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Linear Dynamic Stability Analysis of a Continuous
Rotor-Disk-Blades System
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Abstract—Nowadays, using rotating systems like shafts and
disks in industrial machines have been increased constantly. Dynamic
stability is one of the most important factors in designing rotating
systems. In this study, linear frequencies and stability of a coupled
continuous flexible rotor-disk-blades system are studied. The Euler-
Bernoulli beam theory is utilized to model the blade and shaft. The
equations of motion are extracted using the extended Hamilton
principle. The equations of motion have been simplified using the
Coleman and complex transformations method. The natural
frequencies of the linear part of the system are extracted, and the
effects of various system parameters on the natural frequencies and
decay rates (stability condition) are clarified. It can be seen that the
centrifugal stiffening effect applied to the blades is the most
important parameter for stability of the considered rotating system.
This result highlights the importance of considering this stiffing
effect in blades equation.

Keywords—Rotating shaft, flexible blades, centrifugal stiffening,
stability.

I. INTRODUCTION

OTATING systems as remarkable machine components
are widely used in industrial applications such as turbines,
compressors, and aircraft engines. Chang-Jian and Chen [1]
studied the dynamic behavior of a flexible rotor supported by
porous and non-porous journal bearings. Different non-
periodic responses including quasi-periodic and chaotic
motions were detected in the dynamic response of the system.
The same authors [2], [3] surveyed the rub-impact between the
rotor and stator of the aforementioned rotor-bearing model.
Sanches et al. [4] studied a helicopter ground resonance
with  isotropic and  anisotropic  multibladed rotor
configurations. They employed the Floquet theory for
nonlinear dynamic analysis of the system. Also, it was shown
that the bifurcation points of the system were dependent on the
anisotropic parameters of the system. Santos et al. [5] studied
nonlinear phenomena of a coupled rotor-blades system. The
system was comprised of a rigid rotor mounted on a flexible
foundation and four flexible blades. The blades were modeled
using Euler-Bernoulli beam theory. Theoretical results were
validated by experimental results for various angular
velocities. Chang-Jian [6] studied the dynamic behavior of a
gear pair system located on a rotor—bearing system with
various strong nonlinear effects containing nonlinear
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suspension effect, nonlinear couple-stress fluid film force,
nonlinear rub-impact force, and nonlinear gear mesh force.
Occurrences of the different nonlinear responses such as
periodic, sub-harmonic, and chaotic was studied.

Khadem et al. [7] examined the primary resonances of a
simply supported in-extensional rotating shaft. The source of
the nonlinearity of the shaft was the geometrical nonlinearity
and large amplitudes of the vibrations. The multiple scales
method was used for the analytical solution. The same authors
examined two mode combination resonances in the
abovementioned system [8]. Shahgholi et al. [9] investigated
free vibration analyses of a nonlinear slender rotating shaft
with simply support conditions. Rotary inertia and gyroscopic
effect were taken into account to model the system. The
forward and backward nonlinear frequencies of the slender
rotating shaft were extracted. The same authors [10] surveyed
the stability of a rotor system with multi-rigid disk. Multiple
scales method was used for analytical analyses. In addition,
they investigated the influences of the different system
parameters like number of disks, disk mass moment of inertia,
rotational speed, external damping, and position of disks on
the forward and backward linear frequencies, steady state
response, stability, and bifurcations of the system response.
They showed that bifurcations happened in the lower speeds
by increasing the number of disks. Moreover, it was proved
that the response bifurcations occurred in the lower speeds by
increasing the number of disks.

Yan et al. [11] studied the dynamic behavior of a flexible
rotor on the short journal bearings with nonlinear damping
suspension. The equations of motion were solved numerically,
and the bifurcation diagrams, orbits, Poincaré maps, and
amplitude spectra were used to investigate the system motion.
It was proved that the effects of the nonlinear suspension on
the stability of the system were dependent on the rotating
speed of the rotor. Wang et al. [12] investigated dynamic
behaviors of a blade-rotor-bearing system. The blades were
modeled as a rotating pendulum and a discrete rotor was
located on the journal bearings. Parametric equations of
motion were transformed to equations with constant
coefficients using the nodal diameter coordinates and periodic
transformations. Nonlinear dynamic behaviors of the system
were surveyed using the Poincaré maps, three-dimensional
spectral plots, and bifurcation diagrams. Zou et al. [13] studied
analytically the transverse superharmonic resonances of a
marine propulsion shaft under the first blade frequency
excitation. The effects of the support stiffness, external load,
propeller mass, damping ratio, and slender ratio on the
dynamic behavior of the system were surveyed. They showed
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that the nonlinearity in the system behavior decreased by
increasing the front and back stern bearings and thrust bearing
stiffness. In addition, it was shown that the effects of the
middle bearing on the system behavior were negligible.

