
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:10, No:9, 2016

1661

Milling Simulations with a 3-DOF Flexible Planar
Robot

Hoai Nam Huynh, Edouard Rivière-Lorphèvre, Olivier Verlinden

Abstract—Manufacturing technologies are becoming continuously
more diversified over the years. The increasing use of robots for
various applications such as assembling, painting, welding has also
affected the field of machining. Machining robots can deal with
larger workspaces than conventional machine-tools at a lower cost
and thus represent a very promising alternative for machining
applications. Furthermore, their inherent structure ensures them a
great flexibility of motion to reach any location on the workpiece with
the desired orientation. Nevertheless, machining robots suffer from
a lack of stiffness at their joints restricting their use to applications
involving low cutting forces especially finishing operations. Vibratory
instabilities may also happen while machining and deteriorate the
precision leading to scrap parts. Some researchers are therefore
concerned with the identification of optimal parameters in robotic
machining. This paper continues the development of a virtual robotic
machining simulator in order to find optimized cutting parameters in
terms of depth of cut or feed per tooth for example. The simulation
environment combines an in-house milling routine (DyStaMill)
achieving the computation of cutting forces and material removal
with an in-house multibody library (EasyDyn) which is used to
build a dynamic model of a 3-DOF planar robot with flexible links.
The position of the robot end-effector submitted to milling forces is
controlled through an inverse kinematics scheme while controlling
the position of its joints separately. Each joint is actuated through
a servomotor for which the transfer function has been computed
in order to tune the corresponding controller. The output results
feature the evolution of the cutting forces when the robot structure
is deformable or not and the tracking errors of the end-effector.
Illustrations of the resulting machined surfaces are also presented.
The consideration of the links flexibility has highlighted an increase
of the cutting forces magnitude. This proof of concept will aim
to enrich the database of results in robotic machining for potential
improvements in production.
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I. INTRODUCTION

ROBOTIC machining is a growing technology in the field

of mechanical manufacturing. This technique consists

in machining materials with an industrial robot used to

position and orientate the spindle handling the cutting tool. For

the moment, robotic machining is dedicated to applications

involving low cutting forces such as finishing operations, a
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low precision such as trimming operations or the shaping

of soft materials. The main fields of cutting applications

using industrial robots are deburring, pre-machining, cutting,

trimming, cleaning, sanding, prototyping, degating of cast

metal parts and finishing operations [1]. Soft materials like

foam, wood or plastics can be machined with an equivalent

accuracy compared with a conventional machine-tool.

However, it does not prevent the use of robotic machining to

shape material like CFRP (Carbon Fiber Reinforced Polymer),

aluminium, stone and steel for end-machining operations of

moderate precision parts (Fig. 1).

Fig. 1 Applications of robotic machining

Using industrial robots for machining operations represents

a very promising alternative to conventional machine-tools as

they are less expensive for larger workspaces. However, they

are less accurate but it is accepted that the cost-saving would

be around 30% compared with an equivalent machine-tool

with a comparable workspace [2]. The productivity gain is

therefore more interesting when larger parts are machined with

industrial robots: it is the case in aerospace and in sailing for

which large composite parts could be finalised by machining

robots for finishing operations such as trimming still achieved

manually. The automation of those tasks would drive to a

reduction of cost and scrap parts [3]. Whereas industrial robots

can reach every location on the workpiece with a desired

orientation thanks to their agility, their lack of stiffness causes

the appearance of vibrations which lead to inaccuracy on the

produced parts. This problem constitutes the main obstacle

that prevents the adoption of robots for classical machining

processes. The stiffness of a serial robot is typically less

than 1 N/μm which means fifty times lower than the rigidity

of a machine-tool [4]. The greater flexibility of robots also
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lowers their natural frequencies, up to 100 times lower than

for machine-tools, and may generate milling instabilities as the

chatter phenomenon [5]. Chatter vibrations sometimes occur

when the tool machines a previous milled surface yielding to

wavy surfaces [6].
Recent research in robotic machining focuses on the

prediction of vibratory instabilities by analysing the interaction

with the material [7], the compensation of trajectory errors in

robotic machining using 3D-piezo mechanism by adapting the

position of the spindle [8] or by modifying the tool path offline

[9], the optimization of the placement of the workpiece with

respect to the robot [2] or the identification of joints stiffness

of six-revolute industrial serial robots [10].
A project devoted to the identification of optimal cutting

parameters in robotic machining has recently started at the

Faculty of Engineering of Mons (Belgium) combining our

skills and experiences in machining and in multibody systems

dynamics. Since their identification is still empirical, the

combination of multibody systems coupled with milling is

particularly welcome to simulate the dynamic behaviour of

robotic machining processes and improve their performance.

