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Abstract—The analytic expression for the Hall Coefficient (HC)
caused by the confined electrons in the presence of a strong 
electromagnetic wave (EMW) including the effect of phonon 
confinement in rectangular quantum wires (RQWs) is calculated by 
using the quantum kinetic equation for electrons in the case of 
electron - optical phonon scattering. It is because the expression of 
the HC for the confined phonon case contains indexes m, m’ which 
are specific to the phonon confinement. The expression in a RQW is 
different from that for the case of unconfined phonons in a RQW or 
in 2D. The results are numerically calculated and discussed for a 
GaAs/GaAsAl RQW. The numerical results show that HC in a RQW 
can have both negative and positive values. This is different from the 
case of the absence of EMW and the case presence of EMW 
including the effect of phonon unconfinement in a RQW. These 
results are also compared with those in the case of unconfined 
phonons in a RQW and confined phonons in a quantum well. The 
conductivity in the case of confined phonon has more resonance 
peaks compared with that in case of unconfined phonons in a RQW. 
This new property is the same in quantum well. All results are 
compared with the case of unconfined phonons to see differences.

Keywords—Hall coefficient, rectangular quantum wires,
electron-optical phonon interaction, quantum kinetic equation,
confined phonons.

I. INTRODUCTION

HE size-reduced effect dramatically altered the physical 
properties of low-dimensional semiconductor materials.

Objects having a direct impact on the effect are semiconductor 
electronics, of which movements are restricted according to 
the size-reduced dimensions. In comparison with the bulk 
semiconductor, the physical properties of low-dimensional 
systems are preeminent due to this motion restriction. Apart 
from electronic confinement, in low-dimensional systems, 
phonons can be detained by this effect as well. Recently, there 
have been numerous studies on the physical properties of 
semiconductor taking the phonon confinement into account 
[1]-[7]. Phonon confinement in low dimensional systems has 
significantly changed the physical effects compared with those 
in the case of bulk phonons such as the electronic - phonon 
scattering in doped superlattices [8], in the quantum wire [9], 
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and so on. The HC has been done by taking account of 
confined elements for some research in the two-dimensional 
system. The impact of confined phonon on the Hall effect in 
these low dimensional systems is still opened to research. To 
obtain a better assessment of the HC when phonons are 
confined in quantum wires, in this work, we study the HC in a 
RQW considering the phonon confinement. A RQW with a 
cross-section x yL L in the plane (x, y), the length zL are 
selected as a model. Then, we estimate numerical values for 
the specific GaAs/GaAsAl RQW to show the dependence of 
the HC and magnetoresistance (MR) by the confined optical 
phonons in a RQW on the temperature T of the system and the 
frequency. The effect of phonon confinement creates new 
property of the conductivity tensor which has more resonance 
peaks in case confined phonons in a RWQ compared with that 
in a quantum well. Both the conductivity tensors in RQW of 
phonon confinement and in quantum wells have more 
resonance peaks compared to those in the confined phonon 
case.

II.HAMILTONIAN OF THE CONFINED ELECTRON – PHONON
SYSTEM IN A RQW WITH INFINITELY HIGH POTENTIAL IN THE 

PRESENCE OF A LASER RADIATION

A confined phonon model is similar to an electronic one. 
Each state of the phonon is also described by two quantum 
numbers , 'm m corresponding to the confinement in two 
dimensions of that phonon Ox, Oy. The phonon wave vector is 

defined as = ( , , )x y zq q q q in which
'= , =x y

x y

m mq q
L L . The 

quantum wire is set in the laser field 0( ) = sin( )E t E t and 

vector potential 0( ) = cos( )cA t E t driven to Oz, dc electric field 

(0,0, )E E and magnetic field ( ,0,0)B B . Under these conditions, 
the wave function and energy spectrum can be written as:

,
1 2 2( , , ) sin sinikz

k
z x x y y

n x l yx y z e
L L L L L

When 
y0 y L

0 xx L                             (1)

and , ( , , ) 0 k x y z if else.
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The Hamiltonian of confined optical electron-phonon
system is expressed as a particle number operator.
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(3)

where 
, ,n l ka and 

, ,n l ka (
, ',m m qb and , ',m m qb ) are the creation and 

annihilation operators of electron (confined optical phonon),
respectively, k is the electron wave momentum, q is the 
phonon wave vector, q is optical phonon frequency, and 

are the quantum numbers ( , )n and ( , )n of electron. N ,
N are the Landau levels ( = 0,1,2,...).N The quantities in the 
equation (3) vary from those in RQW [14] since it contains 
specific indexes denoted by m, m’ for the phonon    
confinement.

Electron – confined optical phonon interaction constant is:

2
, ' 2

2 2 20 0

1 1 1| | = ( ) '2 ( ) ( )

m m o
q

z
x y

eC m mV q
L L (4)

in which, V is the normalized volume, and 0 is the vacuum 
permittivity.