Genta [14] studied the stability of a rotating blade arrays.
An array of rotating pendulums, rigid disk, and dashpot as a
suspension were considered to model the system. The stability
of the system was investigated considering the effects of the
interaction between blades, suspension, and rotating and non-
rotating damping. They represented that the system with long
blades became unstable in the un-damped in-plane vibration
due to the interaction between the blades and suspension.

According to the mentioned researches, the stability
analysis of a coupled continuous flexible rotor-disk-blades
system has not been yet tried out, while it may achieve notable
results. Hence, in this work the linear frequencies and stability
of a coupled flexible continuous rotor-disk-blades system has
been studied. The Euler-Bernoulli beam theory is used to
model the blade and shaft. Considering the gyroscope term of
the rotor and the centrifugal stiffing effect applied to the
blades for stability analysis of the rotor-disk-blades system is
one of the innovations of this work. The equations of motion
are obtained using the extended Hamilton principle. The
Coleman and complex transformations are employed to
simplify the equations of motion. The natural frequencies of
the linear part of the system are obtained, and the effects of the
different system parameters on the frequencies and decay rates
(stability condition) of the system are investigated.

[I. MODELING AND DERIVATION OF EQUATIONS

Fig. 1 depicts a rotor system comprised of a rotating shaft, a
disk, and blades that are located at (x=Xxy) position of the

shaft. The shaft and blades are modeled as flexible beams for

which rotary inertia is considered, but shear deformation is

omitted. The following coordinates are considered to study the

dynamics of the system:

1) The X-Y-Z frame, as an inertial coordinate system.

2) The x-y-z local frame attached to the principal axes of the
deformed shaft cross section.

Fig. 1 Inertial and local coordinates for the continuous rotor-disk-
blades system

To obtain the equations of motion, the extended Hamilton

principle is employed as:
t

EI(T7V)dt:O (1
0

where T, V, & and t are the kinetic energy, potential energy,
variational operator, and time, respectively. The kinetic and
potential energy of different components of the system are:

T =Tt + Tpisk + Thiades * Tim+ ¥V =Vshat +Vblades 2

im>

where Tg.,Tpi> and Tgge are the kinetic energy of the
shaft, disk and blades, respectively. Also Vg, and Vg,qe are

the potential energy of the shaft and blades, respectively. Also,

T, is related to dynamic imbalances or mass eccentricity of

the shaft. These terms are obtained in the following sections.

B. The Kinetic and Potential Energy of the Rotating Shaft

Use The displacements of the rotating shaft are nominated
by variables U(X,t), V(X,t) | and W(X,1)  where these
variables are the deflections of the shaft in an arbitrary
location X in the X, Y, and Z directions, respectively. The
transformation between the original frame X-Y-Z and the local
frame X-y-z is described by three successive Euler's angles

w(x,t), O(Xt), and B(X.1) (Fig. 2) [7] w(Xt) and
6(X,t) are due to the shaft bending, and P(X,1) is related to

the torsional deformation; moreover, B(X,1) is the torsional
rigid body rotation of the shaft about X -axis, which can be
demonstrated as:

B(X, 1) =Qt+g(x1) 3)

where € is the rotational speed of the rotor.

Yy, Y

Fig. 2 Transformation between inertial and local coordinates using
Euler's angles [7]

The angular velocities @,,®,, @; and curvatures ki, ko
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and ks of the rotating shaft can be extracted by the Euler
angles. Hence, the angular velocities and curvatures of the
shaft can be represented as [15]:

o, =(p+Q—yrsind), w, =(y singcos b+ Hcosg), 4)
o, =(y7 cosgcosd —Osing)

k,=(¢'-y'sin0), k, =(y'singcos @+ 0'cos ¢ ), (5
k, =(yw'cosgcos@—0'sing)

where prime and dot denote differentiation with respect to the
x and t, respectively. Thus, the kinetic and potential energies
of the rotating shaft can be written as:

s|

|
Toai =%J. (m(u2+\72+v'\/2)+I,wf+|2a)22+l3a)32)dx (6)
0

1!
Vnatt =5.[0(N“a2 + Dllkl2 + Dzzkz2 +D33k32 )dx (7

where m, L, I}, I, I3, Ny, Di1, D2y, D33 and o are the mass per
unit length of the shaft, length of shaft, polar mass moment of
inertia, mass moment of inertia about y-axis, mass moment of
inertia about z-axis, longitudinal stiffness, torsional stiffness,
flexural stiffness about y-axis, flexural stiffness about z-axis,
and strain along the neutral axis of the shaft, respectively,
which can be determined as:

Iy :I(y2+zz)dm P :J‘z2 dm , I3 :Jyzdm
D, =J'AG( y2 +2%)dA, Dy =J'AEz2dA N, =JAEdA

a=(1+u" ) +v?+w? -1, Dy :j Ey’dA
B

®)