The first step of the project aims to build a robotic machining

virtual simulator in order to perform simulations. This model

should be validated with machining experiments afterwards

for eventually allowing a better understanding of the milling

phenomena as well as possible new optimization methods.

Optimal cutting parameters will therefore be obtained quickly,

which would allow a potential cost reduction in the

industries. So far, a coupling between an in-house multibody

library called EasyDyn [11], [12] and an in-house milling

routine called DyStaMill (DYnamics STAbility of MILLing

operations) has been performed to reproduce classical results

in milling such as stability lobes (axial depth of cut as

a function of the spindle speed) and thus validate their

association [13]; an extension of the model to a 3-DOF planar

robot composed of rigid links was also presented at that

time. Nonetheless, as stated by a paper of S. Mousavi [14],

an accurate prediction of robotic machining stability is only

possible by considering the joints flexibility and the robot links

flexibility as well.
This paper will therefore pursue the modelling of a 3-DOF

planar robot with flexible links submitted to cutting forces.

The first section sets the simulation environment by presenting

the main characteristics of the multibody library EasyDyn
and the milling routine DyStaMill as well as their coupling.

A planar robot model with flexible links completed with the

compliance of its servomotors of each joint is then built within

the simulation environment. A position controller guides the

robot end-effector through an algebraic inverse kinematics

scheme. Tracking errors at the end-effector with and without

being submitted to cutting forces are presented as well as a

comparison of the evolution of the cutting forces according to

whether the links are rigid or flexible. Finally, the machined

surfaces are illustrated.

II. SIMULATION ENVIRONMENT

The simulation environment gathers in one C++ single

program a multibody library and a milling routine. This

section presents the different components of the simulation

environment as well as the processing of their interactions.

A. EasyDyn: The Multibody Library

The framework EasyDyn is an in-house C++ multibody

library which was initially developed for teaching purposes

at the Theoretical mechanics, Dynamics and Vibration unit of

the Faculty of Engineering of Mons (Belgium) [11], [12]. It

sometimes contributes to research projects as it is the case

here and is available for free on the Internet.

EasyDyn allows its users simulating problems represented

by second-order differential equations and, more particularly,

the dynamic behaviour of a mechanical multibody system.

The approach currently implemented is based on the

minimal coordinates for the choice of the configuration

parameters q expressing the motion of the bodies. The

kinematics of all bodies is provided by the user through

homogeneous transformation matrices T function of the

chosen configuration parameters as far as there is a “one to

one” relationship between them and the configuration of the

system, which means that the configuration parameters have

to be independent. The number of configuration parameters

is consequently equivalent to the number of Degrees Of

Freedom (DOF). The expressions of position and orientation

of each body i coming from their transformation homogeneous

matrix T0,i are then derived symbolically in order to get the

expressions of their velocities and accelerations (T0,i gives

the position and orientation of the frame attached to the body

i with respect to the global reference frame 0) (Fig. 2). The

kinematics of each body i is accordingly a function of q and

its time-derivatives q̇ and q̈. Aside from the kinematics, the

user may also apply forces on each body.

Fig. 2 Frame situation of body i with respect to the global reference frame

The ncp equations of motion are then built according to the

given kinematics involving the ncp configuration parameters

and the applied forces on the nb bodies. Their form derives

from the application of the d’Alembert’s principle:

nB∑
i=1

[di,j · (Ri −miai)

+ θi,j · (MGi
− ΦGi

ω̇i − ωi × ΦGi
ωi)] = 0 j = 1, ncp

(1)

where: mi = the mass of body i; ΦGi
= central inertia tensor

of body i; Ri = resultant force of all applied forces on body

i; MGi = resultant moment at the center of mass Gi of all

applied forces on body i; vi = velocity of the center of mass

of body i; ai = acceleration of the center of mass of body i;
ωi = rotational velocity of body i; di,j = partial contribution
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of q̇j in the translational velocity of body i: vi =

ncp∑
j=1

di,j · q̇j ;

θi,j = partial contribution of q̇j in the rotational velocity of

body i: ωi =

ncp∑
j=1

θi,j · q̇j .

