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 
Abstract— In this paper, we present the human action recognition 

method using the variational Bayesian HMM with the Dirichlet 
process mixture (DPM) of the Gaussian-Wishart emission model 
(GWEM). First, we define the Bayesian HMM based on the Dirichlet 
process, which allows an infinite number of Gaussian-Wishart 
components to support continuous emission observations. Second, we 
have considered an efficient variational Bayesian inference method 
that can be applied to drive the posterior distribution of hidden 
variables and model parameters for the proposed model based on 
training data. And then we have derived the predictive distribution that 
may be used to classify new action. Third, the paper proposes a 
process of extracting appropriate spatial-temporal feature vectors that 
can be used to recognize a wide range of human behaviors from input 
video image. Finally, we have conducted experiments that can 
evaluate the performance of the proposed method. The experimental 
results show that the method presented is more efficient with human 
action recognition than existing methods. 
 

Keywords—Human action recognition, Bayesian HMM, Dirichlet 
process mixture model, Gaussian-Wishart emission model, 
Variational Bayesian inference, Prior distribution and approximate 
posterior distribution, KTH dataset  

I. INTRODUCTION 

IDDEN Markov Models (HMMs) are widely used in a 
variety of fields for modeling time series data, with 

applications including speech recognition, natural language 
processing, protein sequence modeling and genetic alignment, 
general data compression, information retrieval, motion video 
analysis and object tracking, and financial time series 
prediction [1]. The core theory of HMMs was developed 
principally by Baum and Colleagues, with initial applications to 
elementary speech processing, integrating with linguistic 
models, and making use of insertion and deletion states for 
variable length sequences [2]. The popularity of HMMs soared 
in the following decade giving rise to a variety of elaborations, 
as reviewed in Juang and Rabiner [3]. Moreover, the realization 
that HMMs can be expressed as Bayesian networks [4] has 
given rise to more complex and interesting models, for 
example, factorial HMMs [5], tree-structured HMMs [6], and 

 
Wanhyun Cho (professor) and Soonja Kang (professor) are with the 

Department of Statistics and Mathematical Education, Chonnam National 
University, Gwangju, 61186 South Korea (corresponding author, phone: 
+82-62-530-3443; fax +82-62-530-3449; e-mail {whcho, kangsj}@ 
chonnam.ac.kr, ).  

Sangkyoon Kim (researcher) and Soonyoung Park (professor) are with the  
Electrical Engineering Department, Mokpo National University, Chonnam, 
58554 South Korea (e-mail: narciss76@mokpo.ac.kr, sypark@mokpo.ac.kr ). 

switching state-space models [7]. Beal [8] presents a unified 
variational Bayesian framework in his PhD dissertation which 
approximates true posterior distributions in models with latent 
variables using a lower bound on the marginal likelihood. On 
the other hand, several papers applying the HMM model with 
human action recognition have been published in recent years. 
Yin and Meng [9] present a novel hierarchical probability latent 
model to recognize human activities from a sequence of visual 
data. Their model consists of four layers from bottom-up: 
spatial-temporal visual features layer, atomic pattern layer, 
latent topic layer, and behavior pattern layer. Then, they 
applied the proposed model to represent the behavior patterns 
and latent topics as distributions over atomic patterns. Tian et al. 
[10] propose a Hierarchical Filtered Motion (HFM) method to 
recognize actions in crowded videos by using Motion History 
Image (MHI) as basic representation of motion due to its 
robustness and efficiency. Uddin et al. [11] present a novel 
approach for human activity recognition using the joint angles 
from a 3D model of the human body. They estimated body joint 
angles from time-series activity images acquired with a single 
stereo camera. The estimated joint-angle features are then 
mapped into code-words to generate discrete symbols for the 
HMM of each activity. Gaikward and Narawade [12] present 
novel HMM-based approach that uses threshold and voting to 
automatically and effectively segment and recognize complex 
activities. They also survey two hybrids of Neural Network and 
HMM, i.e. HMM-NN and NN-HMM, and compare their 
performance with that of the traditional HMM. Piyathilaka and 
Kodagoda [13] presented a human activity detection model that 
uses only 3-D skeleton features generated from an RGB-D 
sensor. To infer human activities, they implemented a Gaussian 
Mixture Model based HMM to capture the multimodal nature 
of the 3D positions of each skeleton joint. They tested their 
model in a publicly available dataset that consists of twelve 
different daily activities performed by four different people.  

