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 
Abstract—This work denotes an insight into dynamic synthesis 

of multibody systems. A set of mechanism parameters design 
variable are synthetized based on a desired mechanism response, such 
as, velocity, acceleration and bodies deformations. Moreover, 
knowing the work space, for a robot, and mechanism response allow 
defining optimal parameters mechanism handling with the desired 
target response. To this end, evolutionary genetic algorithm has been 
deployed. A demonstrative example for imperfect mechanism has 
been treated, mainly, a slider crank mechanism with a flexible 
connecting rod. The transversal deflection of the connecting rod has 
been chosen as response to identify the mechanism design 
parameters.  

 
Keywords—Dynamic response, flexible bodies, optimization, 

evolutionary genetic algorithm. 

I. INTRODUCTION 

HE dynamic behavior of multi-body systems has been 
widely treated with a tremendous numbers of work [1]-

[5]. It has been shown that imperfections, such as, joint 
clearance and bodies’ flexibility, considerably affect the 
mechanism response. These imperfections are unavoidable 
and mainly due to manufacturing process. Despite these 
unavoidable imperfections, in some application fields, the 
mechanism accuracy is highly required. The imperfection 
effects should be avoided along the mechanism response. 
Thus, imperfections’ impacts on dynamic response are 
alleviated. Consequently, the mechanism exhibits more steady 
behavior. 

For the last few decades, dimensional synthesis of 
multibody systems has been object of many works. Lariibi [6] 
has treated a trajectory synthesis of four bar mechanism. An 
evolutionary genetic algorithm has been used for this aim. The 
problem was modeled as an optimization problem. Hence, an 
objective function is necessary for the resolution. The 
evolutionary genetic algorithm, for a desired trajectory, 
proposes optimal geometrical design variable for the four bar 
mechanism in order to obtain the desired path. An enhanced 
algorithm coupling fuzzy logic to genetic algorithm has been 
performed. 

Erkaya [7] proposed kinematic optimization for a planar 
slider crank mechanism with a clearance. Using artificial 
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neural network, the transmission angle of a slider crank 
mechanism has been optimized. 

Erkaya [8] has treated the optimization of a four bar 
mechanism with clearance. Genetic algorithm has been used in 
order to minimize clearance effects on dynamic response 
through optimal link parameters. Genetic algorithm and 
artificial neural network are combined together, in order to 
guarantee more efficient synthesis algorithm [9]. The 
algorithm conceived for the optimization of a mechanism with 
joint clearance.  

Erkaya [10] reduced effects of the clearance in a slider 
crank mechanism with clearance. The presented algorithm 
reduces the clearance effects on the mechanism response. 
Thus, impacts involved in the revolute joint contribute to 
create volatilities and sharps increase in the crank torque. 
Using genetic algorithm, optimal design variable minimizing 
the clearance effects are determined. Consequently, 
mechanism response is more accurate and clearance effects 
are significantly alleviated. 

Varedi presented a dynamic synthesis for a slider crank 
mechanism using particle swarm optimization [11], [12]. The 
proposed design parameters relieve the clearance effects. 

In this work, a genetic algorithm for dynamic synthesis of a 
flexible slider crank mechanism based on a desired dynamic 
response is presented. Moreover, efficiency and robustness of 
the proposed algorithm have been investigated. 

II. EQUATION OF MOTION 

Dynamic resolution of the equations of motion for 
multibody systems is one of the stiffest problems. This is 
mainly because of the highly nonlinear equations system 
describing its dynamic response. In order to solve the 
governing differential equations of motion, several resolution 
schemes, algorithms and methods were developed. 

Based on parameters depicted in Fig. 1, analytical study has 
been established for the flexible slider crank mechanism with 
perfect joints. The Lagrange’s equations applied for the 
mechanism yields: 
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For the slider crank mechanism three parameters are 

required in order to establish the mechanism equations of 
motion. Thus, the generalized coordinate vector yields: 
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Fig. 1 Flexible slider crank 
 
wherein, T represents the total kinetic energy of the system. 

represent respectively the total applied forces and 
the total constrained forces. 

The constraint equation for the slider crank mechanism, 
which is a system of one degree of freedom, with holonomic 
constraints based on general coordinates, is: 
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In the presented work, mechanism parameters, mainly, the 

crank length, as well as, the connecting rod length, for a 
desired response, are identified using evolutionary genetic 
algorithm optimization. The connecting rod transversal 
deflection (Fig. 2) is the dynamic response used to identify the 
mechanism parameters. 