The consideration of the bodies flexibility is taken into

account by implementation of the so-called co-rotational

approach proposed by A. Cardona [15]. Whereas one

coordinate system attached to a rigid body allows describing

its motion, it seems natural that the motion of a flexible body

would be defined by the one its nodes. The co-rotational

approach implies the definition of an additional frame called

the co-rotational frame * which co-rotates with the flexible

body and represents the mean motion of its nodes. This

particular frame is floating and is not necessarily fixed to

one of the nodes. For instance, the motion of a flexible beam

is characterized by the one of the two coordinates systems

corresponding to its end nodes and its co-rotational frame

through their corresponding homogeneous transformation

matrices T0,i (Fig. 3).

Fig. 3 Flexible beam using the co-rotational approach

To recover the contributions of the flexible bodies in the

equations of motion, the co-rotational approach proposes to

express the kinetic energy of a N nodes flexible body as:

T =
1

2

∑
i

∑
j

{
v∗i
ω∗
i

}T

Mij

{
v∗j
ω∗
j

}
(2)

where: T = kinetic energy of a N nodes flexible body; v∗i =

velocity of node i projected in the co-rotational frame *; ω∗
i

= rotational velocity of node i projected in the co-rotational

frame *; Mij = partition of the FEM mass matrix of the body

corresponding to nodes i (lines) and j (columns).

The main interest of the co-rotational approach lies in

the direct use of the mass and stiffness matrices of the

FEM model of the flexible body. Finally, the equations of

motion are obtained by applying the Hamilton principle or

the Euler-Lagrange theorem on the expression of the kinetic

energy (2). Naturally, the elastic forces are computed from the

stiffness properties of the flexible element (see [16] for more

details).

B. DyStaMill: The Milling Routine

DyStaMill standing for DYnamics STAbility of MILLing

is an in-house routine written in C++ for the stability analysis

of milling operations. The routine is based on a macroscopic

model of the machining process considering cutting forces

acting on the system as force elements. Dynamic simulation

of milling operations involves the modelling of the workpiece

surface and the dynamic system as well as the prediction of

the cutting forces [17], [18].

The modelling of the surface is inspired by the ’eraser of

matter’ model proposed by G. Peigné [19]. The workpiece

profile is approximated by linked segments and updated

throughout the machining process. On the other hand, the tool

is discretized into slices along its revolving axis (Fig. 4) [20].

It is assumed that the displacement of the tool lies in a plane

perpendicular to its axis thus generating 2
1
2 D shapes. From this

material removal model, the routine allows simulating milling

operations such as slotting, contouring or pocket hollowing.

The modelling of workpiece surface must be accurate enough

in order to predict milling instabilities. This is especially true

when chatter phenomena occur as it is a regenerative process

arising when the tool removes material from a previously

machined surface [6].

Fig. 4 Axial tool discretization

Dynamic characteristics of the system are obtained from a

modal identification of the frequency response at the tooltip by

modal analysis. The complete dynamics of the system is then

modelled as the superposition of ncp second order differential

equations in a modal basis as:

m · q̈i + c · q̇i + k · qi = fi i = 1, ncp (3)

where: m = modal mass; c = damping coefficient; k = stiffness

coefficient; f = applied force.

Fig. 5 illustrates the equivalent mass-spring-damper system

corresponding to one of the modes contributing to the tool

frequency response.

Fig. 5 Single-axis vibrating mill model where: Ω = spindle speed; Fx =
cutting forces along x-axis

The numerical integration of the system dynamics provides

the time evolution of the tool position from which is based

the computation of the cutting forces. The cutting forces are

determined using analytical laws as long as a tool/material

couple is provided through cutting coefficients K. The model

proposed by Y. Altintas was adopted here for the computation
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of the elementary cutting forces dFt, dFr and dFa along the

tangential, radial and axial directions of each disc discretizing

the tool:

dFt = Kt,e dS +Kt,c h db
dFr = Kr,e dS +Kr,c h db
dFa = Ka,e dS +Ka,c h db

⎫⎬
⎭ (4)

where: K ,e = edge cutting coefficients; K ,c = shear force

coefficients; h = uncut chip thickness normal to the cutting

edge; dS = infinitesimal length of a helical cutting edge

segment; db = projected length of an infinitesimal cutting flute

in the direction along the cutting velocity (See [20] for details).

