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Estimating Bridge Deterioration for Small Data Sets
Using Regression and Markov Models

Yina F. Mufioz, Alexander Paz, Hanns De La Fuente-Mella, Joaquin V. Farifia, Guilherme M. Sales

Abstract—The primary approach for estimating bridge
deterioration uses Markov-chain models and regression analysis.
Traditional Markov models have problems in estimating the required
transition probabilities when a small sample size is used. Often,
reliable bridge data have not been taken over large periods, thus large
data sets may not be available. This study presents an important
change to the traditional approach by using the Small Data Method to
estimate transition probabilities. The results illustrate that the Small
Data Method and traditional approach both provide similar estimates;
however, the former method provides results that are more
conservative. That is, Small Data Method provided slightly lower
than expected bridge condition ratings compared with the traditional
approach. Considering that bridges are critical infrastructures, the
Small Data Method, which uses more information and provides more
conservative estimates, may be more appropriate when the available
sample size is small. In addition, regression analysis was used to
calculate bridge deterioration. Condition ratings were determined for
bridge groups, and the best regression model was selected for each
group. The results obtained were very similar to those obtained when
using Markov chains; however, it is desirable to use more data for
better results.

Keywords—Concrete bridges, deterioration, Markov chains,
probability matrix.

[. INTRODUCTION

RIDGE Management Systems (BMS) are used by

Departments of Transportation (DOTs) to monitor and
make decisions regarding maintenance, preservation, and
repair, subject to budget constraints [1]. In order to collect
consistent data for BMS, DOTs use the Manual for Bridge
Element Inspection [2], developed by the American
Association of State Highway and Transportation Officials
(AASHTO). This manual provides guidelines for data
collection as well as how to qualify defects in order to
determine structural conditions.

The Nevada Department of Transportation (NDOT) uses
this manual to collect and provide data for the National Bridge
Inventory (NBI) [3], including overall conditions ratings (CR)
that represent the overall conditions for the deck,
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superstructure, substructure, and culvert of a bridge.
Developing plans for maintenance, rehabilitation, and
replacement requires estimating the bridge conditions. A
number of methodologies for forecasting bridge deterioration
involves dynamic response sensors [4], Markov chain models
[5], and regression-based methods. The dynamic response
sensors methodology requires instrumentation which is
expensive for a wide coverage [4]. Deterministic models use
regression-based methods to handle the randomness present
during structural deterioration [6], [7]. Stochastic processes
and deterministic models have contributed to modelling
infrastructure deterioration. The most common stochastic
technique used for a deterioration model has been the Markov
chain model, and regression analysis for deterministic models.
For example, Lijun and Ning [5] used Markov chain models to
determine the deterioration of urban bridges at the network
and individual levels [5]. Their study included three
deterioration models, Natural Decay (ND), Conventional
Recoverable Decay (CRD), and Enhanced Recoverable Decay
(ERD).

Markov models primarily are used to estimate the
deterioration of bridge components. Using hazard models,
Kobayashi et al. [8] developed Markov models to estimate the
transition probabilities after characterizing the deterioration
process of each road section. This approach considers various
possible states; at each time step, each state could move to
another state according to the transition probabilities [8].
Tolliver and Lu [9] developed a model that predicted bridge
deterioration rates over time without explicitly considering the
history of bridge deterioration in previous periods; in addition,
it predicted the effects of individual factors.

Other researchers have evaluated prediction models when
using two bridge-management software developed by
AASHTO, Pontis [10] and BRIDGIT [11]. These models use
discrete condition states and constant inspection periods for all
bridge components. In addition, these models assume that the
condition of a bridge component depends only on its present
condition [12]. Ranjith et al. [13] proposed Markov-chain
models and a discrete condition-rating regime to predict
bridge deterioration for both concrete and timber bridges.
Ahmad [1] developed a Markov model to estimate
deterioration rates for subsets or classes of bridges,
categorized by material, design, operating rating, and average
daily traffic. Tolliver and Lu [9] used nonlinear optimization
and Markov models developed by Ranjith et al. [13] to study
the deterioration of timber bridges. The percentage
distribution of condition ratings on a network level in any
year, as well as the deterioration trend of single bridges within
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any state, was evaluated by Morcous [12]. Islam et al. [4] used
Markov-chain models to predict the future conditions of
bridge components, systems, and networks [4]. In general,
Markov-chain models are the preferred tool to estimate bridge
deterioration with a 95% level of confidence, assuming state
independence [12].

