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Abstract—The diffusion-reaction equations are important Partial
Differential Equations in mathematical biology, material science,
physics, and so on. However, finding efficient numerical methods for
diffusion-reaction systems on curved surfaces is still an important and
difficult problem. The purpose of this paper is to present a convergent
geometric method for solving the reaction-diffusion equations on
closed surfaces by an O(r)-LTL configuration method. The O(r)-LTL
configuration method combining the local tangential lifting technique
and configuration equations is an effective method to estimate
differential quantities on curved surfaces. Since estimating the
Laplace-Beltrami operator is an important task for solving the
reaction-diffusion equations on surfaces, we use the local tangential
lifting method and a generalized finite difference method to
approximate the Laplace-Beltrami operators and we solve this
reaction-diffusion system on closed surfaces. Our method is not only
conceptually simple, but also easy to implement.

Keywords—Close surfaces, high-order approach, numerical
solutions, reaction-diffusion systems.

I. INTRODUCTION

HE reaction-diffusion system has been an important model
in biology, image processing, material science, physics and
mathematics since 1942 [9]. There are many elegant numerical

methods for the reaction-diffusion problem in R", but this
problem on closed surfaces is much less understood. Recently,
more and more numerical methods for solving the
reaction-diffusion system on surfaces have been proposed. In
2010, Landsberg and Voigt [7] solved this problem by a
multigrid finite element method. Fuselier and Wright [6]
proposed a high-order kernel method in 2013 and Tuncer et al.
[10] developed the projected finite elements for this problem on
stationary closed surfaces. And Bergdorf et al. [1] solved the
reaction-diffusion systems on deforming surfaces by the
Lagrangian particle method in 2010. In 2015, we presented a
general convergent geometric method to estimate the
differential quantities on surfaces [2]. In this note, we shall use
our proposed method to solve numerically the reaction-
diffusion systems on stationary closed surfaces.

II. THE GRADIENT AND LAPLACE-BELTRAMI OPERATOR ON
SURFACES

In this section, we introduce the gradient, divergence, and
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Laplace-Beltrami operator over functions and vector fields on a
regular surface. Let ¥ be a regular surface in R’ and a
parametrization X:U — X at a point p, where U R’ is an
open subset. The gradient V ¢ of a smooth function ¢ on T
is given by
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where E, F and G are the coefficients of the 1% fundamental
form of ¥, ¢, :§¢(x(u,v)) and ¢, :§¢(x(u,v)). If X is a
u v

local vector field, X = Ax, + Bx, on x(U) c X . The (surface)
divergence Div,X of X is defined as a function
Div, X :x(U) > R given by the trace of the linear map

Y(p)—>V, X for pin X.A direct computation yields:
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The Laplace-Beltrami operator A ¢ acting on the function

¢ is defined by AZ¢=DiV2(VZ¢) and has the local

representation
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See [4], [5] for more details.

III. NUMERICAL ALGORITHMS FOR REACTION-DIFFUSION
EQUATIONS ON SURFACES

A.Model Equations

In this study, we restrict (U,V) to be a vector of two chemical

pieces which are resident on a closed stationary surface X . The
evolution equations for reaction-diffusion on the stationary
closed surfaces can be obtained from the law of mass
conservation, and are in the form [6]-[8] of
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v, —dA, vV =39(u,V),

where U,V:Z >R,

Let U= , L= , and F(u,v)= .
v d-v g(u,v)

Equation (4) can be rewritten as
U, -AL=)F, ®))

where A, is the vector Laplace-Beltrami operator.

B. Time Discretization

After an explicit time discretization, the model function (5)
becomes

Un+1 _ Un

n

T

= AL +/F", (6)

or
U™ =U"+2"(A, L +F") )

. . u"
where 7" =t""-t" is the step of time, U" :£ "j ,
v

u” f(u,v"
L= and F" = vy . If we use the implicit time
dv" g(u",v")

discretization, (5) becomes:
Un+l _rnAszl — Un +Tn7Fn' (8)

Both in (7) and (8), we only need to estimate the vector
Laplace-Beltrami operator.

C.Space Discretization

We shall use our high-order approach method in [2] that we
proposed in 2015 to improve the problem of space
discretization of (5).

To estimate the vector Laplace-Beltrami operator on ¥, we
propose a two-step algorithm:

Step 1.Obtain a high-order approximation of the underlying
surface ¥ around a vertex p on X .

