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A Spatial Hypergraph Based Semi-Supervised
Band Selection Method for Hyperspectral Imagery

Semantic Interpretation
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Abstract—Hyperspectral imagery (HSI) typically provides a
wealth of information captured in a wide range of the
electromagnetic spectrum for each pixel in the image. Hence, a
pixel in HSI is a high-dimensional vector of intensities with a
large spectral range and a high spectral resolution. Therefore, the
semantic interpretation is a challenging task of HSI analysis. We
focused in this paper on object classification as HSI semantic
interpretation. However, HSI classification still faces some issues,
among which are the following: The spatial variability of spectral
signatures, the high number of spectral bands, and the high cost
of true sample labeling. Therefore, the high number of spectral
bands and the low number of training samples pose the problem of
the curse of dimensionality. In order to resolve this problem, we
propose to introduce the process of dimensionality reduction trying
to improve the classification of HSI. The presented approach is a
semi-supervised band selection method based on spatial hypergraph
embedding model to represent higher order relationships with
different weights of the spatial neighbors corresponding to the
centroid of pixel. This semi-supervised band selection has been
developed to select useful bands for object classification. The
presented approach is evaluated on AVIRIS and ROSIS HSIs
and compared to other dimensionality reduction methods. The
experimental results demonstrate the efficacy of our approach
compared to many existing dimensionality reduction methods for
HSI classification.

Keywords—Hyperspectral image, spatial hypergraph,
dimensionality reduction, semantic interpretation, band selection,
feature extraction.

I. INTRODUCTION

IN the last decades, the technological evolution of optical

sensors has provided remote sensing analysts with rich

spatial, spectral, and temporal information. Nowadays, with

the development of hyperspectral remote sensing imaging

technology, we can capture HSI with hundreds of contiguous

bands across the electromagnetic spectrum. The HSI,

referred to as ”data cube”, is a kind of 3-D datum with two

spatial dimensions and one spectral dimension. The use of

HSI is becoming more and more widespread, such as target

detection, changes detection, and object classification. A

pixel in HSI is a high-dimensional vector of intensities with a

large spectral range and a high spectral resolution. Therefore,
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the semantic interpretation is an essential task for HSI

analysis extracting the semantics of sensor data. It means

the understanding and the semantic interpretation of image

contents just like humans do. Semantic image interpretation

is a problem of visual perception, i.e. the perception of

our environment by visual sensors. Visual perception is

the act of sensing a scene (its visible objects, structures

and events), of recognizing it and of describing it with

symbols [1]-[5]. The results of semantic interpretation can

be object categorization but also event, situation or scenario

recognition. Semantic image interpretation results can be

used for different purposes like making decision (diagnosis

problem), like monitoring issues (visual surveillance, health

care monitoring), and so on. We focused in this paper

on object classification as HSI semantic interpretation.

However, HSI classification still faces some issues, among

which are the following [6], [7]: the spatial variability of

spectral signatures, the high number of spectral bands, and

the high cost of true sample labeling. Therefore, the high

number of spectral bands and the low number of training

samples pose the problem of the curse of dimensionality

[8]. Hence, the Dimensionality Reduction is necessary to

overcome the different issues to improve the semantic

interpretation of HSI.

The remainder of this paper is organized as follows.

Section II introduces the related work about dimensionality

reduction of HSI. In Section III, we present the proposed

approach. We first introduce the hypergraph embedding

model as well as spatial hypergraph structure. Then, we go

into details about semi-supervised band selection based on

the proposed spatial hypergraph. In Section IV, we show

experimental results of HSI classification using our approach

with a comparative study with respect to well established

approaches of the field. We conclude and suggest future

work in the last section.

II. RELATED WORK

The high dimensionality of HSI not only increases

the computational complexity but also may degrade

classification accuracy [9]. Hence, the dimensionality

reduction seeks to decrease computational complexity of

input data while some desired intrinsic information of the
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data is preserved to improve the classification accuracy. The

problem of dimensionality reduction [10] can be defined as

follows: Let us consider a data set represented by n × D
matrix S consisting of n data vectors i ∈ {1, 2, ..., n} with

dimensionality D, and d be its intrinsic dimensionality d
(where d < D, and often d << D). Intrinsic dimensionality

means that the points in data set S are lying on or near

a manifold with dimensionality d that is embedded in the

D-dimensional space. Dimensionality reduction methods

transform data set S with dimensionality D into a new

data set Z with dimensionality d, while retaining as

much as possible the geometry of the data. In general,

neither the geometry of the data manifold, nor the intrinsic

dimensionality d of the data set S are known. Therefore,

dimensionality reduction is an ill-posed problem that can

only be solved by assuming certain properties of the data

(such as its intrinsic dimensionality). In the HSI context, the

projection methods extract the d components, with d < D,

such that

Z = T × S (1)

where Z is the reduced matrix, T is a linear transformation

matrix and S is the different spectral signatures.

