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 
Abstract—Programming requires years of training. With natural 

language and end user development methods, programming could 
become available to everyone. It enables end users to program their 
own devices and extend the functionality of the existing system 
without any knowledge of programming languages. In this paper, we 
describe an Interactive Spreadsheet Processing Module (ISPM), a 
natural language interface to spreadsheets that allows users to address 
ranges within the spreadsheet based on inferred table schema. Using 
the ISPM, end users are able to search for values in the schema of the 
table and to address the data in spreadsheets implicitly. Furthermore, 
it enables them to select and sort the spreadsheet data by using 
natural language. ISPM uses a machine learning technique to 
automatically infer areas within a spreadsheet, including different 
kinds of headers and data ranges. Since ranges can be identified from 
natural language queries, the end users can query the data using 
natural  language. During the evaluation 12 undergraduate students 
were asked to perform operations (sum, sort, group and select) using 
the system and also Excel without ISPM interface, and the time taken 
for task completion was compared across the two systems. Only for 
the selection task did users take less time in Excel (since they directly 
selected the cells using the mouse) than in ISPM, by using natural 
language for end user software engineering, to overcome the present 
bottleneck of professional developers. 

 
Keywords—Natural language processing, end user development; 

natural language interfaces, human computer interaction, data 
recognition, dialog systems, spreadsheet. 

I. INTRODUCTION 

HE main question in the End User Development (EUD) 
area of research is, how to allow non-programming users 

who have no access to source code, to program a computer 
system or extend the functionality of an existing system [1]. 
Tables have been used for at least 7,000 years [2]. Spreadsheet 
programs such as Microsoft Excel have become ubiquitous. 
The created spreadsheets are not only the traditional tabular 
representation of relational data that convey information space 
efficiently, but also allow a continuous revision and formula-
based data manipulation. It is estimated that each year 
hundreds of millions of spreadsheets are created [3]. Myers [4] 
and also Scaffidi [5] compared the number of end users and 
professional programmers in the United States. Nearly 90 
million people use computers at work and 50 million of them 
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use spreadsheets. In a self-assessment 12 million considered 
themselves as programmers, but only 3 million people are 
professional programmers. 

In 1979, Ballard et al. [6]-[8] introduced the Natural 
Language Computer (NLC) that enables end users to program 
simple arithmetic calculations using natural language. In 2015, 
Wachtel [9] presented our first prototype of an assistant 
system that uses natural language understanding and a dialog 
management system to allow inexperienced users to 
manipulate spreadsheets with natural language. Motivated by 
a pilot study based on the selected problems from Frey’s book 
Microsoft Excel 2013 [10] the system requests missing 
information and is able to resolve ambiguities by providing 
alternatives to choose from. Furthermore, the dialog system 
must resolve references to previous results, allowing the 
construction of complex expressions step-by-step. In early 
2016, Wachtel [11] extended the prototype with an active 
ontology. The idea of active ontology was first presented in 
2006 by Guzzoni [12]. In general, an ontology is a formal 
representation of knowledge. By adding a rule evaluation 
system, a fact store and sensor nodes to an ontology it 
becomes an execution environment rather than just a formal 
representation of knowledge. Sensor nodes register certain 
events and save them in the fact store. An evaluation 
mechanism tests the new facts against the existing rules and 
performs the associated actions if one or more rules apply. 

In this work, the natural language dialog system has been 
extended with a machine learning component. It synthesizes 
formulas without explicit cell references. First, the rows of a 
spreadsheet are divided into different classes and the table’s 
schema is made searchable for the dialog system. In the case 
of user input, it searches for headers, data values from the 
table and key phrases for operations. Implicit cell references 
like people of age 18 are then resolved to explicit references 
using the schema. 88 cell characteristics were automatically 
extracted in a body of 2145 tables, and reduced to 42 cell 
characteristics by the principal component analysis. The 
classification was carried out using a Conditional Random 
Field [13], probabilistic graphical models for sequence 
labeling. The method was trained on 4,000 lines and evaluated 
on about 400 lines. Overall, we evaluate the following 
research questions: (RQ1) how well can a structure of the 
table be detected in a spreadsheet? and (RQ2) how well can 
unrestricted natural language of an end user be mapped to a 
table structure? 