The main contribution of this study can be considered the 
following two facts. The first contribution will propose the 
DPM of GWEM that can be suitable to model a continuous 
feature vector. The second contribution will be the utilization of 
the variational Bayesian estimation method to derive the 
posterior distributions of the parameters vector and latent 
variables needed to define our model. In Section II, we have 
used the DPM theory to autonomously determine the number of 
components of the Gaussian mixture model. In Section III, we 
have considered an efficient variational Bayesian inference 
method to drive the posterior distributions of the parameters 
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vector and latent variables in the proposed model, and then we 
have derived the predictive distribution that may be used to 
classify new observation. Section IV proposes the overall 
process of extracting feature vectors from given video images 
that is one of the most difficult problems in human behavior 
classification. As well, various experiments have been 
conducted to evaluate the performance of the proposed method. 
Section IV, outlines the conclusion of the paper. 

II.  VARIATIONAL BAYESIAN HMM WITH DPM OF GWEM 

A. Bayesian HMM 

An HMM models a sequence of p -valued discrete 

observations (symbols) 1: 1{y , , y }T Ty  by assuming that the 

observation ty at time t was produced by a k -valued discrete 

hidden state ts , and that the sequence of hidden states 

1: 1{s , ,s }T Ts  was generated by a first-order Markov 

process. That is to say the complete-data likelihood of a 
sequence of length T is given by: 

 

 1: 1: 1 1 1 1
2

( , ) ( ) p(y | s ) ( | ) ( | )
T

T T t t t t
t

p p s p s s p y s


 s y      (1) 

 

where 1( )p s is the prior probability of the first hidden state, 

1( | )t tp s s  denotes the probability of transition from state 1ts  to 

state ,ts and ( | )t tp y s are the emission probabilities for each of 

p  symbols at each state. In this simple HMM, all the 

parameters are assumed stationary, and we assume a fixed 
finite number of hidden states and number of discrete symbol 
observations. Hence, the probability of the observations 1:Ty

results from summing over all possible hidden state sequences,  
       

1:

1: 1: 1:( ) ( , )
T

T T Tp p
s

y s y                           (2) 

 
Moreover, the set of parameters for the initial state prior π , 
transition probabilities A , and emission probabilities B are 
represented by the parameter  : 
 

{ , }  π A,B  
 

1{π }: π ( ): ( 1)j j p s j k   π initial hidden state prior; 

1{a }:a ( | ): ( )jj jj t tp s j s j k k      A state transition 

matrix; { }: (y | ): ( )jm jm t tb b p m s j k p    B symbol 

emission matrix. Here, the Bayesian approach to learning treats 
the model parameters as unknown quantities and, prior to 
observation of the data, assigns a set of beliefs over these 
quantities in the form of prior distributions. In the light of the 
data, Bayes’ rule can be used to infer the posterior distribution 
over the parameters.  

 

1:
1:
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T

T

T

p p
p

p p d

 
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y

y
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                   (3) 

 
In this way, the parameters of the model are treated as hidden 
variables and are integrated to form the marginal likelihood:  
   

1: 1:( ) ( ) ( | )T Tp p p d   y y                      (4) 

 
A natural choice for parameter priors over π , the row of A

, and the row of B are Dirichlet distributions. 
 

( ) ( ) p( ) p( )p p  π A B  
( )

1( ) Dir({π , , π } | ))kp π u  

(A)
1

1

( ) Dir({a , ,a } | ))
k

j jk
j

p


A u                    (5) 

(B)
1

1

( ) Dir({ , , } | ))
k

j jp
j

p b b


B u  

 
Here, for each matrix A and B, the same single hyper-parameter 
vector  and is used for every row. The use of these 
hyper parameters is motivated because the hidden states are 
identical to a prior. The form of the Dirichlet prior, using ( )p π

as an example, is:  
 

( π )
(π)

1 (π)0

(π)
1

1

( )
( ) π , 0,

( )
j

k
u

j jk
jjj

u
p u j

u




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
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



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where (π) (π)
0 1

k

jj
u u


   is the strength of the prior, and the 

positivity constraint on the hyper-parameters is required for the 
prior to be proper.  

