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Performance Comparison of Different Regression
Methods for a Polymerization Process with Adaptive
Sampling

Florin Leon, Silvia Curteanu

Abstract—Developing complete mechanistic models for
polymerization reactors is not easy, because complex reactions occur
simultaneously; there is a large number of kinetic parameters
involved and sometimes the chemical and physical phenomena for
mixtures involving polymers are poorly understood. To overcome
these difficulties, empirical models based on sampled data can be
used instead, namely regression methods typical of machine learning
field. They have the ability to learn the trends of a process without
any knowledge about its particular physical and chemical laws.
Therefore, they are useful for modeling complex processes, such as
the free radical polymerization of methyl methacrylate achieved in a
batch bulk process. The goal is to generate accurate predictions of
monomer conversion, numerical average molecular weight and
gravimetrical average molecular weight. This process is associated
with non-linear gel and glass effects. For this purpose, an adaptive
sampling technique is presented, which can select more samples
around the regions where the values have a higher variation. Several
machine learning methods are used for the modeling and their
performance is compared: support vector machines, k-nearest
neighbor, k-nearest neighbor and random forest, as well as an original
algorithm, large margin nearest neighbor regression. The suggested
method provides very good results compared to the other well-known
regression algorithms.

Keywords—Adaptive sampling, batch bulk methyl methacrylate
polymerization, large margin nearest neighbor regression, machine
learning.

1. INTRODUCTION

ENERALLY, polymerization processes have series of

difficulties in modeling and optimization actions, because
of their specific features, as well as the general characteristics
of the chemical processes. From the last point of view,
reactions are complex and, often, their phenomenology is not
fully elucidated. Or, elaborating credible phenomenological
models involves precise knowledge of physical and chemical
laws that govern the process. Often, some approximations are
required, affecting the accuracy of the model results. In
addition, the complexity of mathematical models causes extra
difficulties on how to solve them and, also, on the necessary
time, which means the inability to use the models in on-line
optimal control procedures. In these circumstances, empirical
modeling based on input-output data becomes a preferable
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alternative to the phenomenological modeling, in terms of
both methodology and result accuracy. Several examples are
given.

The first part of article [1] is a review concerning the use of
artificial neural networks (ANNs) in polymerization reaction
engineering, focusing on different types of methodologies and
applications.

In the chemical engineering area, and especially for the
polymerization processes, ANNs were applied to a diversity of
processes, included in various methodologies. Some examples
are the following: direct and inverse modeling of free radical
polymerization of methyl methacrylate [1], [2], development
of a virtual soft sensor in the polyethylene terephthalate
production process [3], modeling the styrene living radical
polymerization mediated by 2,2,6,6-tetramethyl-1-piper-
idinoxyl [4], selection of mixture initiators for batch
polymerization [5], modeling the free radical polymerization
of styrene [6], reaction temperature prediction during the
styrene polymerization [7], fluorescence modeling of the
polydimethylsiloxane/silica composites containing lanthanum
[8] and the list remains opened.

Free radical polymerization of methyl methacrylate is
considered the case study of this approach. The gel, glass and
cage effects are exhibited in the bulk polymerization of MMA.
The gel effect arises because of the decrease in termination
rate constant at high monomer conversion, associated with
increased diffusional resistance to the growing radicals. It is
manifested as a sudden increase in conversion, as well as in
the gravimetrical average molecular weight with time, after
some polymerization has occurred. Similarly, the glass effect
is associated with the decrease of propagation rate constant,
due to increased diffusional resistance to the movement of the
monomer toward a growing radical. This leads to the
polymerization stopping short of complete monomer
conversion, even though the reactions are irreversible. A
special adaptive technique is applied in modeling to take into
account the high variations of some parameters in a short time.

Monomer conversion (x), numerical average molecular
weight (Mn), gravimetrical average molecular weight (Mw)
are determined as function of reaction conditions (initiator
concentration, /o, temperature, 7, and time, ).