Most of the existing literature developed bridge
deterioration models by using more than 10 years of data. In
many cases, however, state DOTs have not collected reliable
data for as many years as required by the existing literature. In
this study, only four years of data (2011-2014) were used to
develop the Markov-chain models and regression analysis for
bridge deterioration. In order to obtain reliable model
estimates when using a relative small sample size, all
transition periods were considered simultaneously rather than
one at a time, as is done typically. A linear approximation was
used to estimate the transition probabilities required by the
Markov model. After that, the condition ratings were
estimated for each bridge group by means of regression
analysis.

Pasg Pss

II. MARKOV-CHAIN MODEL

A Markov process involves states and corresponding
matrices of transition probabilities. In the context of modelling
bridge deterioration, the states represent bridge condition
ratings. Hence, the elements in the transition matrix represent
the probability of bridges changing their condition rating at a
determined and fixed period of time [6]. Markov-chain models
are based on the concept of probabilistic cumulative damage,
which estimates changes on component conditions over
multiple transition periods [14].

A Markov chain is a special case of the Markov process. Its
development can be considered as a series of transitions
between certain condition states. When the probability of a
future state in the process depends only on the present state,
but not the past states, the Markov chain becomes a stochastic
process, referred to as a first-order Markov process [12].

Markov chains are used to describe the evolution of a
system represented by states {S = S;, ... Sp}. The system
undergoes transitions from one state to another during a
defined transition period. If the system is in state S;, then it
will move into a future state S with transition probability Ps;;

[15], as illustrated conceptually in Fig. 1. Markov processes
are based on the hypothesis that future and past states are
independent from each other; in other words, future states of
the system only depend on the current state.
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Fig. 1 Conceptual illustration of a Markov-chain process

When the probability of moving across states remains
constant over transitions, independent of time, the process is
stationary. That is, the system is completely described by one-
step transition probabilities, which are grouped into a
transition probability matrix (TPM), as depicted by (1). For
purposes of simplicity, state S; is denoted as State i.

TR P N

p2] p22 p2m
o o

_pml pmz . . . pnm_

where, pjj represents the probability of moving from state i to
state j in a single transition period for all i, j =1, 2 ... m; and
m denoting the total number of states that the system can

experience. The ith row represents the probability distribution
of State i. The following relationship holds:

> op =1 )
j=1

If vector Cy describes the initial condition of the system, the
condition vector after t transition periods, C(t), is given by
[14]:

C(t)=C,.P' 3)

where each element ij of matrix P' provides the probability of
moving from State i to State j after t transition periods.
Generally, the TPM is estimated by statistical inference, using
available data [5].
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III.ANALYSIS REGRESSIONS

Deterministic models are dependent on a mathematical or
statistical formula for the relationship between the factors
affecting bridge deterioration and the measure of a bridge’s
condition. The models can be developed as using straight-line
extrapolation as well as by regression and curve-fitting
methods [16].

Regression models are used to establish an empirical
relationship between two or more variables: one dependent
variable and one or more independent variables. Interpreting
these models is complex because the models are nonlinear. In
this study, deterioration functions were developed based on
regression analysis of time series with NDOT data.

Regression analysis generates a coefficient for the imitation
variable, using:

Y=a+bX+cZ, 4)

where Y = the rating for the deck condition; X = the age of the
bridge, and Z = a dummy variable for the structure type; a, b,
and C are parameters estimated by using regression analysis.
The statistical significance of the coefficient estimated by
regression analysis for the dummy variable represents a
measure of the extent to which the potential determinant is
influenced the deterioration of the bridge superstructure [17].

IV. METHODOLOGY

A. Markov Chains for Bridge Structures

In the context of bridge deterioration and Markov-chain
models, for this study, the states for bridge structures were the
condition ratings as set by FHWA guidelines [1]. These CR
states range from 3 (serious condition) to 9 (excellent
condition); the condition of a bridge is unlikely to go below 3
[8]. A transition period of one year was used because the
corresponding data was collected on an annual basis. In this
study, one assumption was that CRs do not change more than
one level during a single transition period. This is a common
assumption for this type of analysis [6], [12], and is consistent
with actual data used in this study; that is, natural decay or
bridge maintenance do not affect CRs significantly in one
year.