In HSI context, the different dimensionality reduction

can be roughly categorized into Features Extraction (FE)

and Band Selection (BS). The feature extraction method

is based on data transformation [9], [11]. It reduces the

dimensionality by transforming the original spectral bands

from HSI into a new low-dimensional space through

projection. However, the band selection method (primitive

selection) reduces the dimensionality by selecting a subset

with the most of characteristics of original HSI [12]. In

HSI, every spectral band corresponds to a 2-dimensional

image, which can be considered as a feature. According

to the availability of class labels, band selection can be

further divided into two types: Supervised and unsupervised.

Supervised band selection methods as Mutual Information

(MI) [13], [14] select the most discriminative features by

measuring the correlation with the class labels. Without

any priori information of class labels, unsupervised feature

selection methods select the most informative features to

preserve the information of original features as much as

possible [15]-[17]. In practice, the collection of class labels

in HSI needs the field exploration and verification by

experts, which is expensive and difficult due to excessive

labor cost. Thus, unsupervised methods are more practical

for HSI processing. Unsupervised band selection can

be implemented by bands ranking [16], [17] or bands

clustering [18], [19]. For bands ranking, every band is

ranked based on certain criteria firstly. Then, top bands are

selected by a given dimensionality or threshold. Chang and

Wang [16] proposed a constrained band selection (CBS)

method. In CBS, when the band has large information

divergence with other bands, it is higher priority. In

[17], a weighted principal component (WPC) is devised

as the criterion, and an adaptive thresholding algorithm

based on moving control chart is used to determine the

number of selected bands. Although these methods adopt

different criteria, all of them aim to select individually

informative bands. However, the combination of individually

informative bands may not be the most informative bands

set. The reason is that these selected bands may have

large redundancy and provide little extra information. Also,

most traditional methods belong to the feature extraction

category, such as Fisher’s Linear Discriminant Analysis

(FLDA) [20], Principal Component Analysis (PCA) [21],

Locality Preserving Projections (LPP) [9], and Isometric

Feature Mapping (ISOMAP) [22]. However, these methods

usually change the physical characteristics of each original

spectral band. Despite the different motivations of these

aforementioned methods, Yan et al. [23] have proposed

a general graph embedding framework for dimensionality

reduction, and many popular methods, e.g., PCA, FLDA,

and LPP, could be considered as special cases within this

framework. This graph embedding model aims to represent

each vertex of graph as a low-dimensional vector that

embodies some statistical and geometric properties of a data

set. However, it considers only the pairwise relationship

between two data set, which fail to capture the complex

relationships of the data set. In order to represent the

higher order relationships of data set, a first model has

been proposed by Berge et al. [24]. This model is called

hyperedge, which consists to connect more than two vertices

in the hypergraph. Fig. 1 shows the difference between

the edge and the hyperedge. Huang et al. [25] proposed a

learning framework based on weighted hypergraph for image

retrieval, which images are taken as vertices. Ji et al. [26]

developed a method for HSI classification using the spatial

and spectral information, in which the relationship between

the different pixels is represented in a hypergraph structure.

Yuan et al. [27] proposed a spatial hypergraph embedding

model for feature extraction. This method has been applied

to HSI classification. In order to improve the semantic

interpretation especially in the object classification of HSI,

we present in this paper a semi-supervised method based

on spatial hypergraph embedding model to represent higher

order relationships and to embody the different weights of

the spatial neighbors corresponding to the centroid of pixel.

Then, the spatial hypergraph based semi-supervised band

selection has been developed to select useful bands for object

classification.

III. PROPOSED METHOD

After the extensive study on main techniques for

dimensionality reduction in Section II, we present in this

section our method. Fig. 2 is divided into three phases; the

first phase aims to construct a spatial hypergraph to represent

higher and complex relationships between the different
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Fig. 1 (a) Each edge is built by the 2-nearest-neighbor method (b) Each
hyperedge is built by each vertex and its two nearest neighbors

pixels. In fact, in order to jointly take into account the spatial

and spectral information, we have presented a band selection

method based on spatial hypergraph to select the useful and

relevant bands to improve the semantic interpretation of HSI

especially in object classification accuracy. Finally, we have

applied the SVM classifier to classify the obtained bands

with our presented band selection method.

