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Abstract—The utilization of pneumatic muscles in the actuation 

of industrial systems is still in its early stages, hence studies on the 
constructive solutions which include an assessment of their functional 
performance with a focus on one of the most important 
characteristics-energy efficiency are required. A quality indicator that 
adequately reflects the energy efficiency of an actuator is the energy-
to-mass ratio. This ratio is computed in the paper for various types 
and sizes of pneumatic muscles manufactured by Festo, and is 
subsequently compared to the similar ratios determined for two 
categories of pneumatic cylinders. 
 

Keywords—Pneumatic cylinders, pneumatic muscles, energy-to-
mass ratio, muscle stroke.  

I. INTRODUCTION 

FTER electric current compressed air is the second most 
important energy generator in industrial actuations. 

Applications of compressed air go back to the 19th century, 
when the first pneumatic jack hammers were built to be used 
in mining. The increasingly large scale of the compressed air 
industrial applications is due to its specific benefits, including 
[1]: 
 compressed air can be generated in any place and 

quantity; 
 high energy density, reduced weight and easy 

transportation; 
 pneumatic energy is easily stored; 
 compressed air is non-flammable and carries no risk of 

explosion; 
 pneumatic systems maintenance requires minimum effort, 

etc. 
The disadvantages of compressed air utilisation concern: 

 achieving high actuation forces requires large size 
working equipment; 

 the water contained by the compressed air corrodes the 
components of the installations; 

 shocks occur at the end of the piston stroke causing the 
destruction of the pneumatic motor; 

 high energy consumption. 
The most frequently deployed effector elements of 

pneumatic systems are linear or rotation motors with a piston, 
a membrane or blades. It is the role of these motors to 
transform the pneumatic energy supplied by the compressed 
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air into a linear displacement or a rotation.  
The construction of linear pneumatic motors with 

membranes typically includes two casings clamping an oil-
resistant rubber membrane. Compared to piston motors, the 
membrane ones have a number of significant benefits: 
 lighter; 
 no high manufacturing accuracies required; 
 easy sealing, by the very membrane; 
 high sensitivity; 
 longer service life. 

Despite all these advantages, a large-scale utilization of 
membrane pneumatic motors is limited by the fact that the 
actuation force is not constant during the length of the stroke. 

The utilization of membranes in the construction of 
pneumatic actuation elements has known a continued 
development, particularly in relation to the industrial robots. 
Results worth to mentioning were obtained by the researchers 
from the Orthopedic Centre of Heidelberg, Germany in 1948, 
the pneumatic arm developed by the American J.L. 
McKibben, the stepping robot WAP 1 built by Waseda 
University Tokyo, Japan in 1969 [2]. The series of these 
achievements has been recently expanded by the pneumatic 
muscle, which comes in form of a tube that contracts when fed 
pressure. The history of this type of pneumatic muscle starts in 
1872, when professor Franz Reuleaux described the first 
flexible pneumatic actuator [2]. It was A. H. Morin who in 
1953 patented a first variant of actuator in that a lattice of 
textile fibers is built into a cylindrical rubber tube [3]. Since 
then numerous constructive solutions of artificial pneumatic 
muscles were developed, like the ones put forward by Yarlott 
and Mass (1972), Takagi and Sakaguchi (1986), Kukolj 
(1988), Paynter (1988) or Daerden (1999) [4]-[8]. Another 
constructive variant of a pneumatic muscle is the one 
developed by Festo of Germany [9]. 

This paper undertakes a study of Festo pneumatic muscles, 
with a focus on a characteristic known as the energy-to-mass 
ratio. Conducting such a study is necessary because in 
literature on pneumatic muscles the high value of this quantity 
is presented as an advantage, without however offering 
concrete data or a comparison with the values of this ratio in 
the case of other types of pneumatic actuators [10]-[12]. 

Following the introduction, Section II of the paper presents 
concisely some of the characteristics of pneumatic muscles, 
followed, in Section III by a description of the methodology 
used to determine the values of the energy-to-mass ratios for 
the three types of Festo pneumatic muscles. Section IV 
includes a comparison of the values of the ratios computed 
previously with those of cylinders of the same dimensions. 
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