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Abstract—Local interconnect network (LIN) is a communication
protocol that combines sensors, actuators, and processors to a
functional module in automotive applications. In this paper, a LIN ver.
2.2A controller was designed in Verilog hardware description
language (Verilog HDL) and implemented in field-programmable gate
array (FPGA). Its operation was verified by making full-scale LIN
network with the presented FPGA-implemented LIN controller,
commercial LIN transceivers, and commercial processors. When
described in Verilog HDL and synthesized in 0.18 pm technology, its
gate size was about 2,300 gates.
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[. INTRODUCTION

OST electronic and electrical components in the car are

connected to an electronic control unit (ECU) with
wirelines. In the modern automotive applications, the number
of electronic and electrical components in the car significantly
increases, so the wire harness weights too much [1].
Furthermore, complicated interconnections between huge
number of electronic and electrical components severely
degrade communication speed. One possible solution is
hierarchical interconnections. Related components are
connected with local interconnections, and these clusters are
further connected with gateways.

Recently, electronic and electrical components become more
and more modular, and their interconnections are divided into
two categories, i.e. local interconnections inside a module and
global interconnections between modules. As shown in Fig. 1,
LIN [2] and controller area network (CAN) [3] were presented
for intra-module and inter-module communications,
respectively. These two serial buses are effective for
compatibility and maintenance in automotive applications, and
they are standardized by International Standard Organization
(IS0).

LIN bus is a low-cost sub-bus for CAN bus. It is a
single-wire serial communication protocol with byte-word
transmission. It is relatively low-speed (< 20 kbps), and it has
typically small number of nodes (<12 nodes). Master node
controls the medium access, so it needs no arbitration or
collision management, while guaranteeing latency times. It has
a clock synchronization mechanism, so it needs no clock
generation circuit in the slave nodes. Its application covers
various modules such as mirror control, window lift, door
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switch, door lock, control panel, wiper control, light control,

light switch, seat switch, and sun roof. LIN ver. 1.3 and LIN ver.

2.0 were announced in 2002 and 2003, respectively. LIN ver.
2.2A, the newest version of LIN, was announced in 2010 [4],
[5]. In this paper, a LIN controller for automotive applications
was designed, implemented, and verified.
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Fig. 1 LIN and CAN in the automotive applications
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Fig. 2 LIN protocol stack

II.LIN CONTROLLER ARCHITECTURE

Fig. 2 shows the protocol stack of LIN bus. A node is
connected to the physical bus wire and transmit data frame
using LIN transceiver. The data frame is handled using LIN
controller. There is a transport layer between program and data
frame. LIN transceiver is an analog circuit controlling bus
voltage and waveform. LIN controller is a digital circuit that
controls the transmission of digital bits.

Fig. 3 shows the LIN network configuration. It consists of
single master node and multiple slave nodes. Master task
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determines which node transmits the data, and it generates
frame header as shown in Fig. 4. It is implemented only in the
master node. Slave task responds the frame header from master
task, and it sends or receives data. It is implemented both in the
master node and the slave nodes.
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Fig. 3 LIN network configuration

Frame
Header Response
Break | Sync. |  Mag: Data | |Data | | Dat
ol ﬁ‘;I | Icentifier p 2"‘ :"‘ CRC
field || <41 < <>
Response Inter-byte Inter-byte Inter-byte

Space Space  Space  Space

Fig. 4 LIN frame structure
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Fig. 5 The presented LIN controller

Fig. 5 shows the block diagram of the presented LIN
controller. Configuration registers contain control parameters
of bus operations. These registers are set by the host processor.
They determine master/slave mode, transmission speed, and
operation status. Clock divider generates the bus clock for data
transmission from main clock. Majority sampler samples the
received data from LIN transceiver and synchronizes the bus
clock. It also helps accurate data detection.

Core state machine is a global controller. In master task, it
generates frame header as shown in Fig. 6. In slave task, it
checks the Message ID in the frame header, and determines
either transmission mode (Tx mode) or reception mode (Rx
mode) as shown in Fig. 7. Transmitter and receiver sends and
receives the data serially with LIN transceiver.

Reset
e

Transmit
Data Reg.
Full?

Send Break
Low Phase

Send Break Latch Sync
High Phase Field

Transmitter
Done?

Latch ID and
Parity Bits

Transmitter H

Done?

Fig. 6 LIN master task [6]

III. LIN CONTROLLER IMPLEMENTATION

The presented LIN controller was described in Verilog HDL
and its operation was verified by ModelSim. After it has passed
the functional simulation, it was implemented in FPGA and
verified in test board as shown in Fig. 8. In Fig. 8, 1 master node
and 1 slave node were implemented and connected. In the
master node, both master and slave tasks were programmed. In
the slave node, only slave task was programmed.

In the test operation, Message ID was set to 0x20, and master
node transmits 4 data bytes (0x4A, 0x55, 0x93, 0xES) and 1
cyclic redundancy check (CRC) byte (0xE6) to slave node.

The waveform of the data frame on the bus was shown in Fig.

9. It was measured by digital oscilloscope, and it was confirmed
that LIN data frame was correctly transmitted. Fig. 10 shows
the received data in the slave node. Since the slave node is a
small processor board without display panel, its received data
was sent to and checked in the PC. As shown in Fig. 10, the
received data were Message ID (0x20), data bytes (0x4A, 0x55,
0x93, 0xES), and CRC byte (0xE6).
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Fig. 7 LIN slave task [6]
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Fig. 8 LIN test board of master and slave nodes
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Fig. 9 LIN data frame waveform on the bus
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Fig. 10 LIN data received in the slave node
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The designed LIN controller was synthesized in 0.18 um
technology. Its gate size was about 2,300 gates, which is quite
small. The designed LIN controller is a soft intellectual
property (IP), so it can be applied to many automotive
system-on-chips (SoC) with negligible modification.
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