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Abstract—This research aims at obtaining the equations of pulse
propagation in nonlinear plasmonic waveguides created with As2S3
chalcogenide materials. Via utilizing Helmholtz equation and first-
order perturbation theory, two components of electric field are
determined within frequency domain. Afterwards, the equations are
formulated in time domain. The obtained equations include two
coupled differential equations that considers nonlinear dispersion.
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I. INTRODUCTION

HE novel plasmonic science, in the late 90s and the

beginning of 2000s, started to improve and develop in
different and new domains [1], [2]. This field of knowledge
lends itself to the electromagnetic fields interacting with free
electrons of conductors at the interface of metal-dielectric or
plasma-dielectric nanostructures. In general, plasmonics are
viewed as the metamaterial elements and nanoscale artificial
optical materials [3].

Optical systems that utilize metallic waveguides could be
miniaturized as optical element due to surface excitation of
plasmon-polariton. Metallic dielectric waveguides
accompanied by its exciting features could be utilized for
developing sensors and waveguides [4]-[6].

A plasmonic waveguide which is created out of metal and
insulator could extend plasmon-polariton in the most explicit
case [7]-[9].

Chalcogenide glasses are created from the basic
components, e.g. S, Se and Te accompanied with other
components including As, Ga and Ge, In, and Sb.
Chalcogenides material is found in nature in covalent shape
and could be created of a chain, ring or lattice structure. Given
to the physical and chemical endurance of such materials, it is
proper to use them for making optical fibers and waveguides.
Furthermore, chalcogenides have high nonlinear coefficient.
The nonlinear optical Kerr coefficient of such materials is
estimated almost as 100-1000 times of that silica glasses, and
also, the loss in these fibers is scare [10]-[12]. Lately, Yousefi
et al. investigated nonlinear signal processing in chalcogenide
fiber Bragg gratings [13].
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The sheer goal in this research is to obtain equations that
control the pulse propagation in the nonlinear plasmonic
waveguides created with the chalcogenide materials. The
elements of the electric field, perpendicular and parallel to the
direction of propagation for Transverse (TM) mode are
derived. The dark and bright solitons propagation also will be
studied.

II. MATH EQUATIONS

The research investigates the equations administering the
propagation of nonlinear plasmonic waveguide produced by
the chalcogenide materials for the TM mode. In Fig. 1, we
consider the structure of metal/insulator/metal (MIM), a
plasmonic waveguide made out of a thick layer nonlinear

dielectric of thickness 2h and permittivity £)0 and installed
between two metallic slabs with permittivity € (0 If we are
supposed to have homogeneity in the y direction, all fields and

their components are free of y, likewise wave propagate in the
z direction. Plasmon-polaritons can be excited only with the

TM modes, so we have two transverse E, and E, longitudinal

components for electric field.

NY

Fig. 1 A three-layer structure in which a dielectric layer is located
between the metal layer

Helmholtz equation satisfies each element of electric field

when there is no nonlinearity and can be formulated in
frequency domain as:

V’E, (r,0)+&(@)k E, (r,w)=0 M
V’E, (r,0) +&(w)k JE, (r,0) =0 @)

in which K is propagation constant of wave in free space at

frequency @ and &(w) is permittivity as a function of

frequency. If nonlinear effects are absent, the answer for (1)
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and (2) are understood as following ansatz:
E, =E, (X,z)exp(i fz)=AF (X )exp(i fz) 3)
E, =E, (x,2)exp(i fz) =BG (x)exp(i fz) Q)

in whichF(x) and G (X ) are transverse distribution of every

components of electric field, A andB are constants in the
linear and unperturbed condition. S is propagation constant

in linear case that can be computed as [5]:

B=k, /"’"152 )
E +8

where,
&=1-—%, (©)

@, is plasma frequency.

As per nonlinear case, permittivity in (1) and (2) is
expressed as:

= 1+;((” + &y (@) (7

When there are no nonlinear effects that are understood as a
perturbation, electric field elements are formulated as:

=A@Z,0-a,)F(X)exp(i £,2) (8)
E, =B(z,0-0,)G(X)exp(i £,2) Q)

in which /3, is propagation constant of wave in waveguide with

frequency @,. A tilde over variables signifies that they are
formulated in frequency domain. By placing the mentioned
solution in the Helmholtz equation, and after a little
simplifying and employing slowly changing amplitude A and
B we have:

d2|:(x)2+[2|ﬂ dA(z) (B + ek HAE)] =0 10
F (x )dx

d’G(x) dB(z)

Goodx 2T —(B+e(@kHB@)]=0 (1)

By separating variables, four coupled equations are derived
as:

dZF(X)
dx?

+F(x)(e(w)ks —B7)=0 (12)

2G(X)+G(x)(s(a))k2 —BH=0 (13)
2IﬂodA(Z) (B — (@K HA@) =0 (14)
2I/)’odB(Z) (F —e(@k)B(Z)=0 (1)

In the event that we consider the nonlinear effect as a
perturbation, (12) and (13) can be unraveled by utilizing first-
order perturbation theory. Without considering the nonlinear
effects and by using first-order perturbation theory [14], we

find out F(X)andG(X)which are the solutions of the

Helmholtz equation. We also can write the eigenvalue ﬁ(a))

that shows the propagation constant in the nonlinear
waveguide, as:

B(@) = B(o)+AB(o) (16)

where (@) and AS(w) are the propagation constant for linear
case and the effect of perturbation, respectively.

