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 
Abstract—In this paper, a motion generation algorithm for a six 

Degrees of Freedom (DoF) robotic hand in a static environment is 
presented. The purpose of developing this method is to be used in the 
path generation of the end-effector for edge finishing and inspection 
processes by utilizing the CAD model of the considered workpiece. 
Nonetheless, the proposed algorithm may be extended to be applicable 
for other similar manufacturing processes. A software package 
programmed in the application programming interface (API) of 
SolidWorks generates tool path data for the robot. The proposed 
method significantly simplifies the given problem, resulting in a 
reduction in the CPU time needed to generate the path, and offers an 
efficient overall solution. The ABB IRB2000 robot is chosen for 
executing the generated tool path. 

 
Keywords—Offline programming, CAD-based tools, edge 

deburring, edge scanning, path generation. 

I. INTRODUCTION 

EBURRING processes have been identified as the 
bottleneck in many machine industries. The burr removal 

methods can induce dimensioning errors to the workpiece if 
improperly executed. Burrs are caused by many machining 
processes including milling, drilling, turning, and broaching. 
An amazing transformation of edge finishing has occurred over 
the past 50 years trying to mimic the adaptive nature of human 
intelligence in order to replace manual deburring. 
Anthropomorphous robots are the best state-of-the-art 
compromise between performance and flexibility for automated 
deburring tasks [2]. They provide larger work volumes, safety 
and efficiency at a lower cost than CNC machines. 

Several methodologies for robotic deburring have been 
actually been proposed in the literature. Some are based on 
servo control and compliance control to stabilize the deburring 
condition [3]–[6]. These methods focused not on the path 
generation itself but on the improvement of the tool path. As for 
the off-line path generation, while most of the robots are 
controlled under a teaching-playback mode, some research has 
been done on generating a tool path based on the contour of a 
workpiece, such as teaching method [7], computer vision [8], 
CAD/CAM approach [2], [9], [6]. However, these researches 
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either focus on planar workpieces or include some user input 
and feedback in order to achieve an overall collision-free path. 
The main difficulty in this subject is the generation of collision-
free motions that are able to move the end-effector from one 
edge to another on the same workpiece. 

There are many different known algorithms in the literature 
[10] to yield an efficient collision-free path. One popular 
approach for the case of robotic manipulators in static 
environments is the probabilistic roadmaps planner [11], which 
is a probabilistically complete algorithm. Khatib [12] offered a 
very interesting algorithm known as an artificial potential field 
approach; however, the main drawback of this method is the 
possibility of sticking in local minima; that is, the algorithm is 
not necessarily complete. Another algorithm inspired by the 
Khatib is the artificial force field approach. Many papers 
discuss slightly different models of such an algorithm, and [13] 
is one example; nonetheless, the main idea is that obstacles 
apply forces on the robot links in such a way that they repel the 
robot dynamically. Unfortunately, this method has the 
possibility of sticking in local minima, similar to the artificial 
potential field method. On the other hand, due to the nature of 
the problem in hand, a novel but simple approach is going to be 
discussed in this study. 

In this paper, there are two main objectives. The first is the 
introduction of a simple yet effective path generation algorithm 
that tries to overcome the difficulty and complexity of finding 
a collision-free path between two edges on the same workpiece. 
The second is a full implementation of the algorithm in order to 
perform an off-line path planning by utilizing the CAD model 
of the considered workpiece; where such a plan will generate a 
nominal collision-free path for the end-effector to go over the 
desired edges to be deburred. 

The paper is organized as follows. First is Section II in which 
a Retraction-Free-Approach (RFA) motion algorithm is 
introduced. In Section III, a fully connected path for performing 
edge deburring and/or inspection is generated by the use of 
RFA motion. In Section IV, the experimental setup and 
experimental results are presented, while the conclusions are 
drawn in Section V.  
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II. RFA MOTION 

This approach is going to be used to generate non-processing 
motions. Non-Processing motion is a motion of which is needed 
to change the end-effector position after processing an edge to 
go to another one. Such motion does not include any actual 
processing (deburring or scanning), and therefore, it is not 
bounded to a specific trajectory, as far as the trajectory is 
collision-free.  

A. Calculating RFA Motions 

One may take an advantage from the nature of the working 
space in hand. Notice that if the manipulator assumes an upper 
arm configuration throughout its motion, there will not be any 
collision between the part and the robotic hand as long as the 
end-effector is above the bounding box of the workpiece. There 
are eight vertices of such a box, the ones adjacent to the top 
plane share an elevation of	ݖ ൌ  ଴. Adding half the width of theݖ
tool holder, it can be guaranteed that the manipulator will not 
collide with the part as long as the end-effector’s elevation (z-
axis component of the location of the end-effector) is above	ݖ ൌ
଴ݖ ൅  .଺ is the maximum width of the tool holderݓ ଺, whereݓ0.5
Therefore, a collision-free motion can be generated by finding 
a retraction motion that takes the end-effector from the starting 
position to free space and an approach motion to place the end-
effector from free space to the goal position. 