In this study, only the natural decay process was
considered, and bridges were excluded that experienced more
than a medium amount of maintenance. Hence, the TPMs only
contained probabilities about a structure with CRs that
persisted or worsened during a period of one year. Therefore,
each row of the TPM only had two values, one representing
the probability of the structure staying in its current condition
and the other one representing the probability of the structure
moving to the next worse condition [13]. The TPMs were
expressed in the following form:
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where pjj for all i € {9,...,3} represents the probability that a
structure currently in state i remained in the same state over a
single transition period, and p;j + 1 = 1- p;j corresponds to the
probability of a structure in state { moving to state { + 1 in one
period [18]. The remaining elements of the TPMs are zero,
because it is not possible to improve CRs or to degrade CRs
by more than level.

1.Estimation of the TPM

Two methods were proposed and tested to estimate the
elements of the transaction probability matrix. Given that,
often times, the sample size that is available to calculate the
transition probabilities is small, this study used the Small Data
Method to obtain more reliable estimates.

Even though all transition periods were considered at once,
a small sample size can result in transition probabilities equal
to zero. In practice, however, this is not realistic. When a
transaction probability is estimated to be zero, a linear
approximation is used to estimate the corresponding transition
probability [15]:

Pii Pii -
P P g g "
Picin Piia { } (©)

State i ranges from 4 to 8 because the lowest CR is 3; the
analysis in this paper only considered natural decay.

2.Traditional Method

The traditional method corresponds to the traditional
approach to estimate the transition matrix of a Markov
process. For each one of the two transition periods, the
following ratios were calculated using:

) n.
(period) __
P = Y

1
where nj; is the number of bridges that started and stayed in
state i for that particular transaction period and nj is the total
number of bridges in state i at the beginning of the same
transaction period. The transaction probabilities, pjj, are the
average of the ratios included in interval:

|: pii(period) _ Sd( pii( period))’ pii( period) + Sd ( pii(period)):| ,
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where p, P and sd(p, ™) are, respectively, the

average and standard deviation of ratios pi(ip eriod) " Thig

interval tries to improve the estimate of the transition
probabilities by removing ratios that are at least one standard
deviation from the mean. The remaining ratios, p,;,;, are

equal to 1—p, .

3.Small Data Method

When the sample size is small, removing ratios pi(ipemd), as
in the traditional method, is very problematic because there is
insufficient information to obtain an estimate. In contrast, the
Small Data Method considers all the transition periods at once,

that is, it directly obtains the TPM ratios, pjj, using:
P = ®)

where Nj is the number of bridges in state i before and after
any transaction period and N; is the total number of bridges
that started with state i at any transition period. Equation (8)
uses large numbers, which is expected to reduce the negative
effect of potential outliers. This proposed approach is expected
to provide more reliable estimates as it uses more information
compared to the traditional method. The remaining ratios pj i+
are equal to 1 - pj.

B.Regression Analysis — Functional Forms

Regression analysis is used to estimate parameters in order
to describe the relationship between one variable dependent
and one or more variable independents. For example, the
parameters can be calculated with:

Y =ab* €))

Y =In(a)X +b (10)
Y =b(e)*™ (11)

Y =aX“+bX +c (12)

where Y is the dependent variable; X is the independent
variable; and a, b, ¢, and d are the parameters that describe the
functional relationship. Used to calculate the deterioration
prediction, (9) represents power regression, (10) is a
logarithmic regression, (11) is an exponential regression, and
(12) represents a polynomial regression.

C.Condition Rating Forecast

The TPM enables calculating forecast of CRs for each
bridge group using:

E(CR)=C(t).CR 13

where CR is the vector of conditions ratings. Equation (13)
gives the expected CR, E(CR), after t periods (in years) [19].
Table I [1] provides the meaning and corresponding
description for each of the CRs [1].