B. Bayesian HMM with DPM of GWEM 

So far, it has considered that the observation vector is the 
discrete case. From now, we will consider the case of 
continuous observation vectors. As well, suppose that the 
probability distribution of the observed vectors can be 
expressed in a mixture of an infinite number of Gaussian 
distribution. Therefore, in order to implement a continuous 
observation and infinite number of Gaussian problem, we have 
to consider the use of Dirichlet process theory and the Gaussian 
mixture model. Here, we first review Drichlet process model. A 
Dirichlet process (DP) ( , )DP H with concentration parameter 

  and base distribution H , is a distribution over probability 
distributions. Formally, let  be the probability space 
underlying the distribution. Then, we say that ~ ( , )G DP H if, 

for any finite partition 1, , NA A  of  , the distribution of 'G s

probability mass on this partition is given by 
 

1 1( ( ), , ( )) ~ Dirichlet( ( ), , ( ))N NG A G A H A H A   . 
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III. VARIATIONAL BAYESIAN INFERENCE 

A. Variational Bayesian EM algorithm 

The variational Bayesian inference problem of HMM with 
DPM of GWEM is to derive a family of variational posterior 
distributions over hidden variables and model parameters 
which can approximate the true posterior distributions with 
infinite number of mixture components. But, under this infinite 
dimensional setting, Bayesian inference is not apparently 
tractable. For this reason, we employ a common strategy in 
DPM literature, formulated on the basis of a truncated stick- 
breaking representation of the DP. That is, we fix a value M
and we let the variational posterior over the jmu  have the 

property ( 1) 1jMq u   . In other words, we set ( )jmc u equal to 

zero for m M . Note that, under this setting, the model is a 
full Dirichlet process and is not truncated, but only the 
variational distribution is truncated to allow for a tractable 
inference procedure. Hence, the truncation level M is a 
variational parameter which can be freely set, and not part of 
the prior model specification. 

Let { , , , , , , }A C  s z π μ Λ be the set of all hidden variables 

and unknown parameters of the Bayesian HMM with DPM of 
the Gaussian-Wishart model over which a prior distribution has 
been imposed, and 0 0 0 0 1{ , , , }M

m m m m m    μ W  be the set of the 

hyper-parameters of the imposed priors. Variational Bayesian 
inference consists in the introduction of an arbitrary 
(variational) distribution ( )q  to approximate the actual 

posterior 1:( | , )Tp  y , which is computationally intractable. 

Under this assumption, the log marginal likelihood 1:log ( )Tp y

of the model can be written as: 
 

 1:log ( ) ( ) KL( || )Tp F q q p y ,                        (13) 
 
with  

1:( , ; )
( , ) ( ) ln

( )
Tp

F q q d
q

  
     


y

                       (14) 

 
and 

1:( | ; )
KL( || ) ( ) ln

( )
Tp

q p q d
q

  
     


y
                 (15) 

 

Here, KL( || )q p stands for the Kullback-Leibler (KL) 

divergence between the approximate variational posterior ( )q   

and the actual posterior 1:( | , )Tp  y  . Since KL divergence is 

nonnegative, ( , )F q  forms a strict lower bound of the log 

marginal likelihood 1:log ( )Tp y defined as: 
 

1:
1:

( , ; )
log ( ) ( ) ( ) ln

( )
T

T

p
p F q q d

q

  
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
y

y                (16) 

 

Hence, by maximizing this lower bound ( , )F q   (variational 

free energy) so that it becomes as tight as possible, not only do 
we minimize the KL divergence between the true and 
variational posterior, but also implicitly integrate out the 
unknowns  . 

For the approximate posterior distribution ( )q  , we 

consider two assumptions. First, we assume that we consider 
the conjugate prior distributions of all hidden variables and 
parameters in our model. Second, a set of parameters 
{ , , ( ), , }π A C u μ Λ and hidden variables { , }s z are mutually 

independent. Then, the approximate variational distribution of 
all hidden variables and parameters can be represented as; 

 

1 1
2 1 1

, ,
1 1 1 1
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π a

μ Λ

    (17) 

 
Here, using the calculus of variation principle, we can obtain 

the approximate posterior distributions of all hidden variables 
and parameters by minimizing the KL divergence or 
maximizing the free energy with the coordinate ascent 
algorithm. Then, the resulting variational posterior distributions 
can be given using the following two steps iteratively.  