Fig. 2 Flowchart of presented method

A. Dimensionality Reduction and Classification
Performance

In our experiment, we used both AVIRIS and ROSIS

HSI. Fig. 6 shows the spectral signatures for eight classes

extracted from Indian Pines HSI and nine spectral signatures

from University of Pavia.

B. Spatial Hypergraph Embedding Model
Given a data set of HSI denoted by V = [v1, ..., vN ] ∈

Rd×N , where d is the dimensionality of the HSI and N

is the number of pixels, it can be used to construct a

graph G = (V, ε, w) is an hypergraph with the vertex

set V , the hyperedge set ε = {E1, ..., EM}, and each

hyperedge E ∈ ε is a positive weight w(E). A hyperedge

Ej is constructed by a centroid vertex vj and its K-nearest

neighbors. The incidence matrix H ∈ R|v|×ε of the

hypergraph is represented as

Hij = h(vi, Ej) =

{
1, if vi ∈ Ej .
0, otherwise.

(2)

The hyperedge weight wi is computed as:

wi = w(Ei) =
∑

vj∈Ei

exp

(
−||vj − vi||22

h

)
(3)

Based on H and w, the vertex degree of each vertex vi ∈
V is

di = d(vi) =
M∑
j=1

wjHij (4)

and the edge degree of hyperedge Ei ∈ ε is

δi = δ(Ei) =
N∑
j=1

Hji (5)

Let Dv , De, and W denote the diagonal matrices

containing the vertex degree d, the hyperedge degree δ,

and the weight of hyperedge w, respectively. As follows,

the objective function of binary hyperedge constraint is

formulated as

1

2

∑
E∈ε

∑
u,v∈E

w(E)h(u,E)h(v, E)

δ(E)
||PTu− PT v||22

=
1

2

M∑
k=1

N∑
i,j=1

wkHikHjk

δk
||PT vi − PT vj ||22

= trace(PTV LV TP )

(6)

where L = Dv−HWD−1
e HT . Finally, the binary hyperedge

embedding model is formulated as

P ∗ = argmax
P

=
trace(PTV DvV

TP )

trace(PTV LV TP )
(7)

In this hypergraph, each hyperedge represents a set of

the vertices, including affinity information. Then, the pixels

inside a small spatial neighborhood are often made up of

the same materials [28]; hence the spatial neighborhood is

very appropriate to construct the hypergraph. However, some

neighbors around the edges may belong to different classes

comparing the centoid one as showing Fig. 3. Therefore,

a spatial hypergraph structure is carried out to embody the

different weights of the spatial neighbors corresponding to

the centroid one. Hence, we use the spatial neighborhood to

construct a hypergraph G′ = (V ′, ε′, w′) where each pixel

vj is taken as centroid vertex, and the hyperedge E′
j ∈ ε′ is

constructed by this centroid pixel and its T spatial neighbors
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Fig. 3 (a) Spatial neighborhood in the HSI (b) Some spatial neighborhood

Fig. 4 (a) Color composite image, (b) Ground truth image of Indian Pines

Fig. 5 (a) Color composite image, (b) Ground truth image of University of Pavia

Fig. 6 (a) Spectral signatures of eight classes from Indian Pines (b) Spectral signatures of nine classes from University of Pavia

(this hyperedge connects T+1). Hence, the incidence matrix H ′ ∈ R|v′|×ε′ of the spatial hypergraph is represented as

H ′
ij =

{
exp(− ||vi−vj ||22

h ), if vi ∈ E′
j

0, otherwise.
(8)
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Fig. 7 (a) Classification accuracy of Indian Pines using different feature extraction methods (b) Classification accuracy of Indian Pines using different
band selection methods

Fig. 8 (a) Classification accuracy of University of Pavia using different feature extraction methods (b) Classification accuracy of University of Pavia
using different band selection methods

Fig. 9 Classification of Indian Pines HSI with SVM classifier

Then, the spatial hypergraph model is formulated as

P ∗ = argmax
P

=
trace(PTV D′

vV
TP )

trace(PTV L′V TP )
(9)

where L′ = D′
v −H ′W ′(D′

e)
−1(H ′)T .