According to FHWA, maintenance is recommended when a
structure reaches a CR of 5. If a score of 4 or less is reached
due to lack of maintenance, and it is declared structurally
deficient, this means that this structure either had a very low
load capacity or the bridge is subject to overtopping with
significant or severe traffic delays [1]; thus, CR = [9, 8,..., 3].
For this reason, this study focused on determining when the
structure could reach Ratings 4 and 3, because a bridge with
condition rating 3 is far more eligible for replacement than a
bridge with a condition rating of 5 [7].

A.Bridge Data

There are two major types of deterioration behavior, natural
decay (ND) and convectional recoverable decay (CRD). ND
behavior represents bridges under routine maintenance or
having minor repairs, while CRD behavior stands for bridges
having medium or major repairs as well as reconstruction.
This study focused exclusively on ND bridges. Fig. 2 shows
the distribution of the bridges without reconstruction and the
corresponding condition ratings.

Graphical representation of the data revealed that few data
points had an age less than 20 years and condition ratings of 4,
5, or 6 as well as data points of 60 years or older and condition
ratings of 7 or 8. Most bridges deck considered in this study
had a condition rating between 8 and 6, and were between 20
and 60 years in age. Prediction calculations were made for the
bridges with condition ratings of 8.

TABLE I
GENERAL CONDITION RATING

CR  Meaning Description

9 Excellent New bridges

8 Very Good  No problems noted

7 Good Some minor problems

6 Satisfactory ~ Structural elements show some minor deterioration

5 Fair All primary structural elements are sound but may have
minor deterioration

4 Poor Major deterioration is occurring

3 Serious Deterioration has seriously affected the primary
structural components of the bridge. Local failures are
possible

2 Critical Advanced deterioration of the primary structural
elements is evident. Unless closely monitored it may be
necessary to close the bridge until corrective action

1 Imminent Major deterioration is affecting the stability of the

Failure bridge. The bridge is closed to traffic but corrective

action may allow it to be out back in light service

0 Failed The bridges are out of service and beyond corrective

action

This study used four years of bridge data (2011-2014) from
NDOT. Specifically, the source data consisted of 1613 bridges
with ND behavior. These bridges were classified by material
and/or design, as illustrated in Table II.
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Fig. 2 Age versus condition ratings for a bridge deck at Year 2014

TABLE I
ND BRIDGES GROUPED BY MATERIAL AND/OR DESIGN

No. of Bridges

Kind of Material and/or Design

Concrete 775
Concrete Continuous 208
Steel 107
Steel Continuous 90
Pre-stressed Concrete 202
Pre-stressed Concrete Continuous 222
Wood or Timber 9
Total 1613

V.RESULTS

The following examples provide the expected CRs for
decks in general, using regression analysis, and using Markov-
chain models for decks belonging to the concrete group and
decks belonging to the steel group. Interest was focused on
decks whose initial states were 8 in 2014.

A.Using Regression Analysis

Decks with condition ratings equal to 8 had a distribution
from 2011 to 2014, as shown in Table IV; they formed four
groups of possible distributions (A, B, C, and D), with initial
condition ratings. For each one of these groups, analysis
regressions were conducted, with the following results for the
interval from 2011 to 2014. A forecast over 10 years was
common for this type of analysis [5]. Tables V-VIII provide
the results for these calculations.

TABLE IV
CONDITION RATING (2011-2014) -DECK WITH CD EQUAL TO 8 FOR 2014

Deck Condition Ratings

In the database, bridges are composed of up to five
structures: Deck, Superstructure, Substructure, Culvert, and
Channel. Most of the time, a single bridge includes two to
three of these structures. The most common combinations
include (i) Deck, Superstructure and Substructure (DSS); and
(i1) Culvert and Channel (CC). Using this information, further
classification was conducted in order to have the groups as
homogeneous as possible. For each material type and common
combination of structures, 14 groups were created. Table III
lists all material types as well as the two most common
combinations of structures. Thus, each of the 14 groups
resulted from taking a material type and a structure
combination from Table III.