It is worthy to note that I,=I33 and D2,=Ds; for a circular
shaft. The kinetic energy due to dynamic imbalances of the
shaft is as [7]:

mQ? [ei(x)Jref(x)de

Tin =%.fol o [Ve,(x)+vwe,(x)]sin0at | dx ©)
+[\iey( X)—We,( X )] cosQt

where ey(x) and e,(x) are mass eccentricity distributions with
respect to the y and z-axes, respectively.
C.The Kinetic Energy of the Disk

The disk is supposed to be rigid and is located at the middle
of the shaft; its potential energy is zero and the kinetic energy
is obtained as:

02 .2 i 2 2 2
Taisk =(mdisk(u VW) + Jgigeor + g (03 + @ )) (10)

O( X=Xy )

where mgisk, Jaisk, laisk and 8(x) are mass of the disk, polar mass
moment of inertia of the disk, diametrical mass moment of

inertia of the disk, and the Dirac delta function.

D.The Kinetic and Potential Energies of the Blades
With the aim of analyzing the dynamics of the blades, a

local coordinate is considered described by %o Yoo% s Vb
axis is along the radial direction of disk and blades; its z, axis
is in disk plane and perpendicular to blades and its x;, axis is
perpendicular to y, and z, axes. Based on Fig. 1, the position
vector of an arbitrary particle on the i-th blade is obtained as:

Xg HU(Xg,t)| |cos@(Xq,t) —sing(xy,t) 0
Rycamy =1 V(Xg,t) -{sirwﬁ,(xd ) cosd(Xg.t) O (11)
W(Xg.t) 0 0 1
1 0 O(xg,H)|1 0 0 Xy
0 1 0 0 1 —W(Xg,1) A (6,t)+2,
—0(xg.t) 0 1 0 w(xy,t) 1 r+¢

where r, ¢, A, Xy and y, are disk radius, distance of the

particle from the base of the blade, the amplitude of vibration
of the i-th blade, and the location of the particle on the cross
section of the blade, respectively. Furthermore, x4 is the
longitudinal position of the disk on the rotor. w(Xy,t),
O(Xg,t)and @(Xy.t) are the Euler angles of the rotor that are

calculated at the attachment position of the disk related to the
i-th blade. The ¢(Xy.t) is:

B (X3 ,1)=Qt+d( Xy ,t)+v; (12)

In (12) is the angle between i-th blade and 1-th blade,
which is obtained as:

y - 27D
n

i=1,.0 (13)

Using (11)-(13), the kinetic energy of the i-th blade is
extracted as:

.
T :lm’H' R R dA'dx:m(WZ+v2+u2)+ﬂj'/\?d§—
Glade; D o Jar Glader T (bladey 2 2
0

AT I " TAT
%(Qw})zj/\?dy%(gw})z +$(Q+¢)Z ST (j(Q2+)0) +
0

m'A'l;T,
T

p
m'A’rz(m;ﬁ)JAidg- a0 (Q+¢) +MAT, sing (W Q+§)+ Wy +U(Q+)0)
0

I "
A sing, [—WIAidg—(Q+¢5)VJAing+m’A'FZ cosg; (W(Q+§)+U(Q+§y —16) +
0 0

It should be mentioned that the blades are positioned on the
disk at (X=X ) point of the rotor; therefore, (14), ¥, 6", u,
vV, W, and éare calculated at this location. Furthermore, A',

m’, and |" are the cross sectional area, mass density, and the
length of the blade, respectively. I;; is the second moment of
area of the cross section of the blade about axis parallel with

(14)
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the rotor. I', and I'; in (14) are obtained as:

I I
Iy = [(r4s)dg, Ty = [(r+c)de (15)
0 0

The potential energy of the i-th blade is:
1 d?Ai(c.t) ’
Viplade) =5J'E|;l [dIT] de (16)
0

Therefore, the total kinetic and potential energy of the blades
are:

n n
TBlades = ZT(blade) ’ VBlades = Zv(blade) (17)
i=1 i=1
E. In-Extensionality Assumption

In (7), the strain along the neutral axis of the shaft (&) is

a=y\(1+u' Y +v?+w? —1. It is assumed that one of the

supports (right support in Fig. 1) can move along the
longitudinal axis; hence, strain along the neutral axis of the
shaft can be neglected (¢ =0) [15]. Therefore, one has:

u/:,ll_VIZ_\NrZ —1:—%(V'2+VV,2)+”~ (]8)

In addition, the shaft is supposed to be slender; hence, the
angles 7 and @ have the following relations with the linear

displacement of the shaft [7]:

'

w =sin™! %,
Jasu +v? (19)
0 =sin"! W

JHU ) v 4 w?