These local cutting forces are then integrated over the nz teeth

and over the ne discs to recover the global cutting forces

projected into the global reference frame:⎡
⎣ Fx

Fy

Fz

⎤
⎦ =

ne∑
e=1

nz∑
j=1

[B]

⎡
⎣ dFt

dFr

dFa

⎤
⎦ (5)

where: [B] = transformation matrix to project the local cutting

forces into the global reference frame; Fx, Fy, Fz = cutting

forces projected into the global reference frame.

C. Coupling of the Routines

For the purpose of this research project, the DyStaMill
routine was recently integrated within the multibody

framework EasyDyn for being able to simulate complete

robotic machining operations. The framework EasyDyn was

naturally chosen for hosting the milling routine due to its

high scalability when particular features must be added such

as the computation of the cutting forces, the update of the

machined surface, the joint compliance and actuators of the

robot as well as its controller.

Fig. 6 Solving of the coupled dynamic system

In order to validate the coupling, the first step consisted

in replicating results previously obtained for machine-tool

simulations with the milling routine working standalone.

Several examples were successfully verified with the coupled

system ranging from stable and unstable simulations to

stability lobes diagrams. The mechanical system was

eventually extended to a 3-DOF planar robot composed of

rigid links thanks to the potential of the multibody framework.

At that time, only stable cutting conditions were tested as the

kinematics of the robot end-effector was imposed [13].

Fig. 6 presents the interactions between the milling routine

and the multibody framework. Once the data for the multibody

system (the number of bodies, the number of degrees of

freedom, the kinematics, ...) and the milling simulation (the

tool dynamics and its geometry, the material, ...) have been

collected, the solving of the coupled system can begin: the tool

position (TCP: Tool Center Point) is first sent to DyStaMill
in order to determine the chip thickness h which is then used

for the computation of the cutting forces F . An integration

step of the coupled dynamic system can finally take place

using one of the multibody library functions before updating

the workpiece surface for the next time step. Note that the

chosen time step must lie above 30 steps per spindle revolution

to make sure that the modelling of the workpiece surface is

sufficiently updated to predict milling instabilities.

III. ROBOT MODELLING

Having coupled the milling with the multibody aspects, the

enhancement of the robot model was the next preoccupation.

As compared with the previous robot model, the current one is

now composed of flexible links and its joints are driven by the

torques coming from servomotors. Therefore, the end-effector

motion is this time dynamically actuated.

A. Inspiring Robot and Model

The robot model is inspired by a Fanuc machining robot

from the M-20iATM series shown in Fig. 7.

Fig. 7 Fanuc robot (M-20iATM series)

More precisely, a planar version comprising 3 degrees of

freedom was chosen as a case of study. The simplified model

of the robot consists of 3 links and 3 revolute joints to position

and orientate the end-effector. The corresponding kinematic

chain thus includes 3 configuration parameters defining the

joints motion whose rotation axes are parallel to the z-axis.

The cutting forces are applied on the end-effector along the x-

and y-axes as shown in Fig. 8. Note that in the implemented

model, the cutting forces are directly exerted on the end node

of the last link such that there is no offset along the z-axis.

Flexibility of the links has been taken into account

by applying the aforementioned co-rotational approach to

equivalent flexible beams. As the CAD1 models of the Fanuc

robot were provided by the manufacturer, dimensions and mass

1CAD: Computer-Aided Design
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Fig. 8 Fanuc robot model

properties of the three links were reasonably identified for a

simplified model. Links characteristics are given in Appendix

A.

For the sake of simplicity, the co-rotational frame of

each link is located at the first node of each flexible

beam. Moreover, in addition of the joints motion, each

flexible beam introduces 6 more configuration parameters in

order to represent its deformation. Therefore, the motion of

the end effector node may be expressed from the product

of the elementary homogeneous transformation matrices

corresponding to the succession of joints/links along the

kinematic chain as:

T0,6 =Trotz(q0) ·Tdisp(L1 + q3, q4, q5) ·Trotx(q6)

·Troty(q7) ·Trotz(q8)

·Trotz(q1) ·Tdisp(L2 + q9, q10, q11) ·Trotx(q12)

·Troty(q13) ·Trotz(q14)

·Trotz(q2) ·Tdisp(L3 + q15, q16, q17) ·Trotx(q18)

·Troty(q19) ·Trotz(q20)

(6)

The expression of the kinematics for the other nodes is

similar. The planar robot model thus comprises a total of 21

configuration parameters: 3 of which are dedicated to the joints

motion (q0, q1 and q2) while the remaining 18 ones (q3 to q20)

represent the deformations of the links.

