
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:10, 2016

1892


Abstract—Programming requires years of training. With natural

language and end user development methods, programming could
become available to everyone. It enables end users to program their
own devices and extend the functionality of the existing system
without any knowledge of programming languages. In this paper, we
describe an Interactive Spreadsheet Processing Module (ISPM), a
natural language interface to spreadsheets that allows users to address
ranges within the spreadsheet based on inferred table schema. Using
the ISPM, end users are able to search for values in the schema of the
table and to address the data in spreadsheets implicitly. Furthermore,
it enables them to select and sort the spreadsheet data by using
natural language. ISPM uses a machine learning technique to
automatically infer areas within a spreadsheet, including different
kinds of headers and data ranges. Since ranges can be identified from
natural language queries, the end users can query the data using
natural language. During the evaluation 12 undergraduate students
were asked to perform operations (sum, sort, group and select) using
the system and also Excel without ISPM interface, and the time taken
for task completion was compared across the two systems. Only for
the selection task did users take less time in Excel (since they directly
selected the cells using the mouse) than in ISPM, by using natural
language for end user software engineering, to overcome the present
bottleneck of professional developers.

Keywords—Natural language processing, end user development;

natural language interfaces, human computer interaction, data
recognition, dialog systems, spreadsheet.

I. INTRODUCTION

HE main question in the End User Development (EUD)
area of research is, how to allow non-programming users

who have no access to source code, to program a computer
system or extend the functionality of an existing system [1].
Tables have been used for at least 7,000 years [2]. Spreadsheet
programs such as Microsoft Excel have become ubiquitous.
The created spreadsheets are not only the traditional tabular
representation of relational data that convey information space
efficiently, but also allow a continuous revision and formula-
based data manipulation. It is estimated that each year
hundreds of millions of spreadsheets are created [3]. Myers [4]
and also Scaffidi [5] compared the number of end users and
professional programmers in the United States. Nearly 90
million people use computers at work and 50 million of them

Alexander Wachtel is with the Karlsruhe Institute of Technology, 76131

Karlsruhe, Germany (corresponding author, phone: +49-721-60846320; fax:
+49-721-608-47343; e-mail: Alexander.Wachtel@kit.edu).

Michael T. Franzen is with the Karlsruhe Institute of Technology, 76131
Karlsruhe, Germany (e-mail: Michael.Franzen@student.kit.edu).

Walter F. Tichy is professor and chair of programming systems with the
Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany (e-mail:
Walter.Tichy@kit.edu).

use spreadsheets. In a self-assessment 12 million considered
themselves as programmers, but only 3 million people are
professional programmers.

In 1979, Ballard et al. [6]-[8] introduced the Natural
Language Computer (NLC) that enables end users to program
simple arithmetic calculations using natural language. In 2015,
Wachtel [9] presented our first prototype of an assistant
system that uses natural language understanding and a dialog
management system to allow inexperienced users to
manipulate spreadsheets with natural language. Motivated by
a pilot study based on the selected problems from Frey’s book
Microsoft Excel 2013 [10] the system requests missing
information and is able to resolve ambiguities by providing
alternatives to choose from. Furthermore, the dialog system
must resolve references to previous results, allowing the
construction of complex expressions step-by-step. In early
2016, Wachtel [11] extended the prototype with an active
ontology. The idea of active ontology was first presented in
2006 by Guzzoni [12]. In general, an ontology is a formal
representation of knowledge. By adding a rule evaluation
system, a fact store and sensor nodes to an ontology it
becomes an execution environment rather than just a formal
representation of knowledge. Sensor nodes register certain
events and save them in the fact store. An evaluation
mechanism tests the new facts against the existing rules and
performs the associated actions if one or more rules apply.

In this work, the natural language dialog system has been
extended with a machine learning component. It synthesizes
formulas without explicit cell references. First, the rows of a
spreadsheet are divided into different classes and the table’s
schema is made searchable for the dialog system. In the case
of user input, it searches for headers, data values from the
table and key phrases for operations. Implicit cell references
like people of age 18 are then resolved to explicit references
using the schema. 88 cell characteristics were automatically
extracted in a body of 2145 tables, and reduced to 42 cell
characteristics by the principal component analysis. The
classification was carried out using a Conditional Random
Field [13], probabilistic graphical models for sequence
labeling. The method was trained on 4,000 lines and evaluated
on about 400 lines. Overall, we evaluate the following
research questions: (RQ1) how well can a structure of the
table be detected in a spreadsheet? and (RQ2) how well can
unrestricted natural language of an end user be mapped to a
table structure?