II. DATA RECOGNITION IN SPREADSHEETS 

To identify the cognitive processes that occur during the 
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reading of a table, we rely on the work of Wang [14]. In 1996, 
she describes the most complete model of tables and 
formulates the cognitive processes of a reader as (1) an 
understanding of the process to recognize the logical structure 
of the table, (2) a search process to track relevant information 
and (3) to answer an interpretation and comparison process to 

questions of the reader (See Fig. 1). More precise 
investigations in the field of cognitive psychology [15] allow 
us to define the state transitions between the stages (a) target 
specification, (b) category selection, (c) information 
extraction, and (d) recycling. Finally, the process of the reader 
can be modeled as a state machine (See Fig. 1). 
 

 

Fig. 1 Cognitive stages of an end user in ISPM. Stages (1)-(3) from [14]; processes (a)-(d) from [15] 
 
A.  Preprocessing 

Before any user queries, the given spreadsheets are 
preprocessed to capture their tabular regions. Subsequently, an 
efficiently searchable and alterable data structure, an abstract 
table, as defined by [14] is constructed for each of the tables. 
An abstract table can be defined as a set of labeled domains 
with an access function δ. A labeled set is a set together with a 
label, each corresponding to one of the table’s categories such 
as name or age in Fig. 2.  

 

 

Fig. 2 A table annotated with row labels. The super header name is 
subdivided into the canonical headers first name and last name. Each 

person is part of either group A or group B which is depicted as 
group headers. Note: It depicts a simple table and is for illustration 

purposes only. A detailed evaluation on the accuracy of table 
hierarchies is however not feasible because there seems to be no real 

ground-truth (See [16] for a study on this topic) 
 

While printed tables sometimes contain a stub box 
representing the primary keys of tabular data as vertically 
stacked categories, spreadsheets often omit this feature. 

Instead, the rows of the table can be regarded as a tabular 
category and thus as a labeled domain itself. 

A labeled domain is either the labeled empty set or a 
labeled set of uniquely labeled sets. This definition induces a 
tree-like label hierarchy illustrated in Fig. 3. 

 

 

Fig. 3 The label hierarchy of the table depicted in Fig. 2 
 
Finally, the access function δ maps a label to its corresponding 
tabular regions. For instance, δ (first name) = {A5; …; A13} 
as illustrated in Fig. 4. 

Given an abstract table, natural language references to 
tabular regions such as “the age of people in group A” could 
be resolved to δ (age) ∩ δ (group A) = {A4, A5, A6, A7} and 
forwarded to the active ontology. To infer these data 
structures, we adopt a method first proposed by Pinto et al. 
[17], which was recently applied [18], [19] to both table 
recognition and table processing. Pinto et al. showed that 
linear-chain Conditional Random Fields (CRFs) [13] 
accurately predict a table’s row classes. CRFs are probabilistic 
graphical models for sequence labelling. The goal is to assign 
a label to each item in a sequence. To achieve this, features are 
computed for each item. Afterwards, the dependencies across 
items in a single sequence are inferred from the training data. 
Using these factors, a probability distribution is constructed 
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which is used to infer the optimal label sequence from a 
feature sequence. We use the following row labels to identify 
and construct a spreadsheet’s abstract table objects (Table I). 