 

 

Fig. 2 Transversal deflection of the connecting rod center 

III. EVOLUTIONARY GENETIC ALGORITHM 

Evolutionary Genetic Algorithm is one of the most 
prominent optimization tools used for the last few decades. It 
is mainly inspired from natural phenomena. In fact, it is based 
on nature law, which assigns best probability or chance for the 
strongest individual to survive. However, low quality or weak 

individuals have a high death probability. Evolutionary 
Genetic Algorithm process is mainly divided in the following 
steps. 

A. Initial Population Choice 

In this step, an initial population is chosen with a defined 
numbers of chromosomes. Every chromosome contains its 
own allele. For the presented optimization problem, the 
number of alleles depends on the mechanism parameters 
required. In this work, we are limited to two design variables 
optimization of the slider crank mechanism, mainly, the crank 
length and the connecting rod length. Mass and inertia will be 
optimized consequently due to their relation to the length. 

B. Evaluation  

In order to classify the chromosomes, the evaluation of each 
one, in the initial population, is necessary. This evaluation will 
foster the selection of the best individual for next steps of the 
evolutionary genetic algorithm process. 

The evaluation of each chromosome performance is made 
by means of the following objective function: 
 

min ( )F error                                                                    (6) 
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with 1 1,lb ub  are respectively lower and upper bound of the 

search interval for the crank length, 2 2,lb ub  are respectively 

lower and upper bound of the search interval for the 

connecting rod length, iDVX  is the design variable response 

at instant i, arg :it etX the target response at instant i, :n  total 

number of point. 
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C. Selection  

Throughout this step, a selection probability will be 
assigned to each chromosome. Then, the selection operation 
will be similar to a casino weal operation, wherein, best 
individual evaluation has higher probability to be retained. 
Nevertheless, the chromosomes selection with low 
performance remains always possible. 

D. Crossover 

In the crossover process, two selected chromosomes 
exchange a set of alleles to give birth to two children as 
referred in Fig. 3. These children will be later incorporated in 
a mutation process. Usually, crossover is favored to occur, this 
leads to have a new population with better performance. The 
crossover probability is 0.9 along algorithm execution. 
 

 

Fig. 3 Crossover operation 

E. Mutation 

Throughout the mutation operation, a randomly chosen 
allele of the chromosome is substituted with another allele as 
witnessed in Fig. 4. This allows to considerably improve the 
chromosome performance in some cases, and to investigate a 
broader search space for the parameters. 

In this work, mutation probability is 0.3 along algorithm 
execution. 
 

 

Fig. 4 Mutation operation 

IV. RESULTS AND DISCUSSION  

Initially, parameters chromosomes are constructed with two 
alleles, mainly, X=[l1 l2] which corresponds respectively to the 
crank and the connecting rod length. A set of chromosomes 
are chosen randomly. The evaluation of all these 
chromosomes is established. For this work the mechanism 
objective parameters are illustrated in Table I. 

The search interval for each parameter is fixed. A short 
search interval is in accordance with a well informed designer 
about workspace and manufacturing tolerance. High interval 
for design variable is significant for a completely ignorance of 
both workspace and manufacturing tolerance. 

A set of 10 chromosomes (C1 to C10) are chosen from 
Table I, as well as, iteration numbers is fixed to 50 iterations. 
In about 10 generations, algorithm start convergence and 

objective function is minimized (Fig. 5). In about 50 
iterations, convergence is established for the algorithm. The 
couple of design variable results are 48.5 mm and 351.9 mm 
respectively for crank and connecting rod length. The required 
calculation time is 179.6 sec using an Intel processor I7 3.4 
Ghz for an estimated error of 1.40904 10-3. The proposed 
length response is illustrated in Fig. 6. 

 
TABLE I 

REDUCED INTERVAL 

Chromosomes l1(mm) l2(mm) 

Interval [45 55] [345 355] 

References 50 350 

C1 45.8 354.4 

C2 54.1 345.6 

C3 53.6 352.9 

C4 45.8 354.9 

C5 47.4 348.1 

C6 46.2 354.6 

C7 52.8 345.3 

C8 46.4 347.2 

C9 52.2 346.1 

C10 45.5 352.8 

C11 54.6 348.5 

C12 50.5 347 

C13 46.4 347.5 

C14 46.5 351.2 

C15 47.6 349.7 

C16 53.4 348.5 

C17 47.5 353.3 

C18 53.1 350.9 

C19 47.4 350.5 

C20 54.3 354.2 

A. Effects of Generations Numbers 

This part is focused on generations’ number effects on the 
proposed solution for the design variable by means of 
evolutionary genetic algorithm. For a 250 generations, the 
algorithm provides a better solution giving more accurate 
response. However, better solution needs a longer CPU time 
calculation. After 250 iterations, the algorithm proposes a 
couple of 49.7 mm and 350.7 mm respectively for crank and 
connecting rod length. The calculation time is estimated to 
788 sec. This infers that increasing the generations’ number 
instigates the optimization algorithm to explore more 
interesting search space. 

