph represents a starting or an
ending position of the end-effector, while the connected edges
represent the processing motions, and finally the dashed ones is
for the non-processing motions. Unfortunately, general TSP is
known to be an NP-complete problem. There is not a systematic
approach to reach the optimum solution in a polynomial time

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:10, No:12, 2016

1905

algorithm.
The objective is to generate a path for the end-effector in

order to scan the edges of the given part. The part is not directly
mounted on the working table. Instead, a smaller piece, acts like
a base, is mounted on the working table and then the part is
placed on top of the piece. This is done just to give the robot
extra freedom to reach more edges.

The part has a total of 21 edges, all convex. Excluding the six
lower edges, the software tries to generate a path to scan the
remaining 15 edges. However, two of the edges turn out to be
unreachable in the given orientation, shown in red in Fig. 16.
Therefore, the overall generated path goes over 13 edges of the
part. The order at which these edges are processed is given in
Fig. 16. The software took 19 seconds to generate the output
motion.

Fig. 15 Trimetric view of part 1

Fig. 16 The order of which the edges of part one are scanned

Fig. 17 Trimetric view of part 3

B. Sample Part 2

This part represents the general characteristics of a V6 engine
block, see Fig. 17. The bounding box of the part is 200 mm x
150 mm x 100 mm motion.

The objective is to generate a path for the end-effector in
order to deburr the convex edges of the given part. Since no
actual deburring is taking place, the part is directly mounted in
the working table without fixing it to a fixture.

The part has a total of 24 convex edges. Excluding the four
lower edges, the software tries to generate a path to process the
remaining 20 edges. Four of these edges turn to be unreachable
in the given orientation by the end-effector, shown in red in Fig.
18. Therefore, the overall generated path goes over 16 edges.
The order at which these edges are processed is given in Fig.
18. Where the time needed by the software to complete the path
generation was 26 seconds.

Fig. 18 The order of which the edges of part two are deburred

V. CONCLUSION

In this paper a new method for generating non-processing
motions of a 6-DoF was introduced and applied in automated
edge finishing and scanning processes. This objective was
achieved by developing software in SolidWorks API using
Visual Basic programming language. The ABB IRB2000
model was considered as the robotic manipulator throughout
the study. The performance of the software and the proposed
method were verified by running tests on two workpieces. The
RFA motion approach reduced the complexity of both
calculating a motion between two positions and the number of
calculations needed for constructing all possible non-
processing motions. In both runs the algorithm was able to
generate a path in less than a minute for each workpiece,
making it a fast off-line path generator algorithm for edge
finishing and scanning. Compared with the classical point-to-
point teaching method, which takes several hours to a day to
perform, depending on the skill of the worker and the
complexity of the piece. While other off-line path generation
approaches using the CAD model of the considered workpiece,
such as [1], need a processing time around three hours on
average.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:10, No:12, 2016

1906

ACKNOWLEDGMENT

This study is supported by Scientific and Technological
Research Council of Turkey (TÜBİTAK), 114E274.

REFERENCES
[1] F. Leali, M. Pellicciari and F. Pini, "An Offline Programming Method for

the Robotic Deburring of Aerospace Components," Robotics in Smart
Manufacturing, Communications in Computer and Information Science,
vol. 371, pp. 1-13, 2013.

[2] O. Valente, "A New Approach for Tool Path Control in Robotic
Deburring Operations," in 17th international Congress of Mechanical
Engineering, Sao Paulo, 2003.

[3] X. L. Liao, "Modeling and control of automated polishing/deburring
process using a dual-purpose compliant tool head," International Journal
of Machine Tools & Manufacture, pp. 1454-1464, 2008.

[4] H. Zhang, H. Chen, N. Xi, G. Zhang and J. He, "On-Line Path Generation
for Robotic Deburring of Cast Aluminum Wheels," in Proceedings of the
2006 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Beijing, 2006.

[5] H. Song, K. Byeong-Sang and S. Jae-Bok, "Tool Path Generation based
on Matching between Teaching Points and CAD Model for Robotic
Deburring," in The 2012 IEEE/ASME International Conference on
Advanced Intelligent Mechatronics, Kaohsiung, 2012.

[6] S. Lee, C. Li, D. Kim, J. Kyung and H. ChangSoo, "The Direct Teaching
and Playback Method for Robotic Deburring System Using the
Adaptiveforce-control," in 2009 IEEE International Symposium on
Assembly and Manufacturing, Suwon, 2009.

[7] L. Princely and S. T, "Vision Assisted Robotic Deburring of Edge Burrs
in Cast Parts," Procedia Engineering, vol. 97, pp. 1906-1914, 2014.

[8] N. Asakawa, K. Toda and Y. Takeuchi, "Automation of chamfering by an
industrial robot; for the case of hole on free-curved surface," Robotics and
Computer Integrated Manufacturing, vol. 18, p. 379–385, 2002.

[9] S. Lavalle, Planning Algorithms, Cambridge: Cambridge University
Press, 2006.

[10] L. E. Kavraki, P. Svestka, J.-C. Latombe and M. H. Overmars,
"Probabilistic roadmaps for path planning in high-dimensional
configuration spaces," IEEE Transactions on Robotics and Automation,
vol. 12, p. 566–580, 1996.

[11] O. Khatib, "Real-time obstacle avoidance for manipulators and mobile
robots," International Journal of Robotics Research, vol. 5, p. 90–98,
1986.

[12] P. Chotiprayanakul, D. K. Liu, D. Wang and D. G., "A 3-Dimensional
Force Field Method for Robot Collision Avoidance in Complex
Environments," in 24th International Symposium on Automation &
Robotics in Construction, Madras, 2007.

[13] H. B. J. Kazerooni and B. Kramer, "An Approach to Automated
Deburring by Robot Manipulators," Journal of Dynamic Systems,
Measurement, and Control, vol. 108, pp. 353-359, 1986.