B. Motors Modelling

Robots typically rely on servomotors as actuators to position

accurately their moving links. The model adopted here is based

on the control of a DC motor for each joint. This simple model

only needs two equations to represent the dynamics of the

motor: the torque equation and the equation of the terminal

voltage. The latter which can be seen as the motor command

is written as:

U = L · di
dt

+Ra · i+Kb · θ̇ (7)

where: U = motor command provided by the joint controller;

L = motor inductance; i = motor current; Ra = armature

resistance; Kb = motor speed constant; θ = motor joints

position (either q0, q1 or q2).

Note thati due to its small inductance, the first term of (7) is

neglected. Using (7), the output torque applied on each joint

is expressed as:

τ = Km · i = Km · U −Kb · θ̇
Ra

(8)

where: τ = motor torque; Km = motor torque constant.

Servomotor data were found in a datasheet provided by the

robot manufacturer. These data are given in Appendix B.

The multibody modelling of the servomotor has been

achieved by considering two rigid bodies: one for the case

and the other one for the output shaft (Fig. 9). Rigid bodies

properties are also given in Appendix B.

Fig. 9 Servomotor (A06B series)

C. Robot Controllers

A two-level controller is required to correctly position and

orientate the robot end-effector throughout its motion (Fig.

10). The first level is in fact the inverse kinematic algorithm

which converts the desired end-effector position (xe−ed ,

ye−ed ) and orientation (θe−ed ) from the task space into joint

desired positions (qd0 , qd1 and qd2 ). An algebraic solution of

the inverse kinematic algorithm is implemented within the

simulation environment [21]. Then, each desired joint position

qdi
is compared to the actual position of the corresponding

joint qi leading to an error εi. The second control level deals

with each joint position error using a discrete PID controller.

Fig. 10 Inverse kinematics and joints controllers

Each discrete PID controller was tuned separately regarding

the load seen by each joint along the robot kinematic chain.

In order to set the gains of each PID controller, the transfer

functions in position were computed for each joint. The

location of the joint along the kinematic chain had mainly

effects on their time constant. Afterwards, an iterative process

took place to tune each controller separately relying on a

frequency domain approach [22]. Once all gains had been
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Fig. 11 Tracking along x-axis without machining

set with this method, the proportional gains were increased

to speed up the dynamic of all the joints. Note also that a

low-pass filter is applied on the derivative term of each PID

controller for noise reduction. The final gains values and the

joints transfer functions are given in Appendix C.

Finally, PID controllers output a motor command Ui for each

joint servomotor.

D. Set-Point Tracking without Machining

Before running robotic machining simulations, the

two-level-controller was tested without any material removal

to assess its performances. The end-effector was imposed

to follow a straight line trajectory along the x-axis at a

speed of 0.005 [m/s]. Since the robot model now includes

flexible links, the results are compared with its previous

version including rigid links. From a simulation point of

view, the controller loop was intended to start 0.05 [s] after

the beginning of the test so that the system would be at rest.

The sampling frequency was 100 [Hz].

The graphs hereafter mainly focus on the differences of the

results obtained with a rigid links robot and a flexible links

robot. Fig. 11 shows the end-effector tracking along the x-axis

in both cases. At the beginning, it seems that the end-effector

of the flexible links robot is slower but catches up its delay

after some seconds. Afterwards, the tracking is the same for

both robots.

Fig. 12 depicts the y-axis tracking errors at both

end-effectors. Beside the fact that the end-effectors should stay

along the x-axis, a slight vertical deviation along the y-axis

occurs. Larger errors are made more visible for the flexible

links robot. The y-axis errors ultimately stabilize around the

same values for both robots.

IV. RESULTS AND DISCUSSION

Robotic machining simulations were then achieved to

examine the effect of the cutting forces on the system.

