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Artificial Neural Network Modeling of a Closed
Loop Pulsating Heat Pipe
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Abstract—Technological innovations in electronic world demand
novel, compact, simple in design, less costly and effective heat
transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a
passive phase change heat transfer device and has potential to transfer
heat quickly and efficiently from source to sink. Thermal
performance of a CLPHP is governed by various parameters such as
number of U-turns, orientations, input heat, working fluids and filling
ratio. The present paper is an attempt to predict the thermal
performance of a CLPHP using Artificial Neural Network (ANN).
Filling ratio and heat input are considered as input parameters while
thermal resistance is set as target parameter. Types of neural
networks considered in the present paper are radial basis, generalized
regression, linear layer, cascade forward back propagation, feed
forward back propagation; feed forward distributed time delay, layer
recurrent and Elman back propagation. Linear, logistic sigmoid,
tangent sigmoid and Radial Basis Gaussian Function are used as
transfer functions. Prediction accuracy is measured based on the
experimental data reported by the researchers in open literature as a
function of Mean Absolute Relative Deviation (MARD). The
prediction of a generalized regression ANN model with spread
constant of 4.8 is found in agreement with the experimental data for
MARD in the range of £1.81%.

Keywords—ANN models, CLPHP, filling ratio, generalized
regression, spread constant.

[INTRODUCTION

LPHP is a novel wickless passive device works on the

phase change phenomena and effectively transfers heat
from the source to sink [1]. It is typically a serpentine copper
tube as shown in Fig. 1. The diameter of a copper tube is
selected to surpass the surface tension force over the
gravitational force. Evaporator acts as a source through which
heat is supplied to the device while condenser acts as a sink
through which heat is rejected from the device. The CLPHP is
partially filled with the working fluid. The working fluid
converts into gas-liquid two-phase flow and attains the
pulsating/oscillating motion in a CLPHP due to the pressure
difference between evaporator and condenser. Adiabatic
section facilitates the pulsating/oscillating motion of liquid
slugs and vapor plugs. As CLPHP involves intricate gas-liquid
two-phase heat and mass transfer and multivariate operating
mechanism, a complete understanding of the complex thermo-
hydrodynamics mechanism of CLPHP is still lacking [2].
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Fig. 1 Pulsating heat pipe [1]

Thermal performance of a CLPHP is influenced by several
parameters involving number of U-bends, evaporator location
in different planes, input heat flux, type of working fluids and
filling ratio. Literature review of experimental work on
CLPHP including authors’ work on CLPHP [3], [6] shows
significant impact of these parameters on the thermal
performance of a CLPHP. Hence, it is essential to carry out a
systematic analysis of a CLPHP to develop a mathematical
model. ANN is widely used for the qualitative and
quantitative analysis of two-phase flow data. The possibility of
using a neural network based technique to identify gas-liquid
two-phase flow pattern and pressure drop is reported by Mehta
et al. [7], [8]. The present research paper aims to predict the
thermal performance of a CLPHP by developing various ANN
models and to recommend the accurate prediction model. The
experimental data reported by Shafii et al. [9] are used for
neural network training, validation and testing. The input
parameters to all ANN models are set as Filling ratio and input
heat while thermal resistance is considered as output
parameter.

II. ANN MODELING

The basic structure of ANN applied to a CLPHP is shown
in Fig. 2. Filling ratio and heat input are placed as input
parameters for predicting thermal resistance as targeted
output. Sometimes neural network predicts the accurate output
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for known input data which are used for training the network
model but it cannot give a good estimation for new data. This
problem occurs due to over-fitting or over training. In order to
avoid over-fitting, all data are divided into three parts:
Training (70%), validation (15%) and testing (15%). Training
data are used to develop the accurate neural network model by
adjusting weight and bias. Therefore, the majority of data
(70%) should be assigned to the training process. Validation
data (15%) are used to judge the accuracy and generalization
of trained network. It stops the network training process at
some epochs in order to avoid over-fitting. Testing data (15%)
are used to examine the final behavior of the network. Out of
47 experimental data, 42 data (89%) are used for training,

validation and testing process during ANN modeling.
Remaining 5 data (11%) are used for testing the final models.