In addition, the main torsional frequency is much higher
than the main flexural frequency in the slender shafts;
therefore, the torsional inertia terms can be neglected
compared to the flexural inertia and stiffness terms [16]. Also,
if v=0(¢), and w=0(¢g),where ¢ is a small dimensionless
parameter, the nonlinearities would be of O(¢*) in the

torsional equation of motion; thus, one has:
X

$= —I V'WdX + ... (20)
0

Accordingly, equations of motion are extracted employing
(1) to (20) and the extended Hamilton principle as:

4
.. . A . .. . A
MA'A; + CoageA; + El, d |+ —MA(Q ) A, +m'A'(r+g)¢+m'A'(r+g)(Q+¢)ZL
dg dg
(21)
A : d2A, )
- mZA (Q+4) ((r+|’)2 (r+g)2)dg;}[m'A'\'/é(xxuI )cos ¢ —MAWS(X—Xg )sing ]=0  i=1..N,
. Vil)( 2 e 212 P L"XX 12 el ir2 (XA g il i 12,,(1IV)
m v+2.|.(v 'V W+ Ww)dX + 5 ”(v 'V W+ wWw)dxdx [+ cv — 1L QW — 1,V +D(v v
L 0 1o
VWOYOW 1 3WIWIY W " +WWVHW/+4VIVHV~/):|+
My [\'/5( x=x, )+ LEXD F gy w swrwnyax+ SO TR0 qyvw iw )dxdx]
2 2
I o Lo (22)
=g QWX =X, )= i V'O (X = X, )]+
i N" . . "|' . X . .
S(X—X, )Z[m’A’I’\‘Hm'AT3((Q+¢)W’)’—m’A’sin¢i [¢_[Aldg+2(Q+¢)IAidg+Fz(Q+¢)2 +r2w]
i=1 0 0

7m'A'cos¢i((Q+¢)ZIAidg7F2&7IA‘dg7FZU'(Q+¢)7FZU¢5’7FZW’(Q+¢5)]+

mAT, (\'/'”sinz g, +(V(Q+¢)—W")sin2¢, - (2( Q-+ g )" cos 24, ))} [ ma? (e,(x)cost—e, (x)sinC2t) | =0
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"X

W, P L ) P
l:m[w+2j.(v’z VW W )dx+7”(v’2 AV WP W XX [+ oW+ 1 QU — 1L, W+ D(W"v
0 10

AUV 4 3WVY WY e w 2w Y w +4W'W"W"’)J

W(X—X, )

X4
: j (V2 40V + W2+ Ww )dx +
0

{md‘sk (W&( X—=Xg )+

Jdistv,é‘( X—= Xd )7 Idiskwné‘( X— Xd )]

i=1

w'S(x—x, )%
o

"2

WV W W )dxdx] +
(23)

N, B . 1" . . I"
{5( X—X, )Z[m’A’I'\N— MAT, ((Q+§W') +mA'sing [—r2¢+r2v’—j/\,dg +(Q+¢) [Ads

0

~[,U'$~T,ug’ ~T,U'(Q+4))+m'A cos [frz(gmﬁ)z +I“2\7'(Q+¢5)72(Q+¢)indg—($IAidg+F2U'ﬂj+

mAT, [v‘v"cos2 é +[%”—W"(Q+¢)j sin2g, +(V'(Q+¢))cos 24, jﬂ—[mgr (e,(x)sinet +ey(x)cosgt)] =0

Equation (21) is the equation of motion of the blades and
(22) and (23) are equations of motion of the rotor in the Y and
Z axes, respectively. To be more understandable for the
readers, the terms are divided in a few brackets based on their
nature in the aforementioned equations. In (21), the terms are
separated in three brackets that are relevant to the blade
structure, the effect of rotor torsional vibration on the blade
vibration, and the effect of rotor lateral vibration on the blade
vibration, respectively. In (22) and (23), the terms are grouped
into four brackets that are related to the rotor structure, the
effects of the mass and mass moment of inertias of the disk on
the lateral vibration of the rotor, the effects of the mass, mass
moment of inertia and vibration of the blades on the lateral
vibration of the rotor, and the mass eccentricity force of the
rotor, respectively.

The direction of viscous damping forces applied to the
rotating shaft and blades is opposite of the shaft and blades

velocities direction; therefore, the damping force C,;,q.A;, CV
and cw are added to (21), (22) and (23), respectively, where
Chplage and c are damping coefficients of the rotor and blade,
respectively.