II. ADAPTIVE SAMPLING

The free radical polymerization of methyl methacrylate
achieved in a batch bulk process is associated with non-linear
gel and glass effects, i.e. it has regions where the values of
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some parameters (conversion and molecular weight) have a
higher variation. The use of a constant sampling method may
miss these regions. In order to address this problem, an
adaptive sampling technique is proposed, which can select
more samples around the critical regions.

The adaptive sampling algorithm is presented in
Pseudocode 1. It first computes the local differences between
successive points in the y function, which can stand for either
of the three considered quantities: monomer conversion (x),
numerical average molecular weight (Mn) and gravimetrical
average molecular weight (Mw). This difference has the same
meaning as a derivative. Then, it uses a running sum to
determine whether the next point will be sampled. In regions
with approximately constant values, the derivative is small,
therefore the space between the sampled points will be larger.
In regions with high variation, the derivative will be higher,
and thus more points will be sampled.

PSEUDOCODEI
THE ADAPTIVE SAMPLING ALGORITHM

procedure ADAPTIVESAMPLING
input: y: the array of all points representing functions x, Mn or Mw
output: samples: the array of sampled points
begin
foriin1..length(y)-1do
diffli) = abs( y(i+1) - y(i) )
end for
avg = SELECT(dlff, typeOfFunction)
samples(1,1) =1
samples(1,2) = y(1)
sum=0
count=1
foriin 1 .. length(diff) do
sum = sum + diff(i) » alpha
if sum > avg then
samples(count, 1) =i
samples(count, 2) = y(i)
count = count+1
sum=0
end if
end for
return samples
end procedure

In the pseudocode, the alpha constant is used, which
balances the importance of the local gradient. In our case, its
value was set to 0.8. Also, the avg variable is initialized by the
SeLecT function, which returns different values by taking into
account the target quantity and the values of the diff array.
This variable controls the number of the sampled points. The
lower it is; the more points will be sampled. Its value was
empirically determined, thus: in case of monomer conversion,

avg(x)= lOOO-(E’, in case of numerical average molecular

weight, avg(Mn) =500, and in case of gravimetrical average

molecular weight, avg(Mw) = 36-% , Where E stands for

the mean value of the diff array.

Figs. 1-3 present the adaptive sampling results for the three
considered functions. The sampled points are marked with
circles. In all cases, a number of points between 300 and 400
were obtained.
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Fig. 1 Adaptive sampling results for monomer conversion (x)
vs. time: 326 points
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Fig. 2 Adaptive sampling results for numerical average
molecular weight (Mn) vs. time: 348 points

Before applying the machine learning algorithms, a
preprocessing stage was also used: the values of the samples
matrix were normalized by columns, such as all values should
lie in the [0,1] domain. These values will constitute the dataset
used for regression.

For each problem, the order of the vectors was randomized
and then, two thirds were selected for the training set and the
remaining third was selected for the testing set. In order to
have a meaningful comparison, all the regression algorithms
applied use the same training and testing sets. The coefficient
of determination (R%), the squared coefficient of correlation, is
used as a metric to compare the performance of different
models.
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Fig. 3 Adaptive sampling results for gravimetrical average
molecular weight (Mw) vs. time: 392 points

III. REGRESSION BY ESTABLISHED ALGORITHMS

First, various algorithms implemented in the popular
collection of machine learning algorithms Weka [9] were
evaluated on the three problems. The corresponding results
will constitute a basis for comparison with our original
algorithm, Large Margin Nearest Neighbor for Regression
(LMNNR) [10], [11], whose results will be presented in the
following section.

Tables I-III show the performance of the algorithms
implemented in Weka for the training set alone and for the
testing set. The results on the latter are more important,
because they evaluate the generalization capabilities of the
models. The results are sorted in decreasing order of the
testing set results. The abbreviations in the tables are as
follows: v-SVR and ¢-SVR stand for v-Support Vector
Regression and e-Support Vector Regression, respectively,
RBF stands for Radial Basis Function kernel, P2 stands for
polynomial kernel of the second degree, and kNN stands for k-
Nearest Neighbors.