Step 2.Find a high-order approximation (at least O(r*)) of the
function ¢ on ¥ around the vertex p.
To obtain the approximation of ¥ around p, we shall

construct a local parametrization by representing ¥ as a graph
surface around p locally. Let S =(V,F) be a triangular mesh
of a closed surface ¥ with mesh size r >0. Given a vertex
peV,let p;, j=0,---,n be the neighboring vertices of p
with p, = p,.Let N,(p) be the weighted normal vector of S

given in [3] by the centroid weights. The approximating tangent
plane  TS(p) of S at p is given by

TS(p) = {W eR’|wl NA(p)} . We choose an orthonormal
basis {e,e,} for TS(p) .
TS(p) has a unique coordinate (X,y) with w=Xe + ye, .

Obviously, every vector w in

Therefore, each g on ¥ around p can be assigned a new

coordinate (X, Y,Z) on the base {e,,e,,N,(p)} as follows,

x(@)e, +Y(@)e, = (- p)=((@-p) N ()N, (P) (9

and

2(q) = h(x(p), y(p)) = (@ —p)-N,.(p) . (10)

The neighboring vertices p; of p is now given as

Xj =X(pj)7 yj :y(pj) and Zj =h(styj)-

Hence, the new coordinate of p is(0,0,0). Next, we want to

find a suitable polynomial fitting for the height function h of
¥ around p. By the 3" order Taylor formula, we have

h(x, y)—h(0,0) = xh, (0,0) + yh, (0,0)

1/, R .o an
+ 5(x h,, (0,0)+2xyh_ (0,0) + y*h, (0,0))+O(r").
Lete;, j=1,---,n be a set of real numbers, one has
> a,(h(x,.y,)~h(x,.y))=h, 00> a,x,
j=1 j=1
+h,(0,0)) a,y, +h,(0,0)> a X’ (12)
j=1 j=1
n 1 n R
+ hxy(0,0);anj Y, +§hw(0,0);aj y:+0(r).
X] Xﬂ
Y, Y, a o a a o
Set A=| X X12 and o= :
XY, X.Y, a ol o a a
y, v
If
Aa=1, , (13)
we have
h,(0,0) = Z a!(h(x,,y,)-h(0,0))+0(r"),
h, (0,0) = Y al(h(x,,y,)=h(0,0))+0(r"),
Z (14)

h, (0,0) = Zal(h(xl,yj)—h(() 0))+0(r)

h, (0,0) = z

)
a!(h(x,,y,)=h(0,0))+0(r’),
hw(o,O):Z": )

@ (h(x,,y,)-h(0,0))+0(r").
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When the number of neighboring vertices of p is at least 6,

(13) is underdetermined and hence, it always has a solution.
Similarly, the partial differentials of a function ¢ on X

around p can also be approximated by

$,(0.0)= Za (#(x;.y,) - 9(0.0))+0(r),

$,(0.0)= Za (#(x,.y,) - 9(0.0))+0(r),
¢xx(0,0>:;a;(¢(x,,yj>—¢<0,0))+0<r3), (15)
¢xy<o,0)=ia (60x,,y,)~6(0.0))+ O,
$,(0.0)= Za (#(x,.y,) - $(0.0))+O(r).

Using (3), we obtain a convergent approximation of the
Laplace-Beltrami operator of ¢ on X . In this way, the

Laplace-Beltrami operator on X is corresponding to a square
matrix, denoted as M . Equation (7) becomes

U™ =U"+7" (ML +F") (16)

and (8) can also be rewritten as

17
(I—z"dMV™ =v" +z"g(u",v"). an

{ I=z"Mu™ =u" +z"f (u",v")
IV. SIMULATIONS

We solve the Schnakenberg model [5] by (16). The functions
corresponding reaction kinetics are

f(u,v)=a-u+uv’
) (18)
g(u,v)=b-u’v.
A. Convergence Test
First, we solve the system
u, —Au = (u,v)+F(u,v,t) (19)
v, —dA, vV =g(u,v)+G(u,v,t),

on a sphere. We compute the functions F and G in (19) such
that u(p) = (1+exp(10t))x and v(p) = (1+exp(10t))y are the
exact solution of (11), where p =(X,y,z) on the sphere. We

estimate the L"(L") error by

L“L"(u) = tmax(max|u (p)—u( p)|)

[0,1]

and

L L (v) = max(maX‘V (p)—Vv( p)‘)

t"e[0,1 peVv
where u(p),v(p) are the exact solutions of (19) at p. Table I
shows the L"(L*) errors of u and v attime t=1.