III. TRANSFORMATIONS

The analytical analysis of the large number of the motion
equations is quite complicated and almost impossible; hence,
to reduce the number of equations of motion, the Coleman and
complex transformations are employed. Two parameters 77

and & are used in the Coleman transformation as [4]:

n="23 A(ct)sing, =23 A(ct)oss (24)
Nb i=1 Nb i=1

It is worthy to note that the Coleman transformation [4], the
nodal diameter coordinates of the blades [12] and the multi-
blade coordinate (MBC) transformation [17] have the same
nature. Also, in order to transform the equations of motion to a
complex plane, the following parameters are exploited:

ngg_jﬂ,ZZV‘i‘jW, ﬁ:§+j7757:\/_jw (25)

where j*>=-1. Using these transformations, 2+ N, equations

of motion (21)-(23) are transformed to two equations of
motions as:

Km(u;j(zzT+27'+%z')dx+22“(227"+ ‘Z‘T+'T'z')dxdx)]+cz'+ ol 2 -1,z
0 10

1 3 1 1_,
+D(z"’ +22"27"'+5z’Tz””+ET'z’z’”+zﬂz"2 +EZ“V ’z”z'+52“‘”z’2 +

"% ] (26)

1 Xg
{(mdisk + m'A’I’Nb)(Z'é(x—xd )+ S(X—x, )%j(zﬁwr 77+ 72 )X+ (X - X, )Z?j [ 227+ 27+ 2 yaxdx
0

AT

. [\ N mANDF3 s
+jO(J +mANp1"3)z6(x—xd)—(ldisk+f)z5(x—xd)

disk

rAvN I
{m (X%, )! 'pdg}[gz(jez(x)+ey(x))elﬂ‘]:o

10
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4

N - d NG n NG N I\ NG o d
[mAp+Cb]adcp+EI]]T;]+[_2mA(Q+¢)2p_zmA(Q+¢)Jp_mA¢|p_Cb]adc(Q+¢)Jp+mA(r+g)(Q+¢)2£

/A/

(Q+ gy H(r + 1 (r+g)2}3—g§]+[m’A’25(x—xd)]:o

where @, ¢, ¢ are:

e =3 (e

IV. NONDIMENSIONALIZED EQUATION

In order to perform the analytical analysis, the following
dimensionless parameters are applied to the equations of
motion:

X 7"
.z ap i e e .
[(Z +7J'(22’ 7+ A7 X L ”(Zz’ﬂ +7"7 + 77 )X X )62+ 2 -2 (2
0

10

1 3 _
b A S L LA L
2 2
Il*xdxd

8X —X, )—”(22 7T+ I )HO R, S(X —

d*p’

+% M7 +;Z('V)' )] +[R (2 8(X=X, )+(x—

@7

€ € o X
:Tp,z :TZ,eV:TV,ey:Ty’x :Il’xd:delz\/_—]j
amlt L D G Mt el (29)
Q - t=t 4 ’cblade ' AY ’Cr - > Iz - )
D ml mA Y D JmD ml
mAn, T
N et
I = I, R Jga +MAN, T R — s 2
1 rnrlz’ 1 rnrll 22 r.nrl"! 2
U / 1/, 4
UL R L
ml m/l mADI | I'

Thus, the following dimensionless equations of motion can be
obtained using these terms:

+27" "7 +

o
X, )% j(zz"*i’* +7"7" 4777 Ydx+ 30)

X)2" =R 3(X =X)Z" 1 +[R,(X =X )Ipdg] —[97(Ge, (X )+e, (X e’ ] =

[B +Couac P +17) i F1H[-2(Q 44 ) p -2AQ +4)ip’ —(Q +4 )ip’ -

€1y

Q44 . .

Coaae (2 +¢"ip’ +(ry ¢ QY +4 ) p %{(Q*’l)z_(rd

V.GALERKIN METHOD I n . .
= . >

The equations of motion of the system are dependent on zOt) ;;ﬁl(x )%i(tn=1, pc.t) (34)

time and the position. Upon utilization the Galerkin method, m

the equations would be dependent only on time [18]. The rotor
shaft and blades are modeled as the free-free and clamped-free
beams, respectively. Therefore, the standard mode shapes of
the rotor and blades are used for the Galerkin method.
Consequently, these mode shapes can be written as:

G (X )=sinizx ,0<x" <1,i=12,.. (32)

vi(s")=1sin( Bl's")—sinh( Al's" )} -

(sin( S1")+sinh( A1")) N - (33)
(cos(/fil')+cosh(ﬁ,|'))'{Cos(ﬁ"g )=cosh(Al'e )}

B =1.8751,8,1' =4.6941, B,I' =7.8548

s 0067 (1

Displacements of the rotor and blades are discretized to
time and the position employing the following relations:

=Z'//i(§*)%i(t),m21

i=1

where n and m are the number of rotor and blades mode
shapes that are utilized in the Galerkin method, respectively.