Analyzing the objective function evolution depicted in Figs. 
5 and 6 to Figs. 7 and 8, confirms the efficiency of the 
generations number increase in spite of longer CPU 
calculation time.  

B. Effects of Chromosomes Numbers 

This section is devoted to initial population choice, thus 
chromosomes numbers of the initial population. 

All the chromosomes C1 to C20 are involved in the initial 
population. Fig. 9 depicts the effects of population size on 
design variable dimension proposed. For 20 chromosomes, the 
algorithm proposes a couple of (50.5, 347) respectively for an 
error of 1.02 10-3 reached in just 20 iterations. However, it 
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needs 30 iterations to converge for the same crossover and 
mutation probabilities. Obviously, for 20 chromosomes CPU 
time is about 208 sec, calculation lasts for longer time but for 
a better design variable response accuracy. 

In order to get better results, generation number is extended 
to 250 generations. As witnessed in Fig. 10, for higher number 
of iterations the algorithm reaches better the solutions with 
lower error. For a 250 iterations, the design variable couple is 
(50.1, 350.3) respectively for l1 and l2 with an error estimated 
about 2.5 10-4 and a CPU time of 208 sec. A higher iteration 
number offers a better solution, whereas, it needs much more 
CPU time. 

 

 

Fig. 5 Error evolution with 10 chromosomes 
 

 

Fig. 6 Response after 50 iteration 
 

 

Fig. 7 Error evolution with 10 chromosomes 
 

 

Fig. 8 Response after 250 iterations 
 

 

Fig. 9 Error evolution with 20 chromosomes 
 

 

Fig. 10 Error evolution with 20 chromosomes 

V. INTERVAL SEARCH EFFECTS 

A larger interval of search is adopted: [30 80] for the crank 
length and [300 400] for the connecting rod length. 

A. Iteration Numbers Effects 

In this section, the efficiency of the proposed algorithm is 
investigated. Thus, a larger interval of search for design 
variables is proposed in order to test the algorithm efficiency 
to converge for the target design variable. The new interval of 
search is [30 80] and [300 400] for, respectively, the crank and 
the connecting rod length. In the first step only the 10th first 
chromosomes are considered. 
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As depicted in Fig. 11, a large interval of search make 
convergence for the desired design variable a heavy task for 
the algorithm. For a 50 iterations, the proposed values are 45 
and 367.7 mm respectively for l1 and l2 with a CPU time of 
206 sec and an estimated error of 4.7 10-3. For 10 
chromosomes and 50 iterations with a larger search interval of 
variable, the algorithm is not able to reach the desired 
parameters. This represents a real issue for some application 
wherein the design is not well known. Moreover, with 250 
iterations, as it is shown in Fig. 12, the proposed solution by 
the evolutionary genetic algorithm remain inaccurate with a 
proposed couple of 45.2 and 365.9 mm, an error of 3.6 10-4 
and a CPU time of 807 sec.  
 

 

Fig. 11 Error evolution with 10 chromosomes from enlarged interval 
 

 

Fig. 12 Error evolution with 10 chromosomes from enlarged interval 
 

The effects of iterations numbers for the enlarged interval, 
with an initial population composed of 10 chromosomes are 
not pronounced. In sharp contrast of the results presented in 
Figs. 5 and 7 to Figs. 11 and 12, the objective function 
evolution error is not significantly improved. Moreover, 
increasing generations number is not really efficient, thus, 
improvement of accuracy for the proposed couple of design 
variable for 250 relative to 50 iterations is not really 
significant, as well as, CPU time is about 3 times more. 

B. Effects of Chromosomes Numbers 

In this section, a comparative study of the initial population 
size effects for the previous interval of search [20 80] [300 
400] is presented.  

 

Fig. 13 Error evolution with 20 chromosomes from enlarged interval 
 

The initial population containing 20 chromosomes (C1 to 
C20) is illustrated in Table II. 

 
TABLE II 

ENLARGED INTERVAL 

Chromosomes l1(mm) l2(mm) 

Interval [20 80] [300 400] 

References 50 350 

C1 67.7 349.4 

C2 75.5 384.9 

C3 48 367.8 

C4 56.8 344.6 

C5 44.6 315.6 

C6 78.2 349.7 

C7 59.2 369.8 

C8 66.3 320.5 

C9 44.9 367.7 

C10 28.9 312.5 

C11 59.3 315.8 

C12 22.1 397.1 

C13 70.9 395.7 

C14 76 348.5 

C15 60.7 380 

C16 65.5 314.2 

C17 64.6 342.2 

C18 43.5 391.6 

C19 59.3 379.2 

C20 30.3 395.9 

 
As illustrated in Fig. 13, for 50 iterations, the presented 

solution remains always inaccurate and mechanism response is 
far away to the desired response. The same solution is 
proposed for both populations with 10 or 20 chromosomes for 
almost the same CPU time. Consequently, for low number of 
iterations (50 iterations) effects of population size are not 
significant. 
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Fig. 14 Error evolution with 20 chromosomes from enlarged interval 
 