Machining parameters have been fixed to focus on the results

obtained with the rigid links robot and the flexible links

robot. Shear force coefficients defining the tool/material

couple are inspired from an article of T. Insperger [23] in

Fig. 12 Tracking along y-axis without machining

which a 7075-T6 aluminium alloy is machined. On the other

hand, the axial depth of cut was fixed at 0.05 [mm] and

the spindle speed was settled at 8000 [RPM] for a feed of

vf=0.05 [mm/tooth]. For each test, a number of 700 spindle

rotations, each divided in 30 steps, were simulated to machine

the material with a one-tooth mill of 10 [mm] diameter.

A summary of the machining parameters can be found in

Appendix D.

As before, the set point tracking of each simulation starts

0.05 [s] after the beginning of the test and the initial location

of the end-effector is set at (-0.01,0). Concerning the location

of the workpiece, its left upper corner lies at (0,0) as seen in

Fig. 8. The robot controller can therefore stabilize by the time

its end-effector arrives at the workpiece.

A. Unstable Machining Simulation

Even with a small axial depth of cut of 0.05 [mm], the

machining simulations turned out to be unstable for both

robots. Cutting forces rose suddenly after a few seconds of

simulation (Fig. 13). As the flexible links robot was a bit

slower, instabilities were detected after those generated by the

rigid links robot. If the first unstable peaks are compared, one

can observe that the cutting forces generated by the flexible

links robot are somewhat greater.

A look at the tracking of the end-effectors along the x-axis

clearly shows a slowdown of their speed as they progress into

the material. At the end of the simulation, they even seem to

be stuck in the material (Fig. 14).

The end-effectors tracking along the y-axis was much worse

as the tool center points deviate by 0.01 [m] at the end of the

simulation instead of staying close to y=0 [m].

All those observations lead to the intermediate conclusion

that the generated instabilities were related to the controller

itself and not to the machining process. Indeed, as mentioned

in numerous textbooks related to the control of manipulators

[21], [24], a mere position control might not suffice to

deal with any contact between the end-effector and the

working environment. An hybrid position and force controller

would be more appropriate since it would compensate for

the cutting forces along the y-axis while following the
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Fig. 13 Cutting forces

Fig. 14 Tracking along x-axis while machining

Fig. 15 Tracking along y-axis while machining

set point along the x-axis. Both the force and the position

cannot be controlled along the same axis at the same time [25].

B. Stable Machining Simulation

For this machining experiment, the cutting forces along the

y-axis seemed to be the major source of disturbance since the

end-effectors deviate under their effects. Then, to compensate

those cutting forces and somehow reproduce the effects of

force controller, a spring whose stiffness coefficient is Kr=9E8

Fig. 16 Robot with spring at end-effector along y-axis

[N/m] and damping coefficient is Cr=100 [Ns/m] was inserted

between both end-effectors and the ground. This y-axis spring

is maintained vertically throughout the machining process

(Fig. 16).

End-effectors set point tracking along the x-axis is improved

without the presence of the y-axis cutting forces. The

end-effector of the rigid links robot is still a bit faster but

then, both end-effectors follow the same trajectories (Fig. 17).

Fig. 17 Tracking along x-axis while milling (+spring)

The end-effectors displacements along the y-axis are

accordingly driven by the spring dynamics. They now remain

near y=0 [m] with an error around 10e-9 [m] which means

that the end-effectors move essentially along the x-axis (Fig.

18).

Concerning the obtained cutting forces, it is now more

visible that taking into account the links flexibility increases

their amplitude for the tested operation. The cutting force peak

shown in Fig. 19 and due to the first contact with the workpiece

is also higher for the flexible links robot. Overall, an increase

of about 15 % of the cutting forces amplitude can be observed

for this machining experiment.

C. Output Surface Quality

The milling routine is also able to display the machined

surfaces. The obtained surfaces shown in Fig. 20 comes from

the simulations performed with the rigid links robot.

As expected, the flexible links robot have deteriorated the

surface finish a little more due to vibratory effects (Fig. 21).