Given such a label sequence, we split the spreadsheet’s 
rows into vertically stacked tabular regions similar to [19]. A 
table starts with either a caption, a super header or a canonical 
header. A table ends whenever a data, a non-relational or a 
group header row is followed by a caption, a super header or a 
canonical header. An abstract table is implemented consisting 
of three separate data structure: A logical tree corresponding 
to the label hierarchy as illustrated in Fig. 3, a physical tree 
corresponding to the access function δ (See Fig. 4) and a data 
index. To construct those data structures, we parse the row 
label sequence in a recursive manner. The algorithm parses 
one row at a time. In case of a caption row, a new node in the 
logical structure (persons) is created and assigned the entire 
tabular region below the caption (A2 to C13). The algorithm 
then proceeds by investigating the row below the caption. For 
super header and canonical header rows, the algorithm 
continues with each range of merged columns in the currently 
investigated area. Group headers are parsed distinct from the 
main recursion. They horizontally span the entire table and are 
vertically partitioned using the given label sequence. 

 
TABLE I  

DESCRIPTION OF THE ROW LABELS 

Caption superordinates the entire table 

Super Header 
superordinates another super header row 
or a canonical header row 

Canonical Header directly superordinates the data 

Group Header partitions the data region 

Data contains the data entries 

Aggregate 
contains some aggregation of the data 
entries such as the sum of each column 

Non-Relational 
describes all rows that do not meet one of 
the above requirements 

 

 

Fig. 4 Tabular regions of the headings in Fig. 2 

B.  Input Processing 

Given the logical structure of a table and a natural language 
user query, we resolve natural language cell references by first 
matching the table data and header labels with the words of 
the user input. After stripping the user request from special 
characters and normalizing it to lower case.  

We distinguish between four cases: 
 When the user input consists of a single header label L, 

we resolve the sentence to the tabular region δ (L). This 
applies to a user input What is the average age? where L 
= age. 

 When the user input consists of two header labels L1 and 
L2, it is resolved to δ(L1) ∩ δ (L2). This applies to a user 
input What is the average age of people in group A? 
where L1= age and L2 = group A. 

 When the user input consists of a single header label L 
and a data value v found in lines M = m1, …, mn, we 
resolve the natural language query to δ(L) ∩ δ (v | v ∈ M 
= {m1, …, mn}. This applies to a user input like What is the 
age of Dustin? where L = age and v = Dustin.  

 Finally, when the user input consists of two header labels 
L1 and L2 in that order, as well as a single data value v. 
This works analogue to case #3 with the exception that 
the data entry is required to be in the region of header L2. 
This case gives end users the opportunity to avoid 
ambiguities. It applies to inputs like What is the average 
age of people whose name is Dustin? 

 

 

Fig. 5 Relevant cells of the user input sum of the age of 
people in group A 

 
Words are matched as 1- and 2-grams of the input 

sequence. In the case of nouns, both the singular and plural 
form are tried. A simple keyword matching procedure is used 
to identify relevant operations such as average or sort. If no 
operation keyword is found, it is assumed that the user wants 
to select the relevant data cells. Given the request operation 
and the relevant cells, a new input with explicit cell references 
is generated which is used by our active ontology to 
synthesize the output. E.g., given an input sum the age of 
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people in group A, we first identify the relevant cells δ (age) ∩ 
δ (group A) and get the formula sum C5, C6, C7, C8 (See Fig. 
5). This result is then forwarded to an active ontology which 
synthesizes the resulting Excel program SUM(SUM(SUM(C5, 
C6), C7), C8), as described in [11]. 

C. Data Sets  

We downloaded 1,177 files from the WEB corpus [18], 
which consists of a precompiled list of roughly 410,000 .xls-
files, originally found in the WebClue09 dataset [20]. Of those 
files 21:33% were non-relational, 14.53% were forms, 5.27% 
had non-English components and 1.27% were corrupt. The 
remaining files of the stripped corpus contained 2,145 
manually extracted tables, totaling 39,0657 rows and 25,586 
columns (See Table II). 

Of the approximately seven million cells in the entire data 
set, we automatically extracted 88 layouts and features such as 
the cell color, text color or whether the content is numerical or 
textual. To reduce the feature dimensionality, we eliminated 
26 features which were never used and applied a Principal 
Component Analysis (PCA) [21] on the remaining 62 features. 
We reduced the dimensionality along the 15 principal 
component axes. To train the linear-chain CRF, we 
constructed row features by averaging the 15 features of each 
cell of a row. The mean values were subsequently binarized 
with a threshold of zero (since the PCA was applied on 
standardized feature vectors, the expected value is zero, see 
Table III). 
 