The electron form factor , ' ( )I q can be written as [9]: 

, ' 2 2
, , '

, '=1,3,5,...
( ) = (2 ) 16 /m m

n z m m
m m

I q P q (5)

where 

, ' 0 0

2 2= cos( )cos( )

'cos( ) cos( ) cos( ) cos( )

L Lx y
m m

x y x x

x y y y

n x n xP dx dy
L L L L

x y m y m y
L L L L

(6)

( )A t is the vector potential of the electromagnetic field 
which is defined as:

0
( ) = sin( )dA t E t

cdt
                             (7)

, , , , ,s oV are the volume, the density, the deformation 
potential, the sound velocity, the static dielectric constant, and 
the high frequency dielectric constant, respectively. ( )q is 
the potential undirected: 

3( ) (2 ) ( [q,h]) ( )cq i eE q
q         (8)

III. THE QUANTUM KINETIC EQUATION OF ELECTRONS IN 
RQWS WHEN PHONONS ARE CONFINED

The quantum kinetic equation of electrons in a RQW 
considering the phonon confinement, which is based on the 
general quantum kinetic equation of the particle number 
operators, is formulated as:

, ,
, , , , , , , ,( ) = = [ , ]n k

t tn k n k n k n k

n
i t i a a a a H

t t
(9)

Using the Haniltonian (3), transformations of operators and 
setting:

1 1 2 2 1 1 2 2 , ',, , , , , ', , ,( ) = m m q tk k m m q k kF t a a b
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We formulate an expression for operator 
1 1 2 2, , , , , ', ( )k k m m qF t to 

obtain the formula for the quantum kinetic equation

1 1 2 2

1 2

, , , , , ',

, ',, ,1 2
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= [ , ]
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m m q tk k

i F t
t
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Doing some necessary calculations, one acquires: 
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in which
1 1 2 2, , , , , ',( ) = ( )k k m m qF t F t (11) is the non-linear differential 

equation. Solve this equation using variational method and 

boundary conditions under adiabatic hypothesis =( ) | = 0tF t to 
give us:
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We substitute (12) into (9) with the corresponding terms, 
using the (7) and =

exp( sin ) = ( )exp( )nn
iz x J z inx ( ( )nJ z is the 

Bessel function of real arguments), associated with changes 

based on the symmetry of the statistical average quantity to 
obtain:
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in which is the infinitesimal parameter inserted to ensure 
the adiabatic hypothesis. (14) is the quantum kinetic equation 
for unbalanced distribution function of the confined electrons 
in RQW when the phonons are confined. From (14), we can 
see that the coefficient of the interaction between electron and 
phonon has changed by the phonon confinement in a RQW,
and the HC also has changed. The expression of the HC
includes indexes m, m’ which are particular to the phonon 
confinement.
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After making several calculations, the expression for the 
conductivity tensor and the HC are obtained:
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where ij is the Kronecker delta, ijk the anti - symmetrical 
Levi–Civita tensor, and the letters , ,k i jh h h stand for the 
components x, y, z of the Cartesian coordinate system. The 
quantities in (16) vary from those in RQWs [14]. Therefore, 
the expression for the HC for the unconfined phonon case in a 
RQW is different from that for the case of confined phonons
in a RQW or in 2D. Because the expression of the HC for the 
unconfined phonon case in RQW does not contain the indexes 
m, m’ which are specific to phonon confinement. When the 
indexes m, m’ go to zero, we obtain results as the case of 
unconfined phonon in a RWQ [14]. When the length Lx (Ly)
approaches infinity, at this time the properties of the wire are 
similar to those of bulk semiconductor. It means that HC is no 

longer dependent on the length of quantum wires at all 
different temperatures, which is the characteristic of bulk 
semiconductor.

IV. NUMERICAL RESULTS AND DISCUSSIONS

To get a better assessment of the effect of the confined 
phonons on HC caused by the confined electrons in a RQW, 
we will survey and plot the dependence of the HC on the 
characteristic quantities of the GaAs/GaAsAl RQW for both 
cases – confined phonons and unconfined phonons – on the 
same graph. The parameters used for the computation are as 
follows [10]-[13]: 

9

0 0 0 0

13 1 12 3 '

1010.9, 12.9, , 0.067 , 50 , 36.25 ,
36

3 10 , 0,1; 1, 0,1; 1, 10 , 5320 , 1

Fm m meV meV

s n n l l s kgm N N
         

Figs. 1 and 2 show that the dependence of the HC on
frequency EMW at different values of the magnetic field for 
both cases – confined phonons and unconfined phonons. The 
figures show that the HC depends strongly on frequency since
there are appearing two resonance peaks. Differing from the 
case of unconfined phonons [14], the curve has only one 
resonance peak. This is due to the fact that the confined 
phonon has quantum wave number following the confined 

axis. Because the expression of the HC for the confined 
phonon case contains the indexes m, m’.
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Fig. 1 The dependence of the HC on frequency EMW at different 
values of the magnetic field

Fig. 2 The dependence of the HC on frequency EMW at different 
values of the magnetic field for both cases – confined phonons and 

unconfined phonons – on the same graph

Fig. 3 shows that the HC is a function of temperature in 
both cases of confined phonons and unconfined phonons. The 
graph also shows that the confined phonons increase the 
intensity of the HC in comparison with the case of unconfined 
phonons.