The neural networks considered in the present study are
radial basis, generalized regression, linear layer, cascade
forward back propagation, feed forward back propagation,
feed forward distributed time delay, layer recurrent and Elman
back propagation. The various transfer functions used in the
modeling are Linear, logistic sigmoid, tangent sigmoid and
Gaussian RBF. The arrangement of networks and transfer
functions provide diverse network models which are tabulated
in Table I. The intention of the present work is to propose the
suitable ANN model which predicts the thermal resistance in
agreement with the actual experimental resistance reported by
Shafii et al. [9].
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Fig. 2 Generalized ANN structured
TABLET 3. Type nntool command in command window of

DIFFERENT ANN MODELS
Neural Network Transfer Function  Model Notation

Cascade forward back TANSIG A
propagation LOGSIG B
PURELIN C

Elman back prop TANSIG D
LOGSIG E

PURELIN F

Feed forward back- TANSIG G
propagation LOGSIG H
PURELIN 1

Feed forward distributed TANSIG ]
time delay LOGSIG K
PURELIN L

Generalized regression Gaussian RBF M
Layer Recurrent TANSIG N
LOGSIG 0

PURELIN P

Linear layer (design) PURELIN Q
Radial basis (exact fit) Gaussian RBF R

III.LEXECUTION PROCEDURE

Procedure for neural network modeling in MATLAB is
given below. Following steps are common for every neural
network model.

1. Prepare excel data sheet for input data, output data and
test data.

2. Import these data without any headings or labels into
MATLAB workspace.

MATLAB.

4. Import input and test data as “input data” and output data
as “target data” in nntool box.’

5. Click on New option. Select proper network, input-target
data, training-performance function with a suitable
number of layer and neurons.

6. Hit create button for the development of new network as
per chosen parameters.

7. Open this network and Train the network for given input
and target data by pressing the Train Network button.

8. Use simulate button for testing the neural network.
Predicted result and error are generated in the output
window and error window in the nntool box.

9. Export these data into again MATLAB workspace. After
that, paste them into excel sheet for post processing.

IV.RESULTS AND DISCUSSION

The experimental data reported by Shafii et al. [9] are used
for ANN modeling of a CLPHP. Shafii et al. [9] considered
total five turn copper tube of 1.8 mm internal diameter, 3 mm
outer diameter and 4 m overall length for their experiments.
The length of the evaporator (heating section) and condenser
(cooling section) was kept as 60 mm while the adiabatic
section was set as 150 mm. The width was 250 mm. The
orientation was set as vertical bottom heating position. The
inside volume of CLPHP was 12 Cubic Centimeter (CC).
Filling Ratio (FR) was considered as 30%, 40%, 50%, 70%
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and 80%. Water was used as working fluid. Heat input varies
in the range of 5 to 70 Watt with an incremental step of 5
Watt. For each combination of heat input and FR, average
evaporator and condenser temperatures were recorded under
steady state condition. Thermal resistance is calculated using

(1):

Thermal resistance = (Average evaporator temperature —
Average condensation temperature)/(Total heat supply) (1)

The Training function and Adaption learning function are
considered as TRAINLM and LEARNGDM. Total two
number of hidden layer are considered. Total number of
neurons considered is 10. Learning rate is considered as 0.01.
MATLAB R2015a is used for ANN modeling. The prediction
accuracy of various ANN models (Table I) is estimated using
MARD through (2):

1 P(Dpredicted =P (D experimen

MARD =5 Li - Z(it):xpe:iieni | @

Fig. 3 shows the prediction accuracy of various ANN
models as a function of MARD. Generalized regression with
Gaussian RBF model is found to have least MARD among all
tested models. Generalized regression with Gaussian RBF
model takes default spread constant value as 1. Optimization
is carried out for different spread constant value. MARD
obtained for different spread constant in generalized
regression with Gaussian RBF model is plotted in Fig. 4. The
optimum spread constant is found between 4 to 5. In order to
carry out further optimization of spread constant, Mean
Absolute Error is calculated and compared for spread constant
4.5 to 5.5. The spread constant 4.8 is found to have least Mean
Absolute Error as shown in Fig. 5. The performance prediction
using generalized regression with Gaussian RBF model having
spread constant 4.8 is compared with experimental data as
shown in Fig. 6 and found in the error range of 1.81%.
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Fig. 3 Comparison between different ANN models by MARD
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Fig. 5 MARD for spread constant (4.5-5.5) in generalized regression
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Fig. 6 Experimental versus Predicted thermal resistance by
generalized regression model with spread constant of 4.8

V.CONCLUSION

ANN modeling of a CLPHP is performed in the present
paper. A total of 18 ANN models involving different transfer
functions is considered to predict the thermal performance of a
CLPHP. The neural network models are trained and tested
using experimental data collected from the literature. Heat
input supplied to the evaporator and FR is used as an input
parameter of the neural network and thermal resistance of
pulsating heat pipe is selected as an output parameter. It is
concluded that generalized regression neural network with
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Gaussian RBF having spread constant 4.8 gives minimum
MARD among all models and predicts the thermal
performance of a CLPHP in the error range of £1.81%.
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