The first order perturbation is merely influenced on the
propagation constant. This effect varies for each element of
electric field as:

o'n(@) | An@)|F O dx

Aﬁl = 2 400
ch@  [TIFeof dx

(17)

o' (o) j:’ An(@)[G (x)[ dx

Aﬂ2 =2 +o0
¢ Blw) LO G (x)[ dx

(18)

where c is the velocity of light in the vacuum. Also, Af, and
APB, signify the effect of nonlinear perturbations on the x and

z- component of electric field, respectively. Furthermore:
~12
An(e) =, [E| (19)

N(w)in (17) and (18) is estimated by using Sellmeier
Equation for As2S3 chalcogenide glass [15]:

(@) =143 D0 (20)
i -

-1 Q)J

that, @, is the resonance frequency, and ,BJ is the strength of j"

resonance.
When there is a nonlinear effect, in the direction of
propagation, the field amplitudes are not constant, thus the
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component of electric field in (3) and (4) can be formulated as:

E, =f (@F(x)A@)exp(i fz) Q1)
E, =9(@)G(X)B (2 )exp(i fz) 22)

where T (@) and 9(®) are [5]:

f@)=C'—P— g(@)=—ic' (23)
o€l WEE,

- exp(—k,h)+d exp(-k,h)

(sl
d= ﬁexp@klh) (25)
==
& &

E[in(19)is:

2
+

2

E

X

E

z

€ -

o, o, (26)
f(@)’F(0’|A@)| +9(@)’G(x)’ |B(2)|

where F(X) and G(X) are the unperturbed linear solutions:
F(x)=(exp(k,x)+d exp(—k,x)) (27)
G (x) = (exp(k x)—d exp(=k x)) (28)

then, by substituting (19), (20), and (26) in (17) and (18), we
have:

~2 ~2
AB, = AB|A| +48, B (29)
~12 ~12
Aﬂz = Aﬂn |A| + Aﬂzz |B | (30)
so that

+Jio(exp(klx )+d exp(—k,x))*dx
n,f ()= (1)
j (exp(k x)+d exp(—k,x))*dx

_o’n(w)

()

ABy,

_wzn(w) 2
A, = Czﬂ(a)) n,g - (w)x

= 5 5 (32)
_[ (exp(k,x)+d exp(—k,x)) (exp(k,x)—d exp(—k x))“dx

—®

T(exp(klx )+d exp(—K,x))*dx

-0

_ o’ (o)
Aﬁzl - Czﬁ(a))

T(exp(klx )+d exp(—k,x))* (exp(k,x ) —d exp(—k x ))*dx (33)

—0

n,g°(o)x

T(exp(k,x )—d exp(—k x))*dx

-0

T(exp(klx )—d exp(—k,x))*dx

88, = 2 g0) 349
(@) '[ (exp(k,x ) —d exp(—k x))’dx
Equations (14) and (15) could be formulated as:
oA -
= [B(@) +Ap (o) = 5,]A (35)
B . -
EII[ﬂ(WHAﬂz(CU)—ﬂO]B (36)

The approximation B - ﬂoz ~2py(B - o) was supposed.
B(@) can be expanded in the shape of Taylor series around

2N

1
p(o)=p, +(w—wo)ﬂ1+5(w—wo)2ﬂ2 Fo (37)
and in similar method, we have:

1
M@ =AY +(@- )M 4 (0= AF . ()
1
Aﬂlz(a)) = Aﬂl(zo) +(w— a)O)Aﬂl(zl) +E(a)— a)o)2 A,Bl(zz) +... 39)
ABy (@)= AR + (-, AR +%(w—wo>2Aﬁ;f’ b (40)

1
Ay, (w)=A 2(2) +(w_wo)Aﬂ§;) +§(a)_wo)2Aﬂ§22) +... 41)

Using (38)-(41) and Fourier transform from the frequency
domain to the time domain, (@—@,) is substituted with