II. DATA RECOGNITION IN SPREADSHEETS

To identify the cognitive processes that occur during the

Context Detection in Spreadsheets Based on
Automatically Inferred Table Schema

Alexander Wachtel, Michael T. Franzen, Walter F. Tichy

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:10, 2016

1893

reading of a table, we rely on the work of Wang [14]. In 1996,
she describes the most complete model of tables and
formulates the cognitive processes of a reader as (1) an
understanding of the process to recognize the logical structure
of the table, (2) a search process to track relevant information
and (3) to answer an interpretation and comparison process to

questions of the reader (See Fig. 1). More precise
investigations in the field of cognitive psychology [15] allow
us to define the state transitions between the stages (a) target
specification, (b) category selection, (c) information
extraction, and (d) recycling. Finally, the process of the reader
can be modeled as a state machine (See Fig. 1).

Fig. 1 Cognitive stages of an end user in ISPM. Stages (1)-(3) from [14]; processes (a)-(d) from [15]

A. Preprocessing

Before any user queries, the given spreadsheets are
preprocessed to capture their tabular regions. Subsequently, an
efficiently searchable and alterable data structure, an abstract
table, as defined by [14] is constructed for each of the tables.
An abstract table can be defined as a set of labeled domains
with an access function δ. A labeled set is a set together with a
label, each corresponding to one of the table’s categories such
as name or age in Fig. 2.

Fig. 2 A table annotated with row labels. The super header name is
subdivided into the canonical headers first name and last name. Each

person is part of either group A or group B which is depicted as
group headers. Note: It depicts a simple table and is for illustration

purposes only. A detailed evaluation on the accuracy of table
hierarchies is however not feasible because there seems to be no real

ground-truth (See [16] for a study on this topic)

While printed tables sometimes contain a stub box
representing the primary keys of tabular data as vertically
stacked categories, spreadsheets often omit this feature.

Instead, the rows of the table can be regarded as a tabular
category and thus as a labeled domain itself.

A labeled domain is either the labeled empty set or a
labeled set of uniquely labeled sets. This definition induces a
tree-like label hierarchy illustrated in Fig. 3.

Fig. 3 The label hierarchy of the table depicted in Fig. 2

Finally, the access function δ maps a label to its corresponding
tabular regions. For instance, δ (first name) = {A5; …; A13}
as illustrated in Fig. 4.

Given an abstract table, natural language references to
tabular regions such as “the age of people in group A” could
be resolved to δ (age) ∩ δ (group A) = {A4, A5, A6, A7} and
forwarded to the active ontology. To infer these data
structures, we adopt a method first proposed by Pinto et al.
[17], which was recently applied [18], [19] to both table
recognition and table processing. Pinto et al. showed that
linear-chain Conditional Random Fields (CRFs) [13]
accurately predict a table’s row classes. CRFs are probabilistic
graphical models for sequence labelling. The goal is to assign
a label to each item in a sequence. To achieve this, features are
computed for each item. Afterwards, the dependencies across
items in a single sequence are inferred from the training data.
Using these factors, a probability distribution is constructed

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:10, 2016

1894

which is used to infer the optimal label sequence from a
feature sequence. We use the following row labels to identify
and construct a spreadsheet’s abstract table objects (Table I).

Given such a label sequence, we split the spreadsheet’s
rows into vertically stacked tabular regions similar to [19]. A
table starts with either a caption, a super header or a canonical
header. A table ends whenever a data, a non-relational or a
group header row is followed by a caption, a super header or a
canonical header. An abstract table is implemented consisting
of three separate data structure: A logical tree corresponding
to the label hierarchy as illustrated in Fig. 3, a physical tree
corresponding to the access function δ (See Fig. 4) and a data
index. To construct those data structures, we parse the row
label sequence in a recursive manner. The algorithm parses
one row at a time. In case of a caption row, a new node in the
logical structure (persons) is created and assigned the entire
tabular region below the caption (A2 to C13). The algorithm
then proceeds by investigating the row below the caption. For
super header and canonical header rows, the algorithm
continues with each range of merged columns in the currently
investigated area. Group headers are parsed distinct from the
main recursion. They horizontally span the entire table and are
vertically partitioned using the given label sequence.