C. Semi-Supervised Band Selection Method

The available data set of HSI is denoted by H =
[h1, ..., hN ], where the first N1 pixels belong to the labeled

data set H1 = [h1, ..., hN1], where the corresponding

Fig. 10 Classification of University of Pavia HSI with SVM classifier

label vector is denoted by z = [z1, ..., zN1] and the

rest is the unlabeled data set H2 = [hN1+1, ..., hN ].
Since the available data are used to construct a spatial

hypergraph. After obtaining the optimal projection matrix

P ∗ via the hypergraph embedding model, the labeled data

set H1 is projected into its reduced feature set X1 =
[(P ∗)Th1, ..., (P

∗)ThN1]. In fact, the semi-supervised band

method can be used to select the relevant spectral bands to

perform HSI classification. Hence, a projection matrix Q is

used to classify feature set X by Y = XQ. Then, we sort all

bands based on sparse matrix S. This phase consists of three
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steps, which include label propagation, projection matrix Q,

and band sort based on sparse matrix S.

1) Label Propagation: In this step, we use a

semi-supervised label propagation method [29]. Let us

consider a feature set X = [x1, ..., xl, ..., xn] ∈ Rn×m,

there l labeled pixels and u = n− l unlabeled pixels. Here

we set a class C + 1 to record the outlier data. We define

an initial label matrix:

L = [(l1)
T , (l2)

T , ..., (lN )T ] ∈ RN×C+1 (10)

Lij =

{
1, if xi is labeled as li = j or j = C + 1
0, otherwise.

(11)

Given a following spreading function:

F (t+ 1) = λPF (t) + (1− λ)L (12)

where λ is a parameter in (0, 1). The above step should be

iteratively repeated until convergence. if F ∗ denotes the limit

of the sequence F (t), the final estimation function F ∗ can

be computed as follows:

F ∗ = lim
t→+∞F (t) = (1− λ)(I − λP )−1L (13)

2) Projection Matrix Q: In this step, we aim to get

an affine matrix Q from Y = XQ. Hence, we build a

linear classifier y = QTx + b where x is a sample in

feature set and b is a bias term. If y is close to tj where

tj = [0, ..., 0, 1, 0, ..., 0]T , x will be classified into class j.

We can assume that the result of classification from the linear

classifier is equal to the above semi-supervised learning

matrix F , and we can define a regression function as:

argmin
Q,b

α||Q||2
N∑
i=1

C∑
j=1

Fi,j ||QTxi + b− tj ||2 (14)

where Fi,j is the label propagation matrix from (13).

3) Band Sort Based on Sparse Matrix: Through the above

steps, the HSI can be expressed as Y = XQ where Q is

a projection matrix from (14). In fact, we apply an band

selection method to find an optimal subset of bands. This

method constrains the projection matrix Q = [Q1, ..., Qc]
via a sparse selection matrix S = [S1, ..., Sc]. This can be

represented by the following minimization problem

argmin
S

c∑
k=1

||Yk −XSk||2 (15)

where Sk is an m-dimensional vector. Hence, we aim to

select t bands from a total of m bands. In fact, we use score

band as criterion to evaluate every band from the selection

matrix S, which is defined as

bandscore(j) = max
k

||Sj,k|| (16)

where j is the band index, Sj,k is the jth line of Sk.

D. Classification with SVM

This phase aims to classify HSI using a linear Support

Vector Machines (SVM) classifier. The main goal of SVM

classifier is to characterize classes using geometrical criteria

instead of statistical ones.

Let us consider a training set consisting of N vectors from

the d−dimensional features space (xi ∈ �d, i = 1, 2, ..., N),
with class label yi ∈ {+1,−1}. SVM [30] is represented by

function f(x, α) → y, where α denotes the parameters of the

classifier. The SVM approach consists in finding the optimal

hyperplane that maximizes the distance between the closest

training sample to the separating hyperplane, so that:

• Samples with different labels are located on either side

of the hyperplane;

• The distance of the closest vectors to the hyperplane

on either side is maximum. These vectors are called

support vectors and the distance separating them to the

hyperplane is the optimal margin.

The hyperplane is defined by w.x + b = 0, where w and

b are parameters of the hyperplane. Vectors that are not on

this hyperplane verify: w.x+ b ≷ 0. Thereby, the SVM can

be defined as f(x, α) = sgn(w.x+ b). In order to find such

a hyperplane, one should estimate the parameters (b and w)

so that:

yi(w.xi + b) > 0, with i = 1, 2, ..., N (17)

The distance between the closest training sample and the

separating hyperplane can be set to 1/||w|| with a simple

rescaling of the hyperplane parameters w and b such that:

min
i=1,2,...,N

= {yi(w.xi + b)} ≥ 1 (18)

Therefore, the geometric margin between the two classes

equals 2/||w||. Hence, the maximization of the margin leads

to the following constrained optimization problem:{
minimize: 1

2 ||w||2
subject to: yi(w.xi + b) ≥ 1, i = 1, 2, ..., N

(19)

The SVM classifier is applied to each feature points with

selected bands from the HSI.