VI. ANALYTICAL ANALYSIS (LINEAR)

The linear coupled nondimensional motion equations of the
system are acquired by keeping the linear terms of the
equations of motion of the system ((30) and (31)) as:

e Q2 -1 + 2 le S(X=X )+

(35)
IR, O(X =X, )2" —R,O(X =X, )" +

1
R0(X =x,)f pds” =0
0
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. .. dip o Lo
P+ Gy P 17, i -207p" -2Q'ip
T v dp” (36)
“Chae Q2P +Z 6(X =X, ) +(1y +5 )Q ac
B
oo, . Lo dip
A (1 e )z}dgf’z -0

Equation (35) is the linear equation of motion of the rotor.
In (35), the terms are related to the mass inertia of the rotor,
the damping of the rotor shaft, the gyroscopic effect of the
rotor (generated by the polar mass moment of inertia), the
effect of diametrical moment of inertia of the rotor, stiffness of
the rotor, the mass inertia of the disk and blades (like an added
mass effect in fluid-structure phenomena [19]), the effect of
the gyroscopic moment of the disk and blades on the rotor, the
effect of diametrical moment of inertia of the disk and blades
on the rotor, and the effects of vibrations of the blades on the
rotor, respectively. Also, (36) is the linear equation of motion
of the blades array. In this equation, the terms are relevant to
the mass inertia of the blades, the damping of the blades, the
stiffness of the blades, the spin softening effect [20], Coriolis
acceleration, the rotating damping, and the effect of the rotor
vibration on the blades (like a base excitation [21]),
respectively. Two last terms are related to the centrifugal
stiffening effect in the rotating structure [22]. These equations
((35) and (36)) can be compared to (54) of [14] that focuses on
a discrete model of rotor, disk, and blades array assembly.
Indeed, one of the superiority of this paper over [14] is
considering the gyroscope term of the rotor and the centrifugal
stiffening effect applied to the blades. On the other hand, in
(54) of [14], the term related to the spin softening effect was

r
o (T_l) (€, r,and | were rotational speed, disk radius, and

length of the pendulums), respectively. In [14] it was shown
that the sign of this phrase determined the stability condition

of the system. For short (I<r or (|£_1)>0) and long

pendulums (I>r or (|£_1)<o), system was stable and

unstable, respectively. It should be noted that the blades were
modeled as pendulum in the discrete model of the reference
[14]. In the present work, which the blades are modeled using
Euler-Bernoulli beam theory, the related term is -20. The
reason of this difference from a mathematical point of view is
that the spin softening term for the rotating pendulum, string,
and blades are positive, negative, and negative, respectively.
This is visible by considering (6), (36), and (54) of chapter 13
of [22]. Conceptually, when the rotary pendulum oscillates in
the centrifugal force field, this force helps the move to
continue. In contrast, if the cross-section or particle of the
rotating string or beam vibrates in the centrifugal force field,
this force will prevent moving and will undermine the stiffness
force of the beam and string.

VII. NUMERICAL EXAMPLES

To analyze the natural frequencies in detail, the Campbell

diagram of the system is plotted. At first, the stiffness of the
blades and the damping of rotor and blades are not taken into
account to draw diagram. For validation of the obtained
Campbell diagram with Fig. 4 of [14], the gyroscopic term of
the rotor and centrifugal stiffening effect (that are innovation
of this work) applied to the blades are neglected in the first
plot.

For obtaining the natural frequencies of the system, firstly,
the Galerkin method is applied to (35) and (36), and the
coupled ordinary differential equations of the system are
extracted. Then, the characteristic equation of the system is
obtained using the system equations in matrix form and
calculating determinant of them [21]. The characteristic
equation of the system is a four degree polynomial; therefore,
it has four roots. These roots have real and imaginary parts
that are natural frequency and decay rate, respectively. If the
decay rate of one of the modes is positive, the system will be
unstable.

2L _|

4 | L I I I
o 1 2 3 4 & & 7 8 ] 10

Fig. 3 Campbell diagram (natural frequencies) of the rotor, disk, and
blades assembly without considering the stiffness of the blades, the
damping of rotor and blades, the gyroscopic term of the rotor, and
centrifugal stiffening effect of the blades for I'/r, =5

decay rate
@ & b Hh o om s @

o
Fig. 4 Campbell diagram (decay rates) of the rotor, disk, and blades
assembly without considering the stiffness of the blades, the damping
of rotor and blades, the gyroscopic term of the rotor, and centrifugal

stiffening effect of the blades for I'/r, =5

To have a detailed insight, without considering the stiffness
of the blades, the damping of rotor and blades, the gyroscopic
term of the rotor, and centrifugal stiffening effect applied to
the blades, the system has at least one unstable mode in all
rotational speeds for different ratios of the blade length and
disc radius (long and short blade) in any case. Figs. 3 and 4
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show, respectively, natural frequencies and decay rates of the
rotor, disk, and blades assembly as a function of the rotational
speed without considering the stiffness of the blades, the
damping of rotor and blades, the gyroscopic term of the rotor,
and centrifugal stiffening effect applied to the blades for
I’/1,=5. As it is clear in Fig. 4, since decay rate of one of

modes is positive in all speeds, system is unstable in any
speeds. As it was noted, in this case, for different ratios of the
blade and disc length, the Campbell diagrams of the system
are qualitatively the same as Figs. 3 and 4. The decay rate
diagram is not changed significantly by adding the gyroscopic
term of the rotor, and system still has an unstable mode. Fig. 5
depicts the natural frequencies of the rotor, disk, and blades
assembly as a function of the rotational speed without
considering the stiffness of the blades, the damping of rotor
and blades, and centrifugal stiffening effect of the blades fo
I’/r,=5. It is obvious that the dependency of the natural

frequencies to the rotational speed increases by considering
the gyroscopic term of the rotor.