TABLE I

DESCRIPTION OF THE ROW LABELS

Caption superordinates the entire table

Super Header
superordinates another super header row
or a canonical header row

Canonical Header directly superordinates the data

Group Header partitions the data region

Data contains the data entries

Aggregate
contains some aggregation of the data
entries such as the sum of each column

Non-Relational
describes all rows that do not meet one of
the above requirements

Fig. 4 Tabular regions of the headings in Fig. 2

B. Input Processing

Given the logical structure of a table and a natural language
user query, we resolve natural language cell references by first
matching the table data and header labels with the words of
the user input. After stripping the user request from special
characters and normalizing it to lower case.

We distinguish between four cases:
 When the user input consists of a single header label L,

we resolve the sentence to the tabular region δ (L). This
applies to a user input What is the average age? where L
= age.

 When the user input consists of two header labels L1 and
L2, it is resolved to δ(L1) ∩ δ (L2). This applies to a user
input What is the average age of people in group A?
where L1= age and L2 = group A.

 When the user input consists of a single header label L
and a data value v found in lines M = m1, …, mn, we
resolve the natural language query to δ(L) ∩ δ (v | v ∈ M
= {m1, …, mn}. This applies to a user input like What is the
age of Dustin? where L = age and v = Dustin.

 Finally, when the user input consists of two header labels
L1 and L2 in that order, as well as a single data value v.
This works analogue to case #3 with the exception that
the data entry is required to be in the region of header L2.
This case gives end users the opportunity to avoid
ambiguities. It applies to inputs like What is the average
age of people whose name is Dustin?

Fig. 5 Relevant cells of the user input sum of the age of
people in group A

Words are matched as 1- and 2-grams of the input

sequence. In the case of nouns, both the singular and plural
form are tried. A simple keyword matching procedure is used
to identify relevant operations such as average or sort. If no
operation keyword is found, it is assumed that the user wants
to select the relevant data cells. Given the request operation
and the relevant cells, a new input with explicit cell references
is generated which is used by our active ontology to
synthesize the output. E.g., given an input sum the age of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:10, 2016

1895

people in group A, we first identify the relevant cells δ (age) ∩
δ (group A) and get the formula sum C5, C6, C7, C8 (See Fig.
5). This result is then forwarded to an active ontology which
synthesizes the resulting Excel program SUM(SUM(SUM(C5,
C6), C7), C8), as described in [11].

C. Data Sets

We downloaded 1,177 files from the WEB corpus [18],
which consists of a precompiled list of roughly 410,000 .xls-
files, originally found in the WebClue09 dataset [20]. Of those
files 21:33% were non-relational, 14.53% were forms, 5.27%
had non-English components and 1.27% were corrupt. The
remaining files of the stripped corpus contained 2,145
manually extracted tables, totaling 39,0657 rows and 25,586
columns (See Table II).

Of the approximately seven million cells in the entire data
set, we automatically extracted 88 layouts and features such as
the cell color, text color or whether the content is numerical or
textual. To reduce the feature dimensionality, we eliminated
26 features which were never used and applied a Principal
Component Analysis (PCA) [21] on the remaining 62 features.
We reduced the dimensionality along the 15 principal
component axes. To train the linear-chain CRF, we
constructed row features by averaging the 15 features of each
cell of a row. The mean values were subsequently binarized
with a threshold of zero (since the PCA was applied on
standardized feature vectors, the expected value is zero, see
Table III).

TABLE II
ROW LABELS

Average number
per table

rows 182

columns 13

cell 3226

Total

rows 390657

columns 25586

cell 6920548

TABLE III

ROW LABELS

 Variable min max µ σ

1 font color - bleu 0 1 0.42 0.49

2 font size 0 0.13 0.02 0.02

 …

87 content - text 0 1 0.21 0.41

88 content - numeric 0 1 0.26 0.44

III. EVALUATION

We implemented the algorithms specified in Section II-A
and II-B. CRF was trained and tested on approximately 4,000
and 400 rows respectively. The results in Table IV show the
varying precision, recall and F1 values for each of the tested
rows. It is noticeable, especially in context to previous work,
that the group and super header rows are misclassified fairly
often. This may be the result of an incomplete, low-level

feature set. Adelfio et al. [18] for example used a hand-
selected feature set.