IV. EXPERIMENTS AND DISCUSSION

Here, we validate our presented method with several

HSI data set and present experimental results demonstrating

the benefits of spatial hypergraph embedding model and

semi-supervised band selection for HSI classification.

A. HSI Data Sets

Two hyperspectral data sets collected by different

hyperspectral sensors are used in our experiments.

1) The first HSI used in experiments represents the

Indiana Pines region in northwest Indiana by the

Airborne Visible/ Infrared Imaging Spectrometer
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(AVIRIS) sensor in 1992. It contains 145×145 pixels,

with each pixel having 220 spectral bands covering the

range of 375−2500 nm with a spatial resolution of 20
m/pixel and consists of 16 ground-truth classes. The

advantage of this HSI is the availability of a reference

ground truth image, which can be used for training

and testing. Fig. 4 shows a color composite image of

the Indian Pines data set along with the ground-truth

image.

2) The second HSI was collected by the Reflective Optics

System Imaging Spectrometer (ROSIS) optical sensor

over the urban area of Pavia University, Italy. It

consists of 610 × 340 × 115 datacube. The spectral

range is from 430 to 860 nm with a spatial resolution

of 1.3 m per pixel. The University of Pavia HSI is

collected from an urban area and consequently consists

of small buildings, materials, and trees. Fig. 5 (a)

shows a color composite image of University of Pavia,

whereas Fig. 5 (b) shows the nine ground-truth classes.

The number of reduced dimensionality has been fixed

n = 3, 6, 9, 12, 18, 21 features. The number of the nearest

neighbors K = 5 for both HSIs. In classification phase,

In Indian Pines HSI, approximately 8600 labeled pixels are

employed to train and test the efficacy of the presented

system. This data set is partitioned into approximately 1496
training pixels and 7102 test pixels. Also, the number of

training and testing samples used for the University of Pavia

data set are 1476 and 7380, respectively.

We run SVM on the extracted features and selected bands

using our presented method and the state of the art methods,

i.e., PCA, LPP, ISOMAP, MI, and CBS. Fig. 7 shows the

accuracy of each features extraction method with various

numbers of features. Also, Fig. 8 shows the accuracy of each

band selection method with various numbers of bands. It is

obvious that the presented method gives better classification

rates compared to the other projection methods.

In Indian Pines HSI, the better classification is given

by the presented method with the number of dimensions

n = 6 and classification accuracy is equal to 95%. Whereas

with presented spatial hypergaph, we have obtained 93.25%.

Also, we have obtained a better classification of University

of Pavia HSI with our method. In fact, the number of

dimensions n = 3, the classification accuracy using spatial

hypergraph is equal to 94% and the classification accuracy

using our method is equal to 97%. It appears from the results

that the pixels are correctly classified of both HSIs, which

is qualified as almost perfect.

B. Experimental Time

We compare the running times (in seconds) spent

by each method. The experiment results are tested on

a PC with I5-42100U CPU, 8-GB memory, 64-bits

Windows 7 OS using MATLAB 2014b. Table I shows the

running times for dimensionality reduction. Among these

dimensionality reduction methods, PCA is the fastest one.

Spatial hypergraph spends the longest time since it needs to

compute the nearest neighbors.

TABLE I
RUNNING TIMES (IN SECONDS) OF DIMENSIONALITY REDUCTION FOR

THE INDIAN PINES AND THE UNIVERSITY OF PAVIA HSIS USING

DIFFERENT METHODS

Method PCA LPP ISOMAP SH CBS MI Proposed
BS

Indian
Pines

0.149 3.022 20.15 22.80 0.325 5.124 10.235

University
of Pavia

0.162 5.022 21.95 24.35 0.214 4.951 7.854

V. CONCLUSION

In this paper, we have presented a spatial hypergraph

embedding model for feature extraction. It can represent

higher order relationships than the graph embedding

model. To make the hypergraph embedding model fit

for HSI, we presented an spatial hypergraph structure,

which incorporates the spatial information. In fact, a

semi-supervised band selection method based on spatial

hypergraph has been presented to improve the classification

of HSI.
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