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:10, No:9, 2016

1668

Fig. 18 Tracking along y-axis while milling (+spring)

Fig. 19 Cutting forces (+spring)

Fig. 20 Machined surface: robot with rigid links - a) without spring
(unstable case) - b) with spring (stable case)

Fig. 21 Machined surface: robot with flexible links - a) without spring
(unstable case) - b) with spring (stable case)

V. SUMMARY

This paper presented the extension of a 3-DOF planar

robot model by taking into account its links flexibility to

achieve robotic machining operations. Indeed, it is said in

the literature that the flexibility of the robot links has a

great influence on the stability of robotic machining. For this

purpose, the so-called co-rotational approach was used to

model flexible bodies in a simulation environment combining

the multibody and the milling aspects. Then, the flexible links

robot was controlled through an inverse kinematic scheme. Its

end-effector was imposed to follow a straight line to achieve

half-immersion milling operations.

This proof of concept showed that cutting forces obtained

with the flexible links robot were about 15 % greater than

those retrieved from its homologous rigid links robot for the

tested operation. As expected, the quality of the surface finish

is also degraded due to vibratory effects coming from the

flexibility of the links. On the other hand, it was also observed

that a single position control of the robot end-effector was

not sufficient in order to deal with the material interactions.

Future prospects will therefore focus on the implementation

of a hybrid position and force controller to compensate the

cutting forces disturbances and eventually simulate stability

lobes diagrams commonly found in machining.

APPENDIX A

Links characteristics if a steel square solid-section is

assumed:

L [m] Mass [kg] Iyy [m4] Izz [m4]

Link1 1 117 2.8125E-5 2.8125E-5

Link2 0.68 119.34 4.21875E-5 4.21875E-5

Link3 0.15 16.23 1.8066E-5 1.8066E-5

Classical steel properties are assumed:

Density [kg/m3] Young’s Modulus [Pa] Poisson’s Ratio

7800 2.1E11 0.3

APPENDIX B

Electrical properties for the torque constant Km (speed

constant Kb) and the armature resistance Ra:

Km = 0.77 [N ·m
A ]

Kb = 0.77 [V/rad/s]

Ra = 0.17 Ω

Servomotor characteristics:

Mass [kg] Ixx [kg·m2] Iyy [kg·m2] Izz [kg·m2]
Case 17 0.0995 0.0995 0.0359
Shaft 1 0.003 0.0062 0.0062

APPENDIX C

Identified transfer functions under their Laplace form:

Gq0(s) =
1.3

s(59.06s+ 1)
(9)
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Gq1(s) =
1.3

s(10.27s+ 1)
(10)

Gq2(s) =
1.3

s(0.04s+ 1)
(11)

Controller feedback gains used in simulations:

PID Kp [N·m
rad

] Ki [ N·m
rad·s ] Kp [N·m·s

rad
] Cut freq. [Hz]

q0 19.62 0.79 36.57 4.39
q1 5.45 0.13 17.37 2.56
q2 2.18 1.29 0.28 64.52

APPENDIX D

Summary of the machining parameters:

Material = 7075-T6 aluminium alloy

[Kt,c,Kr,cKa,c] = [550,200,0] [MPa]

Mill diameter = 10 [mm]

Number of edge = 1 [tooth]

Helix angle = 0 [degree]

Feed = 0.05 [mm/tooth]

Spindle speed Ω = 8000 [RPM]

Axial depth of cut = 0.05 [mm]

Direction of rotation = up-milling

Cutting conditions = half-immersion
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[1] A. Abele, M. Weigold, S. Rothenbücher, “Model and identification of an
industrial robot for machining applications,” Annals of CIRP, vol. 56-1,
pp. 387–390, 2007.

[2] S. Caro, C. Dumas, S. Garnier, B. Furet, “Workpiece placement
optimization for machining operations with a kuka kr270-2 robot,”
IEEE International Conference on Robotics and Automation (ICRA),
pp. 2921–2926, May, 2013.

[3] C. Dumas, A. Boudelier, S. Caro, S. Garnier, M. Ritou, B. Furet,
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the ’Faculté Polytechnique’ (Faculty of Engineering)
of Mons in the Department of Machine Design
and Production Engineering. His teaching activities
include several topics such as geometry and
graphical communication, metrology, topography,
manufacturing processes and mechanical design. He
received the engineer degree in mechanics in 2003
and his PhD concerning the study and the simulation
of machining processes in machining in 2007. His

research interests are in the area of simulation of machining techniques and
detection of instabilities in machining.

Olivier Verlinden is a full professor at the ’Faculté
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