The overall distribution of row classes (five captions, eight
super headers, six group headers, 16 canonical headers, 344
data rows, five aggregate rows and 40 non-relational rows)
yields a precision, recall and F1-score of 93.4%, 94.1% and
93.8%, respectively.

TABLE IV

RECOGNITION RATES OF ROW CLASSES OF THE CONDITIONAL RANDOM

FIELD
 Precision Yield F1

VCAPTION 80.00 % 80.00 % 80.00 %

VDATA 98.24 % 97.38 % 97.81 %

VGROUPHEADER 100 % 16.66 % 28.56 %

VHEADER 66.66 % 87,50 % 75.67 %

VNONREL 75.00 % 97.5 % 84.78 %

VSUPERHEADER 100 % 37.50 % 54.55 %

A. Input Processing

We performed a user study with twelve German students,
nive females and 3 males, eleven computer science and one
biology undergraduates, to evaluate the input processing
algorithms. In a self-assessment, 8% considered themselves as
experts, 50% as advanced users, and 42% as beginners
regarding Excel spreadsheets.

Given three different tables of simple structure (canonical),
we asked each user to perform four different tasks:
 sort: in a given spreadsheet with 50 entries of companies

including name, mail address, website, and city, the
participants should sort the entries by the company’s mail
address.

 group: in a given spreadsheet with 50 entries of credit
cards including provider name, person name, and card
number, the participants should group the entries by the
provider name.

 select: in a given spreadsheet with 50 entries of persons
including name, age, job, and academic grad, the
participants should identify all persons who are 18 years
old.

 aggregate: in the same table as the select use case, the
participants should calculate the age of all persons who
have Dr. as their academic title.

TABLE V

EVALUATION RESULT OF THE DIALOG SYSTEM

Total

Number of Human-Computer Interaction 360

Successfully Solved 78 %

Objectives

Successful Sorting 88 %

Successful Grouping 75 %

Successful Selection 88 %

Successful Aggregation 63 %

Each task was performed twice by each user. Once, they

were asked to only use our system and once to only use the
native Excel environment. We measured the required time for
each variation of a task. Furthermore, we asked the users to

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:10, 2016

1896

rate how satisfying their solution and how helpful ISPM was.
Both the order of the tasks and the order of a task’s variation
were randomly chosen. As seen in Table II the system
successfully solved about 78% of the given tasks.

Regarding the experimental design, the study was
conducted to compare the native Excel environment to Excel
Add-in we developed in regards to usability. The participants
performed each task twice. However, they used only Excel in
the first run and only the natural language dialog system in the
second run. Each of these two variations were performed
exactly once by every participant. The experiment was not
designed to investigate any learning effects.

We asked participants for their English proficiency on a
five-point scale and how often they use Excel. After each
variation of a task, a user was asked to rate his satisfaction
with the solution from 0 (not satisfied) to 4 (totally satisfied).
After both variations of a task were completed, a user was
asked to rate the helpfulness of our system on a scale from 0
(not helpful) to 4 (very helpful). The results are shown in
Table VI. It is noticeable our system outperforms the native
Excel environment regarding the mean subjective satisfaction
of a user. The helpfulness was rated high (µ ≥ 3.25) on all
tested tasks.

TABLE VI

THE MEAN AND STANDARD DEVIATION OF THE VARIABLES

Variable µ σ

Satisfaction - aggregate, Excel 2.75 1.42

Satisfaction - aggregate, ISMP 3.42 1.24

Satisfaction - group, Excel 2.17 1.85

Satisfaction - group, ISMP 3.92 0.29

Satisfaction - select, Excel 3 1.13

Satisfaction - select, ISMP 3.83 0.39

Satisfaction - sort, Excel 3.17 1.4

Satisfaction - sort, ISMP 3.67 1.15

Helpfulness - aggregate 3.75 0.62

Helpfulness - group 3.83 0.39

Helpfulness - select 3.83 0.39

Helpfulness - sort 3.25 1.29

Furthermore, we measured the time until completion of

each task variation (See Fig. 6). Only 25% had solved the
group task after 110 s. 75% of the participants solved that task
in our system. Without ISPM, after 175s about 50% and after
310s all participants finished the group task. Analogous
conclusions can be drawn during the sorting and aggregation.
The only exception is the selection task. End users resolved
that task with the mouse, and were faster without ISPM.