 

 

Fig. 1 The bounding box of an arbitrary part 
 

 

Fig. 2 Outline representation of the non-processing motion generation 
algorithm 

 
Notice that the starting and ending positions of the non-

processing motions are actually also the starting positions of the 
processing motions. From the reachability test it is guaranteed 
that there are not any collisions at these positions. 

There are two scenarios when the end-effector’s location is 
under the safety level. First, only the last link is below	ݖ ൌ ଴ݖ ൅
 ଺. The second scenario is to have the last link to be fullyݓ0.5
immersed and a portion of the fifth link be below	ݖ ൌ ଴ݖ ൅
 .଺ݓ0.5

For the first case, since the manipulator has six DoF, it is 
possible to retract the end-effector with a constant orientation 

along ݑሬԦଷ
ሺ଺ሻ from the start position to the safety level with a 

guarantee that this motion is collision-free. Mathematically, the 
orientation of the end-effector remains constant through the 
motion, ܥଵ ൌ ଶܥ ൌ  ሺ଴,଺ሻ. While the location of the endܥ

position is ̅ݎଶ
ሺ଴ሻ ൌ ଵݎ̅

ሺ଴ሻ െ  is found using simple ݏ .തଷݑሺ଴,଺ሻܥݏ
trigonometry as follows: 

 

ݏ ൌ
௭బା଴.ହ௪లି௥భ,య

ୡ୭ୱఉ
   (1) 

 
where 
 

 cos ߚ ൌ
௥భ,యି௪భ,య

ௗల
 (2) 

 
  is the third component	ଵ,ଷݓ ଵ andݎ̅ is the third component of	ଵ,ଷݎ
of ݓഥଵ. holder.  

 

 

Fig. 3 Trigonometry used to find the value of s 
 
For the second case, this motion can be divided into two 

segments. First one moves the end-effector from the start 
position to the wrist point with an orientation similar to the 
initial orientation of the fifth link. A collision test is to be 
performed at this case to make sure it is a safe motion. As for 
the second segment, the end-effector moves with a constant 

orientation along the new ݑሬԦଷ
ሺ଺ሻ until it reaches safety level. 

Mathematically, the end position of the first segment motion 
can be defined by the initial orientation of the fifth link, ܥଶ ൌ
 ,ሺ଴,ସሻ. While the location is equal to the initial wrist pointܥ

ଶݎ̅
ሺ଴ሻ ൌ ଵݎ̅

ሺ଴ሻ െ ݀଺ܥሺ଴,଺ሻݑതଷ. Consequently, for the second 
segment, the start position is basically the end position of the 
first segment. The end position, on the other hand, consists of 
the same orientation as with the start position, ܥଷ ൌ  ଶ, and theܥ

location point	̅ݎଷ
ሺ଴ሻ ൌ ଶݎ̅

ሺ଴ሻ െ  is found from (1) and ݏ .തଷݑሺ଴,଺ሻܥݏ
(2). 

It can be realized that the approach motion for a given 
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position can be generated by simply reversing its retraction 
motion. 

 

 

Fig. 4 Different snap shots of the first segment of the retraction 
motion from a critical position where both last two links are under the 

safety level 
 

 

Fig. 5 Outline representation of the non-processing motion generation 
algorithm 

 

Therefore, given a starting and an ending positions to 
generate a non-processing motion between them, all is needed 
is to first generate the retraction and approach motion for the 
corresponding positions. Then, connect these two motions with 
a straight line motion in free-space. Such algorithm will be 
referred to as the RFA Motion. This approach significantly 
reduces the complexity that most collision-free path generation 
methods suffer from. The one disadvantage is that this approach 
might overlook some edges, if found unreachable by the robot 
manipulator. 

The RFA motion may not be the shortest possible collision-
free path between two given positions. Nonetheless, it offers a 
very efficient solution regarding CPU time and path length. 

B. Collision Detection Test 

The manipulator’s links are modeled as cuboids, as shown in 
Fig. 6. Such a model is conservative, which can accommodate 
for some deviations. Also, it is faster to maneuver cuboids in 
SolidWorks which will require fewer memory and time 
compared to using an actual geometric model. 

The non-processing motions generated between each two 
positions need to be collision-free. Only the retraction and 
approach parts of the RFA motion need to be checked. Since 
the portion of the RFA motion made in free space is by 
definition free of collisions. 

It is critical to realize that both the approach and retract 
motions for a given critical position is in fact the same motion 
but reversed in the order of execution. Therefore, the collision 
detection test boils down to checking the retraction motion of 
each critical position separately. 