TABLEI
PERFORMANCE OF DIFFERENT ALGORITHMS IMPLEMENTED IN WEKA
FOR MONOMER CONVERSION (X)

Algorithm Training set  Testing set
kNN, k=10, 1/d 0.999800 0.999800
Random forest, N=100 0.999800 0.999800
REPTree 0.999200 0.998401
MS rules 0.990423 0.986844
Additive regression 0.967666 0.968256
v-SVR, RBF, C=10000 0.886611 0.824827
e-SVR, RBF, C=10000 0.886987 0.822105
v-SVR, RBF, C=100 0.801025 0.758815
e-SVR, RBF, C=100 0.802816 0.754466
v-SVR, P2, C=100 0.589363 0.329591
v-SVR, P2, C=10000 0.586909 0.318773
¢ -SVR, P2, C=100 0.585684 0.314160
£ -SVR, P2, C=10000 0.547156 0.219399

TABLEII
PERFORMANCE OF DIFFERENT ALGORITHMS IMPLEMENTED IN WEKA
FOR NUMERICAL AVERAGE MOLECULAR WEIGHT (MN)

Algorithm Training set  Testing set
Random forest, N=100 0.999800 0.999200
kNN, k=10, 1/d 0.999400 0.998600
REPTree 0.997202 0.995405
MS5 rules 0.970225 0.958637
Additive regression 0.946145 0.954138
&-SVR, RBF, C=10000 0.812702 0.795307
v-SVR, RBF, C=10000 0.802816 0.753250
&-SVR, RBF, C=100 0.781633 0.744769
€-SVR, P2, C=100 0.774576 0.732051
£-SVR, P2, C=10000 0.774928 0.731196
v-SVR, RBF, C=100 0.777571 0.729658
v-SVR, P2, C=10000 0.776161 0.715039
v-SVR, P2, C=100 0.775985 0.712505

TABLEIIT

PERFORMANCE OF DIFFERENT ALGORITHMS IMPLEMENTED IN WEKA
FOR GRAVIMETRICAL AVERAGE MOLECULAR WEIGHT (MW)

Algorithm Training set  Testing set
kNN, k=10, 1/d 0.999800 0.999600
Random forest, N=100 0.999800 0.999600
REPTree 0.999000 0.998001
MS rules 0.987241 0.984064
Additive regression 0.967076 0.959420
&-SVR, RBF, C=10000 0.441427 0.441294
v-SVR, RBF, C=10000 0.428501 0.436392
e-SVR, RBF, C=100 0.364937 0.362163
v-SVR, RBF, C=100 0.340589 0.341991
&-SVR, P2, C=10000 0.216970 0.214276
v-SVR, P2, C=100 0.216970 0.213999
v-SVR, P2, C=10000 0.216970 0.213906
£ -SVR, P2, C=100 0.216970 0.213444

For kNN, 10 neighbors were selected and the inverse
distance weighting of instances were used. For Random
Forest, 100 trees were used, and for SVM, two different values
for the cost parameter were used: 100 and 10000.

It can be seen that the KNN and Random Forest are clearly
better for the considered problems. It is somehow surprising
that the Support Vector Machine models have such a poor
performance in these cases.

IV. REGRESSION BY THE LARGE MARGIN
NEAREST NEIGHBOR ALGORITHM

In all neighbor-based methods, the distance metric is
crucially important. That is why researchers have tried to not
only use a single metric for all the problems, but to adapt the
distance metric to the problem at hand, in order to have better
performance. One way to adapt is was to use the idea of a
large margin, one of the fundamental ideas of support vector
machines. It was transferred to the kNN method for
classification tasks [12]-[14], resulting in the large-margin
nearest neighbor method (LMNN). In this case, learning
involves the optimization of a convex problem, defined as:
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where 7, €{0,1} is 1 only when x; is a target neighbor of x;,
v, =10, if and only if y,#y, and 0 otherwise, d, is the

distance between x; and x;, &, is the loss and 4,20 is a

constant. A “target” neighbor is an instance with the same
class label, and an “impostor” is a neighbor with a different
class label.