Finally, we tried to answer the given research questions,
(RQ1) how well can a structure of the table be detected in a
spreadsheet? And, (RQ2) how well can unrestricted natural
language of an end user be mapped to a table structure?
 RQ1: the detection of the table structure was good, but is

still limited. In our case, only row-oriented tables can be
handled. However, if more tables are found in
spreadsheet, the dialogue systems ask users which table
they want to work on.

 RQ2: in our case the unrestricted natural language can be
mapped to the table structure. However, the system
responds only to answers that contain some index of the
table (first, the second one, etc.).

IV. RELATED WORK

Our work combines different research on data recognition
and manipulation in spreadsheets, end user programming,
programming in natural language, and natural language dialog
systems.

A. Data Recognition and Manipulation in Spreadsheets

Lopresti [22] presented a tabular survey of automated table
processing in 1999. Also, Embley [23] generalized paradigms
for table processing in a research survey in 2006. Research on
table composition and table analysis has improved the
understanding of the distinction between the logical and
physical structures of tables, and has led to improved
formalisms for modeling tables. Adelfio [18] extracts schemas
for tabular data on the web. The structure of these tables is not
accessible to the web crawlers because the schemas are not
explicitly stored as table metadata. The schemas of these data
tables are determined using a classification technique based on
Conditional Random Fields in combination with a novel
feature encoding method called logarithmic binning, which is
specifically designed for the data table extraction task. In
2001, Hu [16] presented a detailed analysis of why table
ground-truthing is so hard, including the notions that there
may exist more than one acceptable truth and/or incomplete or
partial truths. While understanding natural language is
difficult, tables and other structured information make it easier
to interpret new items and relations, Tijerno et al. [24]
introduced an approach to generating ontologies based on
table analysis. Based on conceptual modeling extraction
techniques, the approach attempts to (i) understand a table’s
structure and conceptual content; (ii) discover the constraints
that hold between concepts extracted from the table; (iii)
match the recognized concepts with ones from a more general
specification of related concepts; and, (iv) merge the resulting
structure with other similar knowledge representations. The
project Senbazuru [25], [26] from the University of Michigan
deals with the semi-automatic extraction of relational data
from spreadsheets. The aim of the application is to simplify
the integration of spreadsheets in relational databases and
provide users assistance. Tables are also searched by
Conditional Random Field [13]. Instead to raise the relevant
characteristics and generate unigram and bigram features
quantitatively, as has been already shown in this work, they
use 18 line features from which they generate unigram and
bigram models. NLyze [27], an Add-In for Microsoft Excel
that has been developed by Gulwani at the same time as our
system. It enables end users to manipulate spreadsheet data by
using natural language. It uses a separate domain-specific
language for logical interpretation of the user input. Instead of
recognizing the tables automatically, it uses canonical tables
which should be marked by the end user. Another of
Gulwani’s tool QuickCode [28] deals with the production of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:10, 2016

1897

the program code in spreadsheets through input-output
examples provided by the end user [29]. It automates string
processing in spreadsheets using input-output examples and
splits the manipulations in spreadsheet by entering examples.
The focus of his work is on the synthesizing of programs that
consist of text operations.

B. End User Programming

Fig. 6 Box plot of required solution time in both our system

Paternò [30] introduces the motivations behind end user

programming defined by Liberman [1] and discusses its basic
concepts, and reviews the current state of art. Various
approaches are discussed and classified in terms of their main
features and the technologies and platforms for which they
have been developed. In 2006, Myers [4] provides an
overview of the research in the area of End User
Programming. As he summarized, many different systems for
EUD have already been realized [31], [32], [29]. However,
there is no system such as our prototype that can be controlled
with natural language. During a study in 2006, Ko [31]
identifies six learning barriers in End User Programming:
design, selection, coordination, use, understanding and
information barriers. In 2008, Dorner [33] describes and
classifies EUD approaches taken from the literature, which are
suitable approaches for different groups of end users.
Implementing the right mixture of these approaches leads to
embedded design environments, having a gentle slope of
complexity. Such environments enable differently skilled end
users to perform system adaptations on their own. Sestoft [34]
increases expressiveness and emphasizing execution speed of
the functions thus defined by supporting recursive and higher
order functions, and fast execution by a careful choice of data
representation and compiler technology. Cunha [35] realizes
techniques for model-driven spreadsheet engineering that
employs bidirectional transformations to maintain spreadsheet
models and synchronized instances. Begel [36] introduces
voice recognition to the software development process. His

approach uses program analysis to dictate code in natural
language, thereby enabling the creation of a program editor
that supports voice-based programming.