 

Fig. 6 Geometric model of the robotic arm used for performing the collision detection test 
 
The test nature is similar with the one performed on 

processing motions. That is, the motion is discretized into a 
number of poses that in turn covers the whole range of motion. 
Figs. 4 and 5 show an example of such discretization of a 
retraction motion. 

While checking for collisions, the program will also be 

monitoring the joints’ angles. If an angle exceeds its physical 
limitation, then such motion cannot be performed by the robot. 

III. RFA MOTION’S APPLICATION IN EDGE FINISHING AND 

INSPECTION 

The RFA motion algorithm is going to be used to generate 
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the non-processing motions type in the overall nominal tool 
path of an edge finishing process. 

The overall path of the end-effector is going to be generated 
in order to be later executed by the robotic manipulator. Starting 
with the preparation stage, the edges needed to be scanned or 
deburred are selected from the CAD model. Next, for each 
selected edge the corresponding needed motion of the end-
effector in order to process that specific edge is generated, such 
motions will be referred to as processing motions. Then, all 
possible combination of motions that connect these separated 
processing motions together are generated using RFA 
algorithm, such motions will be referred to as non-processing 
motions. After that, a search algorithm is applied on the 
constructed graph to select a subset of the non-processing 
motions. 

A. Processing Motion Generation 

Each process motion corresponds to one edge on the part; 
therefore, these motions are fixed. Two types of edges are 
considered in this study, namely, Straight edges and Circular 
ones. 

In case of a straight line, these motions can be found by 
taking the desired offset value and direction (approach angle) 
from both ending vertices of that edge. The offset value is the 
relative distance between the edge and end-effector during the 
processing motion, such parameter is numerically entered by 
the user. While the offset direction can be chosen as either the 
average of the adjacent faces’ normals, check Fig. 7 (a), or 
normal to the direction of the formed burr, Fig. 7 (b). Generally, 
the burr forms in the direction normal to both the normal vector 
of the later machined face between the two adjacent faces and 
the direction of the edge itself [10]. 

 

 

Fig. 7 (a) Illustration of an offset direction, Ԧ݀, that is equal to the 
average of the two normals of the adjacent faces of the edge, ሬ݊Ԧଵ and 

ሬ݊Ԧଶ (b) Illustration of an offset direction, Ԧ݀, in the normal direction to 
the formed burr 

 
As for the tip point orientation, it is found as follows, the 

opposite direction of the offset vector, Ԧ݀, is taken to be the z-
axis of the end-effector. The y-axis is oriented such that it is 
parallel to the edge, the sign of the direction is decided such that 
the x-axis will be pointing downwards with respect to the global 
coordinates, using the right-hand rule. Fig. 8 gives a good 
example of such calculation. 

In case of an arc edge, the corresponding processing motion 
can be sufficiently defined by the start and end positions of the 

end-effector along with a middle position. A similar approach 
with the straight line edge can also be applied to calculate the 
processing motion for an arc edge. 

 

 

Fig. 8 (a) Calculating the orientation of the end-effector of the robotic 
arm (b) Simulation representation 

 

 

Fig. 9 Calculating the orientation of the end-effector of the robotic 
arm in the case of an arc edge 

 
Collision detection test is performed on each of these 

calculated motions. The test nature is similar with the one 
performed on RFA motions. Note that such motions are 
necessary to perform the task, either scanning or deburring. 
Hence, if any of these motions turns to have a collision it means 
that the corresponding edge cannot be processed as far as the 
part in hand is positioned in the given orientation in space.  

B. Non-Processing Motion Generation  

The non-processing motion between two positions is 
generated by the RFA algorithm. However, two special cases 
are treated differently for better results. 

The first case is when both start and end positions share the 
same vertex, check Fig. 10. The motion is a direct one (straight 
line in the configuration space). Such motion is collision-free 
since the shared vertex is reachable. 

 

 

Fig. 10 Illustration of the non-processing motion when both start and 
end positions point at the same vertex 

 
The second case is when both positions share a reachable 
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edge. A direct motion can be made by utilizing the previously 
generated processing motion of the shared edge, see Fig. 11. 
This motion is also collision-free, since it is constructed of 
smaller collision-free motions calculation. 

For generating the non-processing motion between two given 
positions, the algorithm will first check if these two positions 
share a vertex or an edge, if so the method explained above is 
used to generate the path of the end-effector. Otherwise, an 
RFA motion is generated. 

 

 

Fig. 11 Illustration of the non-processing motion when both the start 
and end positions share a reachable edge 

 

 

Fig. 12 An example of three processing-motions (PM) and the 
representing graph for finding route solution of the modified TSP 

“The non-processing motions between the home position and other 
poses are not shown for simplicity” 

 
This approach reduces the complexity of finding all possible 

non-processing motions from O(n2) to O(n). Instead of 
generating a motion between each pair of critical positions, the 
problem is reduced to calculate one retraction motion for each 
critical position space.  