TABLE II 
ROW LABELS 

Average number 
per table 

 

rows 182 

columns 13 

cell 3226 

Total  

rows 390657 

columns 25586 

cell 6920548 

 
TABLE III 

ROW LABELS 

 Variable min max µ σ 

1 font color - bleu 0 1 0.42 0.49 

2 font size 0 0.13 0.02 0.02 

 …     

87 content - text 0 1 0.21 0.41 

88 content - numeric 0 1 0.26 0.44 

III. EVALUATION 

We implemented the algorithms specified in Section II-A 
and II-B. CRF was trained and tested on approximately 4,000 
and 400 rows respectively. The results in Table IV show the 
varying precision, recall and F1 values for each of the tested 
rows. It is noticeable, especially in context to previous work, 
that the group and super header rows are misclassified fairly 
often. This may be the result of an incomplete, low-level 

feature set. Adelfio et al. [18] for example used a hand-
selected feature set. 

The overall distribution of row classes (five captions, eight 
super headers, six group headers, 16 canonical headers, 344 
data rows, five aggregate rows and 40 non-relational rows) 
yields a precision, recall and F1-score of 93.4%, 94.1% and 
93.8%, respectively. 

 
TABLE IV  

RECOGNITION RATES OF ROW CLASSES OF THE CONDITIONAL RANDOM 

FIELD 
 Precision Yield F1 

VCAPTION 80.00 % 80.00 % 80.00 % 

VDATA 98.24 % 97.38 % 97.81 % 

VGROUPHEADER 100 % 16.66 % 28.56 % 

VHEADER 66.66 % 87,50 % 75.67 % 

VNONREL 75.00 % 97.5 % 84.78 % 

VSUPERHEADER 100 % 37.50 % 54.55 % 

A. Input Processing  

We performed a user study with twelve German students, 
nive females and 3 males, eleven computer science and one 
biology undergraduates, to evaluate the input processing 
algorithms. In a self-assessment, 8% considered themselves as 
experts, 50% as advanced users, and 42% as beginners 
regarding Excel spreadsheets.  

Given three different tables of simple structure (canonical), 
we asked each user to perform four different tasks: 
 sort: in a given spreadsheet with 50 entries of companies 

including name, mail address, website, and city, the 
participants should sort the entries by the company’s mail 
address. 

 group: in a given spreadsheet with 50 entries of credit 
cards including provider name, person name, and card 
number, the participants should group the entries by the 
provider name.  

 select: in a given spreadsheet with 50 entries of persons 
including name, age, job, and academic grad, the 
participants should identify all persons who are 18 years 
old. 

 aggregate: in the same table as the select use case, the 
participants should calculate the age of all persons who 
have Dr. as their academic title. 

 
TABLE V 

EVALUATION RESULT OF THE DIALOG SYSTEM 

Total  

Number of Human-Computer Interaction 360 

Successfully Solved 78 % 

Objectives  

Successful Sorting 88 % 

Successful Grouping 75 % 

Successful Selection 88 % 

Successful Aggregation 63 % 

 
Each task was performed twice by each user. Once, they 

were asked to only use our system and once to only use the 
native Excel environment. We measured the required time for 
each variation of a task. Furthermore, we asked the users to 
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rate how satisfying their solution and how helpful ISPM was. 
Both the order of the tasks and the order of a task’s variation 
were randomly chosen. As seen in Table II the system 
successfully solved about 78% of the given tasks. 

Regarding the experimental design, the study was 
conducted to compare the native Excel environment to Excel 
Add-in we developed in regards to usability. The participants 
performed each task twice. However, they used only Excel in 
the first run and only the natural language dialog system in the 
second run. Each of these two variations were performed 
exactly once by every participant. The experiment was not 
designed to investigate any learning effects.  