TABLE III
ND BRIDGES GROUPED BY MATERIAL AND/OR DESIGN
Material and/or Design Structure
Concrete
Concrete Continuous Deck
Steel Superstructure
tee Substructure
Steel Continuous
Pre-stressed Concrete Cul
Pre-stressed Concrete Continuous ulvert
Channel

Wood or Timber

For each inspected element, the CR represents its structural
condition based upon the severity of observed defects. The CR
scale includes 10 possible (integer) grades from 0 to 9, where
0 represents a structure that has failed and is completely out of
service while 9 represents the best possible condition, usually
attributed only to new structures [1].

Years A B c D
2011 9.00 9.00 9.00 8.00
2012 9.00 9.00 8.00 8.00
2013 9.00 8.00 8.00 8.00
2014 8.00 8.00 8.00 8.00
TABLE V
EXPECTED CONDITION RATINGS A BY ANALYSIS REGRESSIONS
. Years
Regression A
2014 2015 2016 2017 2018 2019
Linear 8 8 8 7 7 7
Logarithmic 8 8 8 8 8 8
Exponential 8 8 8 7 7 7
Polynomial 8 7 5 3 0 -3
Power 8 8 8 8 8 8
Regression A Years
2020 2021 2022 2023 2024
Linear 7 6 6 6 5
Logarithmic 8 8 8 8 8
Exponential 7 6 6 6 6
Polynomial -7 -12 -16 -22 =27
Power 8 8 8 8 8
TABLE VI
EXPECTED CONDITION RATINGS B BY ANALYSIS REGRESSIONS
Regression Years
B 2014 2015 2016 2017 2018 2019
Linear 8 8 7 7 6 6
Logarithmic 8 8 8 8 7 7
Exponential 8 8 7 7 7 6
Polynomial 8 7 7 6 6 5
Power 8 8 8 8 7 7
Regression Years
B 2020 2021 2022 2023 2024
Linear 6 5 5 4 4
Logarithmic 7 7 7 7 7
Exponential 6 6 5 5 5
Polynomial 5 5 4 4 3
Power 7 7 7 7 7
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TABLE VII
EXPECTED CONDITION RATINGS C BY ANALYSIS REGRESSIONS
Regression Years
C 2014 2015 2016 2017 2018 2019
Linear 8 8 7 7 7 6
Logarithmic 8 8 8 7 7 7
Exponential 8 8 7 7 7 7
Polynomial 8 9 10 12 14 17
Power 8 8 8 7 7 7
Regression Years
C 2020 2021 2022 2023 2024
Linear 6 6 5 5 5
Logarithmic 7 7 7 7 7
Exponential 6 6 6 6 6
Polynomial 20 23 28 32 38
Power 7 7 7 7 7
TABLE VIII
EXPECTED CONDITION RATINGS D BY ANALYSIS REGRESSIONS
Regression Years
D 2014 2015 2016 2017 2018 2019
Linear 8 8 8 8 7 7
Logarithmic 8 8 8 8 8 8
Exponential 8 8 8 8 7 7
Polynomial 8 8 8 7 7 6
Power 8 8 8 8 8 8
Regression Years
D 2020 2021 2022 2023 2024
Linear 7 7 7 7 7
Logarithmic 8 8 8 8 7
Exponential 7 7 7 7 7
Polynomial 5 4 3 2 1
Power 8 8 8 7 7

To select the best-forecast model, results were compared
using goodness-of-fit measures, the Root Mean Square Error
(RMSE) (14), and the Mean Absolute Percentage Error
(MAPE) (15). The model having the least MAPE and RMSE
values was considered to be the best model and the
representative curve model.

RMSE = (14

where RMSE = Root Mean Square Error, A; = the actual value,
F; = the forecast value, and n = the number of fitted points

1 -F
MAPE =—»" AR (15)
n=|l A
where MAPE = Mean Absolute Percentage Error, A, = the

actual value, F; = the forecast value, and n= the number of
fitted points

With calculations made by using regression analysis for
each of the five regression’s types — linear, logarithmic,
exponential, polynomial, and power — and calculations made
for RMSE and MAPE, better condition rating curves were

determined for each initial class (A, B, C, and D). Each
regression class was selected for the lesser value for RMSE
and MAPE, as shown in Table IX. The lesser value for each
regression class is shown, suggesting curves that have better
approximations.