C. Overall Path Planning  

After generating all possible non-processing motions, the 
next step is to select a subset of them that creates a connected 
path together with the processing motions. In fact, such problem 
is a TSP (Traveler Salesman Problem). 

To further understand this representation, refer to Fig. 12. 
Notice that each node in the graph represents a starting or an 
ending position of the end-effector, while the connected edges 

represent the processing motions and finally the dashed ones is 
for the non-processing motions. Unfortunately, general TSP is 
known to be an NP-complete problem. There is not a systematic 
approach to reach the optimum solution in a polynomial time 
algorithm. 

In this study, the nearest neighbor algorithm is adopted and 
implemented in the software. The solution of the TSP will 
correspond to a collision-free motion trajectory which 
represents the overall path to be executed by the robotic 
manipulator. 

 

 

Fig. 13 The solution of the TSP graph given in Fig. 12 using nearest 
neighbor algorithm 

IV. EXPERIMENTAL RESULTS 

In this section two sample workpieces are presented to test 
the practical functionality of the study. The test setup consists 
of the ABB IRB2000, working table and the workpiece to be 
processed. In addition, for the two last parts, a spindle holder 
and a flex attachment spindle (Dremel 225) are used, see Fig. 
14. As for the computer connected to ABB IRB200 it has an 
Intel® Core™ i7-4700HQ CPU processor working at 2.4 GHz. 

 

 

Fig. 14 Test Setup Illustration 

A. Sample Part 1  

This workpiece is an arbitrary part that was manufactured for 
the sole purpose of testing and confirming the overall algorithm 
of the study, see Fig. 15. The bounding box of the part is 
125mmx95mmx70mm. 

To further understand this representation, refer to Fig. 15. 
Notice that each node in the graph represents a starting or an 
ending position of the end-effector, while the connected edges 
represent the processing motions, and finally the dashed ones is 
for the non-processing motions. Unfortunately, general TSP is 
known to be an NP-complete problem. There is not a systematic 
approach to reach the optimum solution in a polynomial time 
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algorithm. 
The objective is to generate a path for the end-effector in 

order to scan the edges of the given part. The part is not directly 
mounted on the working table. Instead, a smaller piece, acts like 
a base, is mounted on the working table and then the part is 
placed on top of the piece. This is done just to give the robot 
extra freedom to reach more edges. 

The part has a total of 21 edges, all convex. Excluding the six 
lower edges, the software tries to generate a path to scan the 
remaining 15 edges. However, two of the edges turn out to be 
unreachable in the given orientation, shown in red in Fig. 16. 
Therefore, the overall generated path goes over 13 edges of the 
part. The order at which these edges are processed is given in 
Fig. 16. The software took 19 seconds to generate the output 
motion. 

 

 

Fig. 15 Trimetric view of part 1 
 

 

Fig. 16 The order of which the edges of part one are scanned 
 

 

Fig. 17 Trimetric view of part 3 

B. Sample Part 2  

This part represents the general characteristics of a V6 engine 
block, see Fig. 17. The bounding box of the part is 200 mm x 
150 mm x 100 mm motion. 

The objective is to generate a path for the end-effector in 
order to deburr the convex edges of the given part. Since no 
actual deburring is taking place, the part is directly mounted in 
the working table without fixing it to a fixture. 

The part has a total of 24 convex edges. Excluding the four 
lower edges, the software tries to generate a path to process the 
remaining 20 edges. Four of these edges turn to be unreachable 
in the given orientation by the end-effector, shown in red in Fig. 
18. Therefore, the overall generated path goes over 16 edges. 
The order at which these edges are processed is given in Fig. 
18. Where the time needed by the software to complete the path 
generation was 26 seconds. 

 

 

Fig. 18 The order of which the edges of part two are deburred 

V. CONCLUSION 

In this paper a new method for generating non-processing 
motions of a 6-DoF was introduced and applied in automated 
edge finishing and scanning processes. This objective was 
achieved by developing software in SolidWorks API using 
Visual Basic programming language. The ABB IRB2000 
model was considered as the robotic manipulator throughout 
the study. The performance of the software and the proposed 
method were verified by running tests on two workpieces. The 
RFA motion approach reduced the complexity of both 
calculating a motion between two positions and the number of 
calculations needed for constructing all possible non-
processing motions. In both runs the algorithm was able to 
generate a path in less than a minute for each workpiece, 
making it a fast off-line path generator algorithm for edge 
finishing and scanning. Compared with the classical point-to-
point teaching method, which takes several hours to a day to 
perform, depending on the skill of the worker and the 
complexity of the piece. While other off-line path generation 
approaches using the CAD model of the considered workpiece, 
such as [1], need a processing time around three hours on 
average. 
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