The idea of programming in natural language was first
proposed by Sammet [37], but enormous difficulties have
resulted in disappointingly slow progress. One of the
difficulties is that natural language programming requires a
domain-aware counterpart that asks for clarification, thereby
overcoming the chief disadvantages of natural language,
namely ambiguity and imprecision. In recent years, significant
advances in natural language techniques have been made,
leading, for instance, to IBM’s Watson [38] computer winning
against the two Jeopardy! world champions, Apple’s Siri
routinely answering wide-ranging, spoken queries, and
automated translation services such as Google’s becoming
usable [39], [40]. In 1979, Ballard et al. [6]-[8] introduced
their Natural Language Computer (NLC) that enables users to
program simple arithmetic calculations using natural language.
Our prototype extends the idea with a dialog system
component for step-by-step construction of complex
expression and enables users to perform tasks they otherwise
would not be able to accomplish. Although NLC resolves
references as well, there is no dialog system. Metafor
introduced by Liu et al. [41] has a different orientation. Based
on user stories, the system tries to derive program structures to
support software design. A different approach regarding
software design via natural language is taken by RECAA [42].
RECAA can automatically derive UML models from the text
and also keep model and specification consistent through an
automatic feedback component. A limited domain end-to-end
programming is introduced by Le. SmartSynth [43] allows
synthesizing smartphone automation scripts from natural
language description. However, there is no dialog interaction
besides the results output and error messages.

C. Natural Language Dialog Systems

Many dialog systems have already been developed.
Commercially successful systems, such as Apple’s Siri,
actually based on active ontology [12], and Google’s Voice
Search [44], [45] cover many domains. Reference resolution
makes the systems act natural. However, there is no dialog
interaction. The Mercury system [46] designed by the MIT
research group is a telephone hotline for automated booking of
airline tickets. Mercury guides the user through a mixed
initiative dialog towards the selection of a suitable flight based
on date, time and preferred airline. Furthermore, Allen [47]
describes a system called PLOW. As a collaborative task
agent PLOW can learn to perform certain tasks, such as
extracting specific information from the internet, by
demonstration, explanation, and dialog.

V. CONCLUSION

Since their invention, digital computers have been
programmed using specialized, artificial notations, called
programming languages. However, only a tiny fraction of
human computer users can actually work with those notations.
With natural language and EUD methods, programming

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:10, 2016

1898

would become available to everyone and enable end users to
program their systems or extend their functionality without
any knowledge of programming languages. It is a challenge
how to connect natural language of an end user to the data in
the spreadsheets and to use machine learning techniques for
the context interpretation within spreadsheets. It could be
achieved by harnessing the similarities and differences of
nearby table rows through the use of a novel set of features
and a feature processing scheme [18].

We presented the machine learning module for the natural
language dialog system that synthesizes spreadsheet formulas
without explicit cell references. This module acted as
preprocessing step. First, the rows of a spreadsheet are divided
into different classes using a conditional random field [13].
The result is the construction of logical and physical structures
of tables in a spreadsheet. The dialog system can search for
values in the schema of the table and it allows users to
manipulate spreadsheet data by using natural language.
Ordinary, natural language would enable almost anyone to
program and would thus cause a fundamental shift in the way
computers are used. Rather than being a mere consumer of
programs written by others, each user could write his or her
own programs [48]. However, programming in natural
language remains an open challenge [40].

VI. FUTURE WORK

To enable the system for End User Programming, ISPM
should be extended for implementation of Excel scripts called
macros from natural language input. We are also exploring
ways to extend the system functionality with the help of the
dialog. The system needs to be extended for handling graphs
and charts, and supporting loops. Furthermore, there are some
properties of tables, which are not considered in the current
system and can potentially lead to problems.