We asked participants for their English proficiency on a 
five-point scale and how often they use Excel. After each 
variation of a task, a user was asked to rate his satisfaction 
with the solution from 0 (not satisfied) to 4 (totally satisfied). 
After both variations of a task were completed, a user was 
asked to rate the helpfulness of our system on a scale from 0 
(not helpful) to 4 (very helpful). The results are shown in 
Table VI. It is noticeable our system outperforms the native 
Excel environment regarding the mean subjective satisfaction 
of a user. The helpfulness was rated high (µ ≥ 3.25) on all 
tested tasks. 

 
TABLE VI 

THE MEAN AND STANDARD DEVIATION OF THE VARIABLES 

Variable µ σ 

Satisfaction - aggregate, Excel 2.75 1.42 

Satisfaction - aggregate, ISMP 3.42 1.24 

Satisfaction - group, Excel 2.17 1.85 

Satisfaction - group, ISMP 3.92 0.29 

Satisfaction - select, Excel 3 1.13 

Satisfaction - select, ISMP 3.83 0.39 

Satisfaction - sort, Excel 3.17 1.4 

Satisfaction - sort, ISMP 3.67 1.15 

Helpfulness - aggregate 3.75 0.62 

Helpfulness - group 3.83 0.39 

Helpfulness - select 3.83 0.39 

Helpfulness - sort 3.25 1.29 

 
Furthermore, we measured the time until completion of 

each task variation (See Fig. 6). Only 25% had solved the 
group task after 110 s. 75% of the participants solved that task 
in our system. Without ISPM, after 175s about 50% and after 
310s all participants finished the group task. Analogous 
conclusions can be drawn during the sorting and aggregation. 
The only exception is the selection task. End users resolved 
that task with the mouse, and were faster without ISPM. 

Finally, we tried to answer the given research questions, 
(RQ1) how well can a structure of the table be detected in a 
spreadsheet? And, (RQ2) how well can unrestricted natural 
language of an end user be mapped to a table structure? 
 RQ1: the detection of the table structure was good, but is 

still limited. In our case, only row-oriented tables can be 
handled. However, if more tables are found in 
spreadsheet, the dialogue systems ask users which table 
they want to work on. 

 RQ2: in our case the unrestricted natural language can be 
mapped to the table structure. However, the system 
responds only to answers that contain some index of the 
table (first, the second one, etc.). 

IV. RELATED WORK 

Our work combines different research on data recognition 
and manipulation in spreadsheets, end user programming, 
programming in natural language, and natural language dialog 
systems. 

A.  Data Recognition and Manipulation in Spreadsheets 

Lopresti [22] presented a tabular survey of automated table 
processing in 1999. Also, Embley [23] generalized paradigms 
for table processing in a research survey in 2006. Research on 
table composition and table analysis has improved the 
understanding of the distinction between the logical and 
physical structures of tables, and has led to improved 
formalisms for modeling tables. Adelfio [18] extracts schemas 
for tabular data on the web. The structure of these tables is not 
accessible to the web crawlers because the schemas are not 
explicitly stored as table metadata. The schemas of these data 
tables are determined using a classification technique based on 
Conditional Random Fields in combination with a novel 
feature encoding method called logarithmic binning, which is 
specifically designed for the data table extraction task. In 
2001, Hu [16] presented a detailed analysis of why table 
ground-truthing is so hard, including the notions that there 
may exist more than one acceptable truth and/or incomplete or 
partial truths. While understanding natural language is 
difficult, tables and other structured information make it easier 
to interpret new items and relations, Tijerno et al. [24] 
introduced an approach to generating ontologies based on 
table analysis. Based on conceptual modeling extraction 
techniques, the approach attempts to (i) understand a table’s 
structure and conceptual content; (ii) discover the constraints 
that hold between concepts extracted from the table; (iii) 
match the recognized concepts with ones from a more general 
specification of related concepts; and, (iv) merge the resulting 
structure with other similar knowledge representations. The 
project Senbazuru [25], [26] from the University of Michigan 
deals with the semi-automatic extraction of relational data 
from spreadsheets. The aim of the application is to simplify 
the integration of spreadsheets in relational databases and 
provide users assistance. Tables are also searched by 
Conditional Random Field [13]. Instead to raise the relevant 
characteristics and generate unigram and bigram features 
quantitatively, as has been already shown in this work, they 
use 18 line features from which they generate unigram and 
bigram models. NLyze [27], an Add-In for Microsoft Excel 
that has been developed by Gulwani at the same time as our 
system. It enables end users to manipulate spreadsheet data by 
using natural language. It uses a separate domain-specific 
language for logical interpretation of the user input. Instead of 
recognizing the tables automatically, it uses canonical tables 
which should be marked by the end user. Another of 
Gulwani’s tool QuickCode [28] deals with the production of 
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the program code in spreadsheets through input-output 
examples provided by the end user [29]. It automates string 
processing in spreadsheets using input-output examples and 
splits the manipulations in spreadsheet by entering examples. 
The focus of his work is on the synthesizing of programs that 
consist of text operations. 