The LMNN method was adapted for regression, resulting in
the Large Margin Nearest Neighbor for Regression (LMNNR)
algorithm [10], [11]. It uses an objective function F, which is
to be minimized, which takes into account 3 criteria:

F=w -F+w, -F,+w; -F,, )

where the weights of the criteria are normalized:

wh+ws +wi =1,
In order to simplify the expressions of the F; functions, let

us make the following notations, where d), means the
weighted square distance function using the weights we search

for: d,=d,(x.x,). d, =d, (x.x,), g =|f(x)-f(x;)| and
2 =) ()= f(x,)].

The first criterion is:

FIZZn: Zdw(l—gﬁ)a 3

i=1 jeN (i)

where N(7) is the set of the nearest k£ neighbors of instance i.
This criterion says that the nearest neighbors of i should have
similar values to the one of i, and more distant ones should
have different values. It tries to minimize the distance between
an instance i/ and its neighbors with similar values. If a
neighbor j has a dissimilar value, the second factor, 1 — g,
becomes small and the distance is no longer necessary to be
minimized.
The second criterion is expressed as:

=YY Smaxli+d, (1-g,)-d, (1-g,).0)- ()

i=1 jeN(i)leN(i)

It takes into account a pair of neighbors, j and /, by analogy
to a target and an impostor. We try to minimize the distance to
the neighbors with close values (the positive term), while
simultaneously trying to maximize the distance to the
neighbors with distant values (the negative term). The value of
this function criterion cannot be negative. Moreover, the
distance to an instance with a dissimilar value should be larger
than the distance to an instance with a close value. The large

margin concept is applied by forcing these two distances to
differ by at least 1. This is an arbitrary value and can be
changed without affecting the optimization problem; it would
only result in the scaling of the model weights.

The third criterion is used in general to prevent the values
of the weights from becoming too large (however, it is not
used for our particular case studies, because the weights of the
model do not become very large anyway):

F=3Ym(). 5)

j=1 =1

The optimization of the objective function is performed by
gradient descent, using an approximate differential method
with the central difference definition of the derivative [15].
That is, for a small ¢, the following relation holds, where the
truncation error is O(¢?):

(x+e)—f(x—¢)

' ~f
J'(x) = "

(6)

TABLE IV
THE BEST PERFORMANCE OF THE LMNNR ALGORITHM FOR THE THREE
CONSIDERED PROBLEMS

No No. No
. optimizati " Training Testing
Dataset proto- regression
es on neighbors set set
p neighbors
1 3 3 1 0.999952
Monomer 1 5 5 1 0.999953
conversion
) 2 3 3 1 0.999952
2 5 5 1 0.999953
Numerical 1 3 3 1 0.999638
avleragle 1 5 5 1 0.999623
molecular
weight 2 3 3 1 0.999638
(Mn) 2 5 5 1 0.999623
Gravimetri 1 3 3 1 0.999812
cal alwerellge 1 5 5 1 0.999816
fmo‘eonar 2 3 3 1 0999812
weight
(Mw) 2 5 5 1 0.999816

For all the following configurations, the algorithm was
applied 10 times and the best result was recorded. Table IV
presents the best performance of the LMNNR algorithm.
Similar as for the algorithms implemented in Weka, the
coefficient of determination R* was used as a performance
measure.

V.CONCLUSIONS

Even if the optimization method of LMNNR requires
repeated experiments for the same configuration, the results
are very good and actually better than the results provided by
well-established machine learning algorithms implemented in
Weka. This shows that the model based on the combination of
the k-nearest neighbor paradigm with the idea of the large
margin has a great potential for regression problems.

The good quality of the results is also due to the adaptive
sampling method, which gives the most relevant information
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to the algorithms by selecting more sample points in the
regions where the process has a higher variation and a smaller
number of points in the more uniform regions.
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