1) The Variational Bayesian M (VBM)-Step 

The VBM step is obtained by taking functional derivatives of 
( , )F q  with respect to each of these distributions and equating 

them to zero, to yield the following approximate posterior 
distributions: 

 

      
(π) (π)

1 1

(π) (π)
1

( ) Dir({π , , π } | { , , })),

( ),

k k

j j

q w w

w u q s j



  

π  
                (18) 
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Similar, regarding the posterior distributions over parameters 
of the Gaussian-Wishart, we have that   
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2) The Variational Bayesian E (VBE)-Step 

Taking derivatives of ( , )F q  with respect to the variational 

posterior over the hidden variables yields: 
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where ( )  denotes the digamma function.  

B. Predictive Distribution  

In the Bayesian scheme, the predictive probability of a test 
sequence 1:T  y y , given a set of training cases denoted by 

,1: 1{ }
i

n
i T iy y , is obtained by averaging the predictions of the 

HMM with DPM of GW model with respect to the posterior 
distributions over its parameters { , , ,C( ), , }  π A B u μ Λ : 

 

( | ) ( | ) ( | )p p p d    y y y y                    (29) 

 
Unfortunately, for the very same reasons that the marginal 
likelihood of observations given by  
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is in tractable, so is the predictive probability. Hence, we have 
to consider another method for approximating the predictive 
probability. One such method is to approximate the true 
posterior distribution with the variational posterior distribution 
resulting from the variational Bayesian optimization:  

 

( | ) ( ) ( | )p q p d    y y y                      (31) 

 
The variational posterior is a product of individual posterior 

of required parameters, which is in the same form as the prior, 
and so we are not able to doing anything anymore because we 
know that this integral is intractable. However, we can define 
the forward factor ( , )t t ts z    to be the posterior over the hidden 

variables ( , )t ts z  given the testing sequence up to and including 

time t and the trained parameters  :  
 

1:( , ) ( , | ; )t t t t t ts z p s z      y                        (32) 
 

and form the forward recursion from 1, ,t T   : 
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Sixth, the classification probabilities were calculated 
corresponding to all human actions using a sequence of feature 
vector.  

C. Recognition Results 

From the results in Table I, it can be noted that six human 
behaviors can be mainly divided into two categories with 
similar behaviors. The first category of similar actions includes 
boxing, hand-clapping, and hand-waving, and the second 
category of similar behavior includes jogging, running, and 
walking. The results show that handclapping action is 
misclassified into boxing and hand-waving, and the jogging 
action misclassified into running and walking. However, it was 
noted that the correct classification rate of the proposed method 
appears to be 92.5 % on average. Finally, our model for 
obtaining this result is to be the number of state five, and the 
number of Gaussian mixture model components eight. 

 
TABLE I 

CLASSIFICATION RATE FOR PROPOSED METHOD 
Classificat

ion rate 
Boxing 

Hand 
clapping 

Hand 
waving 

Jogging Running Walking

Boxing 1.0 0 0 0 0 0 
Hand- 

clapping 
0.31 0.58 0.11 0 0 0 

Hand- 
waving 

0 0 1.0 0 0 0 

Jogging 0 0 0 0.69 0.25 0.06 

Running 0 0 0 0.11 0.89 0 

Walking 0 0 0 0 0 1.0 

V. CONCLUSION 

This paper shows that the VBHMM with DM of GWEM can 
be a useful tool for human action classification. First, the results 
have shown that a time series data of continuous feature vectors 
extracted from a human action video can be modeled by HMM 
with DPM of GWEM. Using the variational Bayesian inference 
approach, the researchers derived the approximate posterior 
distributions of all latent variables and parameters indicating a 
membership of class on the basis of the learning data. Second, 
we have derived the predictive distribution of the latent 
function corresponding to the new input vector by using both 
the existing training data and the new input vector. Next, we 
calculate the likelihood function for each class by using the 
predictive distribution corresponding to the new sample. 
Lastly, the study classifies the input video into the class which 
its likelihood function is maximized. The experimental results 
show that our method performs very well on public video 
datasets, such as the KTH dataset, more than others. 
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