B.  End User Programming 

 

Fig. 6 Box plot of required solution time in both our system 
 
Paternò [30] introduces the motivations behind end user 

programming defined by Liberman [1] and discusses its basic 
concepts, and reviews the current state of art. Various 
approaches are discussed and classified in terms of their main 
features and the technologies and platforms for which they 
have been developed. In 2006, Myers [4] provides an 
overview of the research in the area of End User 
Programming. As he summarized, many different systems for 
EUD have already been realized [31], [32], [29]. However, 
there is no system such as our prototype that can be controlled 
with natural language. During a study in 2006, Ko [31] 
identifies six learning barriers in End User Programming: 
design, selection, coordination, use, understanding and 
information barriers. In 2008, Dorner [33] describes and 
classifies EUD approaches taken from the literature, which are 
suitable approaches for different groups of end users. 
Implementing the right mixture of these approaches leads to 
embedded design environments, having a gentle slope of 
complexity. Such environments enable differently skilled end 
users to perform system adaptations on their own. Sestoft [34] 
increases expressiveness and emphasizing execution speed of 
the functions thus defined by supporting recursive and higher 
order functions, and fast execution by a careful choice of data 
representation and compiler technology. Cunha [35] realizes 
techniques for model-driven spreadsheet engineering that 
employs bidirectional transformations to maintain spreadsheet 
models and synchronized instances. Begel [36] introduces 
voice recognition to the software development process. His 

approach uses program analysis to dictate code in natural 
language, thereby enabling the creation of a program editor 
that supports voice-based programming. 

The idea of programming in natural language was first 
proposed by Sammet [37], but enormous difficulties have 
resulted in disappointingly slow progress. One of the 
difficulties is that natural language programming requires a 
domain-aware counterpart that asks for clarification, thereby 
overcoming the chief disadvantages of natural language, 
namely ambiguity and imprecision. In recent years, significant 
advances in natural language techniques have been made, 
leading, for instance, to IBM’s Watson [38] computer winning 
against the two Jeopardy! world champions, Apple’s Siri 
routinely answering wide-ranging, spoken queries, and 
automated translation services such as Google’s becoming 
usable [39], [40]. In 1979, Ballard et al. [6]-[8] introduced 
their Natural Language Computer (NLC) that enables users to 
program simple arithmetic calculations using natural language. 
Our prototype extends the idea with a dialog system 
component for step-by-step construction of complex 
expression and enables users to perform tasks they otherwise 
would not be able to accomplish. Although NLC resolves 
references as well, there is no dialog system. Metafor 
introduced by Liu et al. [41] has a different orientation. Based 
on user stories, the system tries to derive program structures to 
support software design. A different approach regarding 
software design via natural language is taken by RECAA [42]. 
RECAA can automatically derive UML models from the text 
and also keep model and specification consistent through an 
automatic feedback component. A limited domain end-to-end 
programming is introduced by Le. SmartSynth [43] allows 
synthesizing smartphone automation scripts from natural 
language description. However, there is no dialog interaction 
besides the results output and error messages. 