] 1 2 3 4 [ [] 7 8 9 10

Fig. 5 Campbell diagram (natural frequencies) of the rotor, disk, and
blades assembly without considering the stiffness of the blades, the
damping of rotor and blades, and centrifugal stiffening effect of the

blades for I'/r, =5
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Fig. 6 Campbell diagram (natural frequencies) of the rotor, disk, and
blades assembly without considering the damping of rotor and blades
and centrifugal stiffening effect of the blades for I'/1, =5

Figs. 6 and 7 demonstrate natural frequencies and decay
rates of the rotor, disk, and blades assembly as a function of
the rotational speed without considering the damping of rotor
and blades and centrifugal stiffening effect for I'/r =5.

Comparing Fig. 6 to Fig. 5 shows that the natural frequency

related to the blade at zero rotational speed increases by
shifting the stiffness of the blades from zero to 4.5
(nondimensional). Also, comparing Fig. 4 to Fig.7 proves that
the range of instability is changed to higher rotational speeds
(Q' >42) for I'/r,=5 by considering the stiffness of the

blades. Fig. 6 depicts that the system has four frequencies.
Two of them are about 2.1 and 4.3 related to the rotor and
blade at rest (Q =0). The investigations show that in this

case, the unstable region existed for all of the blades and rotor
length ratio, but if the blades become shorter, their natural
frequencies will increase; hence, the difference between
blades and rotor natural frequencies will become greater.
Accordingly, the interaction between the blade and rotor
frequencies and instability occur at higher rotational
velocities. Fig. 8 shows natural frequencies of the rotor, disk,
and blades assembly as a function of the rotational speed
without considering the damping of rotor and blades and
centrifugal stiffening effect applied to the blades for I'/ 1, =3.

The coalescence of frequencies and emergence of the
instability occur at (Q' =10.4). For instance, the range of the
instability for the shorter blade (I'/r; =0.7) is obtained as
(Q >220). This means that the system with a shorter blade
becomes unstable at higher rotational speeds.

decay rate

Fig. 7 Campbell diagram (decay rates) of the rotor, disk, and blades
assembly without considering the damping of rotor and blades and

centrifugal stiffening effect of the blades for |'/r, =5
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Fig. 8 Campbell diagram (natural frequencies) of the rotor, disk, and
blades assembly without considering the damping of rotor and blades
and centrifugal stiffening effect of the blades for I'/r, =3

Fig. 9 represents natural frequencies of the rotor, disk, and
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blades assembly as a function of the rotational speed without
considering the damping of rotor and blades for I'/r,=5.

Further analyses show that decay rates for all modes of the
system are zero in this case and for different blade to rotor
length ratio (short and long blade). In fact, the system with
different length blades is dynamically stable by considering
the centrifugal stiffening effect applied to the blades. The
computations indicate that the normal magnitude of the rotor
and blades damping without considering the centrifugal
stiffening effect of the blades cannot eliminate instability.
With the centrifugal stiffening effect, the decay rates decrease
from zero to a negative value by considering damping for the
rotor and blades (Fig. 10). Of course, we know that the normal
amount of damping slightly affects the natural frequency
values. Finally, we can say that the determining parameter for
stability condition of the rotor, disk, blades system is the
centrifugal stiffening effect applied to the blades, and it
indicates the importance of considering the centrifugal
stiffening in the corresponding mathematical modeling.

Fig. 9 Campbell diagram (natural frequencies) of the rotor, disk, and
blades assembly without considering the damping of rotor and blades

for I'/r, =5
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Fig. 10 Campbell diagram (decay rates) of the rotor, disk and blades
for I'/r, =5 and C, =C,,,, =0.01

VIII.CONCLUSIONS

The linear frequencies and stability of the coupled
continuous flexible rotor-disk-blades system have been
studied. The Euler-Bernoulli beam theory has been used to
model the blade and shaft. The equations of motion have been
obtained using the extended Hamilton principle. The Coleman
and complex transformations have been utilized to simplify

the equations of motion. The natural frequencies of the linear

part of the system have been extracted, and the dependency of

the frequencies and decay rates (stability condition) to various
parameters of the system have been investigated. The most
important result of this work can be represented as:

* By considering blades as a pendulum in the rotor-disk-
blade system [14] the sign of the spin softening term is
different from its sign in cases the blades are modeled as a
continuous beam (this work); hence, the stability
condition of the system changes.

* The dependency of the natural frequencies to the
rotational speed increases by considering the gyroscopic
term of the rotor, but the instability condition of the
system remains constant.