At the same temperature 118T K , the HC in the case of 
confined phonons, which is approximately 7 (arb. units) with 

' 2m m and 4 (arb. units) with ' 1m m is higher than 
that in the case of unconfined phonons, which is 
approximately 1.8 (arb. units). As the temperature increases, 
the HC decreases. However, when the phonons confinement 
as well as the indexes of the phonons confinement increase, 
the HC is higher than that in the case of unconfined phonons. 
The higher the indexes of the phonons confinement increase, 
the higher the HC increases.

Fig. 4 shows dependencies of the MR on the ratio / c at 
6B T for different values of Eo of both cases – confined 

phonons and unconfined phonons. The dashed curve has one 
maximum and one minimum in the confined phonon case, but 
one minimum in the case of unconfined phonons [14]. In 
addition, the increase of quantum number m, m’ leads the MR 
to increase. Consequently, this is a new behavior of the HC 
due to the effect of phonon confinement. We can see very 
clearly that the minima in both cases of confined phonons and 
unconfined phonons are at / 1,85c . The MR in the 
confined phonons case which is approximately 11 (arb. units) 
is lower than that in the case of unconfined phonons, which is 
approximately 2 (arb. units). 

Fig. 3 The dependence of the HC on temperature for both cases–
confined phonons and unconfined phonons

Fig. 4 Dependencies of the MR on the ratio / c at 6B T for 
different values of Eo for both cases – confined phonons and 

unconfined phonons

In Fig. 5, the dashed curve describes the dependence of the
conductivity on the cyclotron energy in the case of unconfined 
phonon. This curve has two maximum peaks. As we can see in 
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figure, from the left to the right, resonance peaks of the 
conductivity tensor in the case of unconfined phonon 
correspond to the conditions:

* 2 ,
2c o

ym L * 2 .
2c o

xm L

The solid curve in Fig. 5 shows the dependence of the
conductivity on the cyclotron energy in the case of confined 
phonon. It seems that, besides the main resonant peaks, as in 
the case of unconfined phonon, the subordinate peaks appear. 
When the cyclotron energy increases further, the conductivity 
increases continuously and reaches saturation at the high
cyclotron energy. There are multiple resonance peaks of the 
conductivity tensor. These peaks correspond to the following 
conditions 

'2 2 '2 2

* 2 2( ' ) ( )
2c o

x y

n n l lN N
m L L

in which c is the cyclotron frequency ( */eB m ), and o is 
the optical phonon frequency. This condition is generally 
called the intersubband magnetophonon resonance (MPR)
condition. In Fig 5, from the left to the right, this curve has 
seven maximum peaks which correspond to the conditions:

,c o * 22c o
ym L

,

* 2 ,
2c o

ym L
c o ,

* 22c o
xm L

, * 2 ,
2c o

xm L

c o .

Fig. 5 The dependence of the conductivity tensor xx on the 
cyclotron energy for both cases – confined phonons and unconfined 

phonons 

When the phonons are confined, the conductivity has more 
resonance peaks compared to that in case of unconfined 

phonons in a RQW [14]. This behavior of conductivity tensor 
is similar in quantum wells, the increase of quantum number 

, 'm m characterizing the effect of phonon confinement leads 
to the increase of conductivity tensor in quantum wells.

V.CONCLUSION

In this paper, we analytically investigated the possibility of 
parametric resonance of confined optical phonons in a RQW. 
We have obtained a set of quantum kinetic equations for 
transformation of phonons. We numerically calculated and 
graphed the intensity of the HC for a GaAs/GaAsAl RQW. 
The results show that the confined phonons cause some 
unusual effects. The HC and MR depend strongly on the 
temperature T and the frequency . The confined phonons 
will increase the values of the HC and MR. When the
temperature is low, the HC gets large. In a RQW, for the
unconfined phonon case, the HC does not depend on m, m’ 
[14], whereas the HC in a RQW for the unconfined phonon 
case depends on m, m’ which is particular to phonon 
confinement. The curve has two resonance peaks in the
unconfined phonon case, but in unconfined phonons, the curve 
has only one resonance peak [14]. The fact was not seen in 
bulk semiconductor [4] as well as in quantum wells [3] and 
RQWs [14]. The analytical expressions for the HC tensor are 
obtained. These theoretical results are very different from the 
previous ones because of the effect of optical phonon 
confinement. When the phonons are not confined, we have
results similar to the case of unconfined phonon in a RWQ 
[14]. The conductivity tensor has more resonance peaks which 
correspond to the conditions:

'2 2 '2 2

* 2 2( ' ) ( )
2c o

x y

n n l lN N
m L L

in the case of confined optical phonons compared with that in 
the case of unconfined phonons. The effect of phonon 
confinement creates new property of the conductivity tensor 
which has more resonance peaks in the case confined phonons 
in a RWQ in comparison with the case of a quantum well. 
Both the conductivity tensors in a RQW with the phonon 
confinement and in a quantum well have more resonance 
peaks than those in the confined phonon case.
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