C.  Natural Language Dialog Systems 

Many dialog systems have already been developed. 
Commercially successful systems, such as Apple’s Siri, 
actually based on active ontology [12], and Google’s Voice 
Search [44], [45] cover many domains. Reference resolution 
makes the systems act natural. However, there is no dialog 
interaction. The Mercury system [46] designed by the MIT 
research group is a telephone hotline for automated booking of 
airline tickets. Mercury guides the user through a mixed 
initiative dialog towards the selection of a suitable flight based 
on date, time and preferred airline. Furthermore, Allen [47] 
describes a system called PLOW. As a collaborative task 
agent PLOW can learn to perform certain tasks, such as 
extracting specific information from the internet, by 
demonstration, explanation, and dialog. 

V.  CONCLUSION 

Since their invention, digital computers have been 
programmed using specialized, artificial notations, called 
programming languages. However, only a tiny fraction of 
human computer users can actually work with those notations. 
With natural language and EUD methods, programming 
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would become available to everyone and enable end users to 
program their systems or extend their functionality without 
any knowledge of programming languages. It is a challenge 
how to connect natural language of an end user to the data in 
the spreadsheets and to use machine learning techniques for 
the context interpretation within spreadsheets. It could be 
achieved by harnessing the similarities and differences of 
nearby table rows through the use of a novel set of features 
and a feature processing scheme [18]. 

We presented the machine learning module for the natural 
language dialog system that synthesizes spreadsheet formulas 
without explicit cell references. This module acted as 
preprocessing step. First, the rows of a spreadsheet are divided 
into different classes using a conditional random field [13]. 
The result is the construction of logical and physical structures 
of tables in a spreadsheet. The dialog system can search for 
values in the schema of the table and it allows users to 
manipulate spreadsheet data by using natural language. 
Ordinary, natural language would enable almost anyone to 
program and would thus cause a fundamental shift in the way 
computers are used. Rather than being a mere consumer of 
programs written by others, each user could write his or her 
own programs [48]. However, programming in natural 
language remains an open challenge [40]. 

VI. FUTURE WORK 

To enable the system for End User Programming, ISPM 
should be extended for implementation of Excel scripts called 
macros from natural language input. We are also exploring 
ways to extend the system functionality with the help of the 
dialog. The system needs to be extended for handling graphs 
and charts, and supporting loops. Furthermore, there are some 
properties of tables, which are not considered in the current 
system and can potentially lead to problems.  

Integration of knowledge databases: natural language 
queries contain not only words that exist within a table. Given 
the columns name and age, the following two statements are 
equivalent: what is the age of Alex? And, how old is Alex? 
During the first request would be processed correctly, but the 
second statement would not work. An integration of thesauri 
(as WordNet [49], [50]) could significantly improve the 
processing of such requests. Furthermore, knowledge 
databases (as Yago [51] or freebase [49]) can be beneficial 
[52], because sufficient headers are present in a table. Using 
an integrated knowledge base might be a Named Entity 
Recognition on the table (instead of just be applied to the 
request) and to deduce the missing information. 

Resolution of named entity disambiguation: ambiguities 
in natural language queries could be handled by the active 
dialog system. If there are several candidates for answer a 
request or a request was not understood, the system would ask 
the user for clarification. For example, consider a table with 
two entries named Michael, but different place of birth (e.g. 
London and Berlin) and age (e.g. 25 years and 28 years old). If 
the user asks the system: What is the age of Michael? The 
currently implemented method returns both entries (25 and 

28). It should response with the question Do you mean the one 
born in London or the one born in Berlin? 

Dynamic operations and larger instruction set: while 
forwarding the explicit cell references in our system is static, it 
would be desirable if all commands are based on the AO, 
dynamically supported. Such a system would use the pattern 
of active ontology and bring the dependency trees of the 
Stanford parser in conjunction to support the correct parameter 
order of an operation. 
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