* The rotating system with different length blades is
dynamically stable by considering centrifugal stiffening
effect of the blades. Therefore, we can say that the
determining parameter for stability of the rotor, disk,
blades system is the centrifugal stiffening applied to the
blades.

REFERENCES

[1] C. W. Chang-Jian, C. K. Chen, “Chaotic response and bifurcation
analysis of a flexible rotor supported by porous and non-porous bearings
with nonlinear suspension,” Nonlinear Analysis: Real World
Applications, 10 (2009) 1114-1138

[2] C. W. Chang-Jian, C. K. Chen, “Chaos and bifurcation of a flexible rub-
impact rotor supported by oil film bearings with nonlinear suspension,”
Mechanism and Machine Theory, 42 (2007) 312-333.

[3] C.W. Chang-Jian, C. K. Chen, “Chaos of rub—impact rotor supported by
bearings with nonlinear suspension,” Tribology International, 42 (2009)
426-439.

[4] Sanches L, Michon G, Berlioz A, Alazard D, “Instability zones for
isotropic and anisotropic multibladed rotor configurations,” Mechanism
and Machine Theory, 46 (2011) 1054-1065.

[5] Santos IF, Saracho CM, Smith JT, Eiland J, “Contribution to
experimental validation of linear and non-linear dynamic models for
representing rotor—blade parametric coupled vibrations,” Journal of
Sound and Vibration, 271 (2004) 883-904.

[6] C. W. Chang-Jian, “Bifurcation and chaos of gear-rotor—bearing system
lubricated with couple-stress fluid,” Nonlinear Dynamic, 79(1) (2015)
749-763.

[7] S. E. Khadem, M. Shahgholi, S. A. A. Hosseini, “Primary resonances of
a nonlinear in-extensional rotating shaft,” Mechanism and Machine
Theory, 45 (2010) 1067-1081.

[8] S. E. Khadem, M. Shahgholi, S. A. A. Hosseini, “Two-mode
combination resonances of an in-extensional rotating shaft with large
amplitude,” Nonlinear Dynamic, 65 (2011) 217-233.

[9] Shahgholi M, Khadem S. E. and Bab S., “Free vibration analysis of a
nonlinear slender rotating shaft with simply support conditions,”
Mechanism and Machine Theory, 82 (2014) 128-140.

[10] Shahgholi M, Khadem S. E. and Bab S., “Nonlinear vibration analysis of
a spinning shaft with multi-disks,” Meccanica, 50(9) (2015) 2293-2307.

[11] S. Yan, E. H. Dowell, B. Lin, “Effects of nonlinear damping suspension
on nonperiodic motions of a flexible rotor in journal bearings,”
Nonlinear Dynamic, 78(2) (2014) 1435-1450.

[12] L. Wang, D. Q. Cao, W. Huang, “Nonlinear coupled dynamics of
flexible blade-rotor—bearing systems,” Tribology International, 43
(2010) 759-778.

[13] D. Zou, Z. Rao, N. Ta, “Coupled longitudinal-transverse dynamics of a
marine propulsion shafting under superharmonic resonances,” Journal of
Sound and Vibration, 346 (2015) 248-264.

[14] Genta, G., “On the stability of rotating blade arrays,” Journal of Sound
and Vibration, 273(4-5) (2004) 805-836.

[15] Nayfeh, A. H. and P. F. Pai, “Linear and nonlinear structural
mechanics,” 2004, New York: Wiley-Interscience.

1679



[16]

[17]

(18]

[19]

[20]

[21]

[22]

International Journal of Mechanical, Industrial and Aerospace Sciences
ISSN: 2517-9950
Vol:10, No:9, 2016

Nayfeh, A. H., “Introduction to perturbation techniques,” 2011, John
Wiley & Sons.

Staino A., B. Basu, and S. R. K. Nielsen, “Actuator control of edgewise
vibrations in wind turbine blades,” Journal of Sound and Vibration,
2012.331(6): p. 1233-1256.

L. Meirovitch, “Fundamentals of Vibrations,” McGraw Hill, New York,
2001.

Parviz Ghadimi, Hadi Paselar Bandari, Ali Bankhshandeh Rostami,
“Determination of the heave and pitch motions of a floating cylinder by
analytical solution of its diffraction problem and examination of the
effects of geometric parameters on its dynamics in regular waves,”
International Journal of Applied Mathematical Research, 1(4) (2012)
611-633.

S. W. Shaw, B. Geist, “Tuning for performance and stability in systems
of nearly Tautochronic torsional vibration absorbers,” J. Vibr. Acoust,
132(2010) 041005 (-1).

W Thomson, “Theory of Vibration with Applications,” GEORGE
ALLEN & UNWIN, London, 1981.

G. Genta, “Dynamics of Rotating Systems,” springer, (2005).

1680