TABLE I
L” (L") ERROROF U AND V

Mesh size The error L"L"(u) The error L”L"(v)
0.6180 3.1e-2 8.2e-2
0.3249 2.5¢-3 6.5¢-3
0.1646 2.2¢e-4 5.8¢e-4
0.0813 3.2e-5 4.7e-5

B. Spherical Surfaces

Leta=0.1,b=09, d =10, y=5000, andz" = 0.1r*. We
solve (4) and (18) by our proposed method on three different
spherical surfaces.

Figs. 1-4 show the values of u (left figure) and v (right
figure) at time about 10, 107, 0.05, and 0.10on the sphere
with radius 0.25. Figs. 5-8 show the numerical solution on a
bean surface with parametrization

X(u,v):(r sinusinV rsinucosv rcosu) (20)

with r=1+asinusinv+bsinucosvsin’v and a=0.61

b=0.4. Fig. 9 is the numerical solution on the bean surface at
time 0.1 in another viewpoint.

Figs. 10-13 present the numerical solutions on the peanut
surface with parametrization

X(u,v):(rsinUSinv rsinucosv rcosu) (21

with = \/cos2u ++/1-sin’2u

V.CONCLUSION

The high-order approach presents an efficient method for
estimating the differential quantities and solving the system of
reaction-diffusion equations on surfaces. In our simulations, we
only use 3" order Taylor formula. However, we can also obtain
higher accurate approaches by this method. Furthermore, this
method can also be used to improve many kinds of partial
differential equations on surfaces.
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Yalue of u: time is 0.000001; uin [0.004249 0.994936) “alus of v: time is 0.000001; v in [0.033339 0.953531]

N 06
0.5
' n3 O
0.2
0.2
0.1

Fig. 1 Simulation of (4) and (21) on sphere at time 10~

\Palue of u: time is 0.001001; u in [0.440373 5.091425] Valus of v time is D.ODIO01; vin [D.112112 3.534434)

0z i

Fig. 2 Simulation of (4) and (21) on sphere at time 10~

Walue of u: time is 0.049993; uin [0.513831 1.694910] “alus of v time is 0.049933, vin [0.B16989 1.112289]

0.2

Fig. 3 Simulation of (4) and (21) on sphere at time 0.05
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“alue of u: time is 0100001, uin [0.510419 1 695454) Yalus of v time is 0100001, vin [0.610464 1.110154]

02 0z

Fig. 4 Simulation of (4) and (21) on sphere at time 0.1

“alue of u time is 0.000007;  uin [0.001407 0.992402] “alus of v time is 0.000001; wvin [0.005%07 0.5995743]

Fig. 5 Simulation of (4) and (21) on bean at time 10~

Valug of v time is D.001000: u in [0.225365 5 453455 Walus of v time is D.001000; v in [0.100616 3923373)

3.5

25

0.5

Fig. 6 Simulation of (4) and (21) on bean at time 10~

547



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:10, No:11, 2016

Walue of u; time is 0.049983;  uin [0.469350 1.744472| Walus of v time is 0.043399, v in [0.635837 1.242403]

a8 -

Fig. 7 Simulation of (4) and (21) on bean at time 0.05

“alue of u: time 15 0.100001;  win [0467007 1.746181| Walus of v time is 0.100001; vin [D635635 1.247917]

Fig. 8 Simulation of (4) and (21) on bean at time 0.1

Yalue of u: time is 0.100001; uin [0.467007 1.746151] “alus of v: time is 0.100001; v in [0.635636 1.247917]

0.9

0.8

0.7

05 0

Fig. 9 Simulation of (4) and (21) on bean at time 0.1
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“alue of u; time is 0.000001; uin [0.001205 0.229218]
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“alug of v tirme i 0.000001; v in [0.008284 0.996511]

Fig. 10 Simulation of (4) and (21) on peanut at time 10~°

Yalue of u: time is 0.001000; v in [0.245963 5.672440]

5.5
5
4.5
4
3.5
3

YWalus of v time is 0.001000; v in [0.100292 3.839933)

Fig. 11 Simulation of (4) and (21) on peanut at time 10~

“alue of u: time is 0.049998, uin [0.478294 1.695107]

Fig.

Yalus of v time is 0.049998; vin [0.635957 1.276030]

05 05

12 Simulation of (4) and (21) on peanut at time 0.05
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Walue of u: time is 0.100001; v in [0.478437 1.722204]

“alus of v time is 0100001,

045

vin [06Z7619 1.275532)

045

Fig. 13 Simulation of (4) and (21) on peanut at time 0.1
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