TABLE IX
SELECTION BY RMSE AND MAPE
Regression RMSE  MAPE
A - Logarithmic 0.29 2.86%
B - Power 0.28 2.94%
C — Power 0.32 3.49%
D - Exponential 0.28 2.98%

Condition Rating (CR) vs Time (years) - A
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Fig. 3 Age versus condition ratings A for bridge deck at Year 2014
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Fig. 4 Age versus condition ratings B for bridge deck at Year 2014
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Figs. 3-6 show the expected condition ratings for each
initial condition and for each regression type. According to
these results, for Year 2024, the condition rating for decks will
be equal to 8 for initial condition A and 7 for conditions B, C,
and D.

Condition Rating (CR) vs Time (years) - C
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ondition Rating (CR)
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———|ifgar =————L0og =———EXp. ==—Poly =——Power

C

Fig. 6 Age versus condition ratings D for bridge deck at Year 2014

B.Using Markov-Chain Models

Equation (13) was used for each year of the prediction
interval from 2014 through 2024. Tables X and XI provide the
corresponding results.

TABLE X
EXPECTED CONDITION RATINGS - CONCRETE DECK
Y
Method ears
2014 2015 2016 2017 2018 2019
Traditional 8 7 7 7 7 7
Small Data 8 7 7 7 7 7
Y
Method ears
2014 2015 2016 2017 2018 2019
Traditional 7 7 7 7 7
Small Data 7 6 6 6 6
TABLE XI
EXPECTED CONDITION RATINGS — STEEL DECK
Y
Method cars
2014 2015 2016 2017 2018 2019
Traditional 8 8 8 8 7 7
Small Data 8 7 7 7 7 7
Years
Method
2014 2015 2016 2017 2018 2019
Traditional 7 7 7 7 7
Small Data 7 7 7 7 7

The calculation of the expected CRs is shown in Fig. 7 for
the Small Data Method and Year 2014. In this particular case,
there were no culverts and decks with an initial condition
rating higher than 8. Fig. 7 shows the results for calculations
used for concrete culverts, keeping in mind that each material
has its own the probability matrix. Both Figs. 7 and 8 provide
the plots of the expected CRs from Tables X and XI,
respectively.

As expected, the Small Data Method provided more
conservative estimates. That is, concrete culverts, concrete
decks, and steel decks are expected to deteriorate faster than
estimated by the traditional method; therefore, faster

maintenance is recommended. Large data sets, which are not
available in Nevada, are required to corroborate the superiority
of any of these two methods. However, from a numeric
standpoint, the Small Data Method is expected to be superior
to the traditional method for small data sets, which often are
the only resource available to estimate bridge deterioration.

Concrete Deck Condition Ratine (CR) vs

2014 2016 2018 2020 2022 2024
Time (vears)
~ Traditional Method Small Data Method

Fig. 7 Expected ratings for deck conditions.

Concrete Steel Condition Rating (CR) vs Time

2014 2016 2018 2020 2022 2024

Time (years
Traditional Method -~ Small Data Method

Fig. 8 Expected ratings for steel conditions

VI.CONCLUSION

This paper illustrates how to use Markov-chain models and
regression analysis to estimate bridge deterioration and their
expected condition ratings. Markov chains analyses were
conducted using two similar but distinct methods to estimate
the required transition probabilities. The results obtained using
analysis regression were very similar to those obtained with
the Markov chains.

The motivation for using the second method — the Small
Data Method — was the limited number of sample
measurements available in this study. Limited sample size is a
common problem, given cost, changes in data collection
methods, and various issues associated with data quality and
legacy systems. The results illustrate that the proposed and
traditional approach provided similar estimates. However, the
proposed approach provided more estimates that were
conservative. This means that maintenance should be
performed to the structure earlier than what is estimated when
using the traditional method, thus ensuring an extension in the
useful life of the bridge. Considering that bridges are critical
infrastructures, and that the traditional approach for estimating
bridge deterioration has issues when only small sample sizes
are available, this study recommends using the Small Data
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which uses more

information and provides more conservative estimates.
For future studies, it is recommended that such variables as

the

average daily traffic (ADT), wearing surface, type of

service, and other factors that interfere with the optimal
performance of bridges over time be added to the analysis. In
addition, it would be interesting to study bridge behavior
under different environmental conditions.
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