Integration of knowledge databases: natural language
queries contain not only words that exist within a table. Given
the columns name and age, the following two statements are
equivalent: what is the age of Alex? And, how old is Alex?
During the first request would be processed correctly, but the
second statement would not work. An integration of thesauri
(as WordNet [49], [50]) could significantly improve the
processing of such requests. Furthermore, knowledge
databases (as Yago [51] or freebase [49]) can be beneficial
[52], because sufficient headers are present in a table. Using
an integrated knowledge base might be a Named Entity
Recognition on the table (instead of just be applied to the
request) and to deduce the missing information.

Resolution of named entity disambiguation: ambiguities
in natural language queries could be handled by the active
dialog system. If there are several candidates for answer a
request or a request was not understood, the system would ask
the user for clarification. For example, consider a table with
two entries named Michael, but different place of birth (e.g.
London and Berlin) and age (e.g. 25 years and 28 years old). If
the user asks the system: What is the age of Michael? The
currently implemented method returns both entries (25 and

28). It should response with the question Do you mean the one
born in London or the one born in Berlin?

Dynamic operations and larger instruction set: while
forwarding the explicit cell references in our system is static, it
would be desirable if all commands are based on the AO,
dynamically supported. Such a system would use the pattern
of active ontology and bring the dependency trees of the
Stanford parser in conjunction to support the correct parameter
order of an operation.

REFERENCES
[1] H. Liberman, “End-User Development: An Emerging Paradigm,” 2006.
[2] M. Hurst, “The interpretation of tables in texts,” University of Ediburgh,

Ph.D., 2000.
[3] R. Abraham, “Header and Unit Inference for Spreadsheets Through

Spatial Analyses,” in IEEE Symposium on Visual Languages – Human
Centric Computing, 2004.

[4] B. A. Myers, “Invited Research: Overview End-User Programming,”
CHI, 2006.

[5] B. M. Christopher Scaffidi, Mary Shaw, “Estimating the numbers of end
users and end user programmers,” in Proceedings of the 2005 IEEE
Symposium on Visual Languages and Human-Centric Computing, ser.
VLHCC ’05. IEEE Computer Society, 2005.

[6] B. Ballard, “Programming in natural language: NLC as a prototype,”
Association for Computing Machinery (ACM), 1979.

[7] A. Biermann, “Toward Natural Language Computation,” American
Journal of Computational Linguistics, 1980.

[8] “An experimental study of natural language programming,” Int. J. Man-
Machine Studies, 1983.

[9] A. Wachtel, “Initial implementation of natural language turn-based
dialog system,” International Conference on Intelligent Human
Computer Interaction (IHCI), 2015.

[10] C. D. Frye, “Microsoft Excel 2013, Step by Step,” O’Reilly Media,
2013.

[11] A. Wachtel, “A Natural Language Dialog System Based on Active
Ontologies,” Proceedings of the Ninth International Conference on
Advances in Computer-Human Interactions, 2016.

[12] D. Guzzoni, “Active: A unified platform for building intelligent web
interaction assistants,” in Web Intelligence and Intelligent Agent
Technology Workshops, 2006. WI-IAT 2006 Workshops. 2006
IEEE/WIC/ACM International Conference on. IEEE, 2006, pp. 417–
420.

[13] J. Lafferty, A. McCallum, and F. C. Pereira, “Conditional random fields:
Probabilistic models for segmenting and labeling sequence data,” 2001.

[14] X. Wang and D. Wood, Tabular abstraction, editing, and formatting.
Citeseer, 1996.

[15] J. Guthrie, “Literacy as multidimensional: Locating information and
reading comprehension,” in Educational Psychologist, 22, 1987.

[16] J. Hu, “Why table ground-truthing is hard,” in International Conference
on Document Analysis and Recognition, 2001.

[17] D. Pinto, A. McCallum, X. Wei, and W. B. Croft, “Table extraction
using conditional random fields,” in Proceedings of the 26th annual
international ACM SIGIR conference on Research and development in
informaion retrieval. ACM, 2003, pp. 235–242.

[18] M. D. Adelfio and H. Samet, “Schema extraction for tabular data on the
web,” Proceedings of the VLDB Endowment, vol. 6, no. 6, pp. 421–432,
2013.

[19] Z. Chen and M. Cafarella, “Automatic web spreadsheet data extraction,”
in Proceedings of the 3rd International Workshop on Semantic Search
over the Web. ACM, 2013, p. 1.