10/ 6’t)’ one can find two coupled equations as:
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2 - (1)
6A (ﬂl 6A ,6’2 0°A o)t sgn([i)azu i @ AM112 a(]U‘ZU)
2 o’ 85 2 612 6 62‘3 (N, or
H 2
(A,b’““)—(|A|2 M+ ap, o (AP A+ LM Oy MY 9 e,
ot 2 ot (42) 2(N )2 or 6(M) or 8)
0 i o’ @
(A5, = (B] M)+~ AB," —(Bf A)+.) 2 VoM T ey,
o o s (sz) or 2(N,,)’ 522
=i[ABY (A A+ A5Y (B[ A
LUV N M U+UU=0
6(N22) T)or N,
8B ,82 o’B
(ﬂl 5 at +.)+
sV i M@JriAM;)QQU\ZV)
(Aﬂzﬁ”—qu 8)+ Lo, Z (Al B) 0+ vy & 2 006 o Ny
: : N VL LT
(Aﬂzz(l)_(lBl B)+—A/322”)—2(|B| B)+..)= 2(N,) o7 6(N,) o )
)
A ([ B)+ AR (A B) R VS e V)
(sz) or 2(N,)* o7
By having two dimensionless transverseU and longitudinal | MY F q ‘ ‘ ‘ { j ‘ ‘
: . V" V)]+V| V+ U'Vv=0
Vv electric field: 6(N22) T'or N,
u(z,7) = Az, T),V(Z,r) :M (44)  where,
Jr Jr
1 1
Ly =— Ly =— (50)
T:l §:i (45) Hh 7 (@))Ry e 712 (@),
T, L, 1 1
v @R ™ T @R, ey
where Py and Ty are the peak power and the width of the Vu(@0)F, Vo (@),
incident pulse, respectively. Then, we have: L L
65\ Sgt(@)@zA . P N121 = LD_5N1227 LD (52)
A W ] + NL;, NL;,
T, o /%Lo 361;, —iLoAd, ToarM A
L L
1 g0 2 L apo 2 N; =—2-,N;, =—2 (53)
2LEM1 T2672M A 6A'q1 o 361364 A Tobe T L
0 (46)
0 2 1
y_Y &)
(8 AL an A U=N,uV =N,V (54)
"6%%%@2 A)]*%l(%)LDHZ Afylz(a&)LD\EfA Equations (48) and (49), are coupled equations which are
0 written for the pulse propagation in a nonlinear plasmonic
) waveguide with Kerr nonlinearity.
6B [Sg(ﬁﬁ)@ W —LDA@D q 42 The values of above parameters specify the behavior of
6§ 2 36 ’ pulse propagation, i.e. dispersion and nonlinear effects studied
& . . numerically in the next section.
S B quA 2
47) [II.DISPERSION

1 8 2
LDA@) QH B+ LDA/%“TZ&ZQH i
‘6%“’%@7;432 Bl-74Lo|A B-roLo|E B

and finally

Dispersion and nonlinearity are the essential parameters
which impact the state of pulse in time and frequency domain.
Plasmonic waveguides by dispersive boundary conditions
have indicated substantial dispersion that showed itself by
GVD and TOD. Additionally, the waveguide dispersion has
significant proportion with respect to material dispersion. In
Figs. 2 and 3, we plot the dispersive parameter. In Fig. 2,
GVD is plotted versus frequency. It demonstrates that the
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waveguide dispersion has substantial impact on total request dispersion TOD is plotted versus frequency. TOD for
dispersion and has negative, zero, and positive quantities. At  As,S3 chalcogenide is positive and negative, yet the impact of
frequency @/ ®,=0.107 and 0.234 that is normalized, there is ~ Waveguide geometry causes to change the manner of TOD;
i.e., the sign and estimation of TOD is changed. TOD is one of
the essential parameters for designing devices such as
plasmonic waveguide.

no dispersion. So, by considering the Kerr nonlinearity, this
plasmonic waveguide can propagate bright, gray, and dark
solitons for negative and positive dispersion individually. In

this paper, we consider@, =1.36x10"°Hz . In Fig. 3, third

14
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Fig. 2 Second- order dispersion or GVD in three-layer structure of As2S3 chalcogenide glass
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Fig. 3 Third order dispersion or TOD in three-layer structure of As2S3 chalcogenide
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Fig. 4 Nonlinear second- order dispersion of Aﬂl(lz ) in three-layer structure of As2Ss chalcogenide
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Fig. 5 Nonlinear second- order dispersion of Aﬁl(; ) in three-layer structure of As2Ss chalcogenide
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Fig. 6 Nonlinear second- order dispersion of Aﬂz(lz) in three-layer structure of As2S3 chalcogenide
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Fig. 7 Nonlinear second- order dispersion of Aﬂg) in three-layer structure of As2S3 chalcogenide
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Equations (38)-(41) are acquired by the Taylor series
expansion of the coefficient of nonlinear term aboutw,. We

name AAY, self nonlinear group velocity dispersion and

ABS), cross nonlinear group velocity dispersion as SNGVD

and XNGVD, respectively. SNGVD and XNGVD are plotted
as frequency in Figs. 4-7.

IV. CONCLUSION

Combination of high nonlinear Kerr index of chalcogenide
glasses and high dispersion of plasmonic waveguides that can
focus fields in small region, can be a fundamental element to
design all optical signal processing and switching. For this
aim, we infer equations which represent the pulse propagation
in a nonlinear plasmonic waveguides using As2S3
chalcogenide materials. By utilizing the perturbation theory,
we determine two parts of electric field in frequency domain,
then two coupled equations in time domain are inferred by
utilizing Fourier transformation. GVD and TOD are
concentrated numerically. We find that there exist a few
interims in which GVD is positive, and some others are
negative and zero for some points, which is because of
dispersive nature of plasmonic waveguides. So, they can
outline for bright or dark soliton propagation and procedure.
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