Increasing the generations’ number, as shown in Fig. 14, 
emphasizes its effects as proposed dimension of the genetic 
algorithm. A proposed couple of 50.2, 349.4 respectively for 
l1 and l2, crank and connecting rod length with an error 
estimated at 2e-4. The proposed couple response handle well 
with acceptable accuracy required. The mechanism response 
with the proposed crank and connecting rod length after 250 
iterations for different initial population size is presented in 
Fig. 15. It can be seen that the proposed solution for a 20 
chromosomes initial population correlate well with the 
required system reliability. However, mechanism response for 
the proposed length with only 10 chromosomes is far away to 
the desired mechanism response.  
 

 

Fig. 15 Mechanism response for different initial population 

VI. CONCLUSION 

In this paper, a dynamic synthesis of a flexible slider crank 
mechanism with evolutionary genetic algorithm has been 
presented. A comparative study of initial population size, 
number of generations as well as the search interval of design 
variable has been carried out. 

It has been shown that for a small interval of search, the 
algorithm convergence is well ensured even for low iterations 
number. Subconsciously, increasing generation’s numbers 
guarantees low error for the design variable proposed by 
genetic algorithm. 

If population initial values are chosen from a large interval, 
the proposed couple response is far away from target response, 
this is mainly for low iteration number (about 50 iterations). 
However, for high number of iterations and initial population 
size, the convergence of the algorithm is ensured and the 
proposed design variable responses almost overlap the desired 
response. 

ACKNOWLEDGMENT 

This work was partially supported by the “Ministère de la 
Recherche Scientifique” (SERST), LAB-MA 05. 

REFERENCES 
[1] Flores, P., Leine, R., Glocker, C.: Modeling and analysis of planar rigid 

multibody systems with translational clearance joints based on the non-
smooth dynamics approach. Multibody. Syst. Dyn. 23, 165-190 (2010). 

[2] Flores, P., Ambrósio, J.: Revolute joints with clearance in multibody 
systems. Comput. Struct. 82(17), 1359–1369 (2004). 

[3] Flores, P., Ambrósio, J., Claro, J.P.: Dynamic analysis for planar 
multibody mechanical systems with lubricated joints. Multibody Syst. 
Dyn. 12(1), 47–74 (2004). 

[4] Muvengei, O., Kihiu, J., Ikua, B.: Numerical study of parametric effects 
on the dynamic response of planar multi-body systems with differently 
located frictionless revolute clearance joints, Mech. Mach. Theory. 53, 
30–49 (2012). 

[5] Yaqubi, S., Dardel, M., Daniali, H.M.: Nonlinear dynamics and control 
of crank–slider mechanism with link flexibility and joint clearance. P. I. 
Mech. Eng. C-J Mec. (2015). doi: 10.1177/0954406215593773. 

[6] M.A Laribi, A Mlika, L Romdhane, S Zeghloul, Combined Genetic 
Algorithm-Fuzzy Logic Method (GA-FL) in Mechanisms Synthesis, 
Mechanism and Machine Theory 39 (2004) 717–735. 

[7] Selçuk Erkaya, Ibrahim Uzmay Optimization of transmission angle for 
slider-crank mechanism with joint clearances Struct Multidisc Optim 
(2009) 37:493–508. 

[8] Selcuk Erkaya, Ibrahim Uzmay Determining link parameters using 
genetic algorithmin mechanisms with joint clearance Mechanism and 
Machine Theory 44 (2009) 222–234. 

[9] Erkaya. S, Uzmay, İ.: A neural-genetic (NN-GA) approach for 
optimising mechanisms having joints with clearance. Multibody Syst. 
Dyn. 20, 69-83. 

[10] Erkaya. S, Investigation of balancing problem for a planar mechanism 
using genetic algorithm Journal of Mechanical Science and Technology 
27 (7) (2013) 2153-2160. 

[11] S. M Veradi, H. M. Daniali Dynamic synthesis of a planar slider–crank 
mechanism with clearances Nonlinear Dyn (2015) 79:1587–1600. 

[12] S. M. Veradi H.M. Daniali, M. Dardel, A. Fathi Optimal dynamic 
design of a planar slider-crank mechanism with a joint clearance, 
Mechanism and Machine Theory 86 (2015) 191–200. 