[20] J. Callan, M. Hoy, C. Yoo, and L. Zhao, “Clueweb09 data set,” 2009.
[21] I. Jolliffe, Principal component analysis. Wiley Online Library, 2002.
[22] D. Lopresti, “A tabular survey of automated table processing,” in

GREC, 1999.
[23] D. Embley, “Table-processing paradigms: A research survey,” in

International Journal of Document Analysis, 2006.
[24] Y. Tijerno, “Towards ontology generation from tables,” in Springer

Science, 2005.
[25] Z. Chen, “Automatic web spreadsheet data extraction,” in Proceedings

of the 3rd International Workshop on Semantic Search over the Web
ACM, 2013.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:10, 2016

1899

[26] “Senbazuru: A prototype spreadsheet database management system,” in
VLDB Endowment 6, 2013.

[27] S. Gulwani, “NLyze: Interactive programming by natural language for
spreadsheet data analysis and manipulation,” SIGMOD, 2014.

[28] “Automating string processing in spreadsheets using input-output
examples,” in ACM SIGPLAN, 2011.

[29] A. Cypher, “Watch what I do: programming by demonstration,” in MIT
Press, 1993.

[30] F. Paternò, “End user development: Survey of an emerging field for
empowering people,” in ISRN Software Engineering, vol. 2013, 2013.

[31] A. Ko, “Designing the Whyline: A Debugging Interface for Asking
Questions About Program Failures,” in CHI, 2004.

[32] S. Gulwani, “Spreadsheet data manipulation using examples,” in ACM,
2012.

[33] V. W. Christian Dorner, Michael Spahn, “End user development:
Approaches towards a flexible software design,” in Proceedings of the
European Conference on Information Systems, 2008.

[34] P. Sestoft, “Sheet-defined functions: Implementation and initial
evaluation,” 2013.

[35] J. Cunha, “Bidirectional Transformation of Model-Driven
Spreadsheets,” Springer Lecture Notes in Computer Science, 2012.

[36] A. Begel, “Spoken Language Support for Software Development,” Ph.D.
Thesis, Berkeley, 2005.

[37] J. E. Sammet, “The Use of English as a Programming Language,”
Communication of the ACM, March 1966.

[38] D. Ferrucci, “Building Watson: An Overview of the DeepQA Project,”
Association for the Advancement of Artificial Intelligence, 2010.

[39] H. Liu, “Toward a programmatic semantics of natural language,” Visual
Languages and Human Centric Computing, 2004.

[40] C. L. Ortiz, “The Road to Natural Conversational Speech Interfaces,”
IEEE Internet Computing, March 2014.

[41] H. Liu, “Metafor: Visualizing stories as code,” 10th international
conference on Intelligent user interfaces, 2005.

[42] S. Körner, “Transferring Research Into the Real World - How to
Improve RE with AI in the Automotive Industry,” 2014.

[43] V. Le, “SmartSynth: Synthesizing Smartphone Automation Scripts from
Natural Language,” MobiSys, 2013.

[44] J. R. Bellegarda, “Spoken Language Understanding for Natural
Interaction: The Siri Experience,” Springer New York, 2014.

[45] J. D. Williams, “Spoken dialogue systems: challenges and opportunities
for research,” 2009.

[46] S. Seneff, “Response planning and generation in the MERCURY flight
reservation system,” 2002.

[47] J. Allen, “PLOW: A Collaborative Task Learning Agent,” Association
for the Advancement of Artificial Intelligence, 2007.

[48] W. F. Tichy, “Universal Programmability - How AI Can Help. Artificial
Intelligence Synergies in Software Engineering,” May 2013.

[49] K. Bollacker, “Freebase: a collaboratively created graph database for
structuring human knowledge,” in ACM SIGMOD, 2008.

[50] A. Budanitsky, “Semantic distance in wordnet: An experimental,
application-oriented evaluation of five measures,” in Workshop on
WordNet and Other Lexical Resources, 2001.

[51] F. Mahdisoltani, “Yago3: A knowledge base from multilingual
wikipedias,” in 7th Biennial Conference on Innovative Data Systems
Research CIDR 2015, 2015.

[52] G. Limaye, “Annotating and searching web tables using entities, types
and relationships,” in VLDB Endowment Bd. 3, 2010.

