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Abstract—This paper is to compare the parameter estimation of
the mean in normal distribution by Maximum Likelihood (ML),
Bayes, and Markov Chain Monte Carlo (MCMC) methods. The ML
estimator is estimated by the average of data, the Bayes method is
considered from the prior distribution to estimate Bayes estimator,
and MCMC estimator is approximated by Gibbs sampling from
posterior distribution. These methods are also to estimate a parameter
then the hypothesis testing is used to check a robustness of the
estimators. Data are simulated from normal distribution with the true
parameter of mean 2, and variance 4, 9, and 16 when the sample
sizes is set as 10, 20, 30, and 50. From the results, it can be seen
that the estimation of MLE, and MCMC are perceivably different
from the true parameter when the sample size is 10 and 20 with
variance 16. Furthermore, the Bayes estimator is estimated from the
prior distribution when mean is 1, and variance is 12 which showed
the significant difference in mean with variance 9 at the sample size
10 and 20.

Keywords—Bayes method, Markov Chain Monte Carlo method,
Maximum Likelihood method, normal distribution.

I. INTRODUCTION

NORMAL distribution is an important distribution in the

field of statistics and is often used in tremendous data

especially in social science. Most data are presented in terms

of continuous probability distribution such as income, weight,

and height of a person. The parameters of normal distribution

consist of mean and standard deviation which is remarkably

useful to explain any characteristics of a population. The

mean determines the location of the center of population and

standard deviation determines the dispersion from the mean

of population.

Several methods of parameter estimation are common such

as the moments method, the maximum likelihood method,

the minimum chi-square method, the least square method,

and the Bayes method. The estimators obtained from these

methods have been shown well; e.g. unbiasedness, sufficiency,

completeness, and minimum variance unbiased estimator.

In this paper, we interested in the maximum likelihood

method because the estimator is shown in a class of minimum

variance unbiased estimator [1]. The Bayes method depends

on a prior probability distribution to estimate a posterior

distribution which is obtained from a Bayes estimator.

Moreover, the posterior distribution can be used with Markov

Chain Monte Carlo (MCMC) method [2] to estimate MCMC

estimator.
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II. METHODS OF PARAMETER ESTIMATION

The parameter estimation of the mean in normal distribution

consists of the following three methods.

A. Maximum Likelihood (ML) Method

The ML method corresponds to many well-known

estimations in statistics because it is easy to understand and

calculate the estimators. The basic idea of ML estimation is

to treat the likelihood function as a function of parameter, and

find the value of parameter that maximizes it.

Suppose that we have the random variables X1, . . . , Xn

which assumed a normal distribution function depended on

unknown parameter mean (μ), and variance (σ2); however,

our goals will approximate the mean. The probability density

function of xi depended on μ, σ2 is written by

f(xi|μ, σ2) =
1√
2πσ2

exp −
{

1

2σ2
(xi − μ)2

}
. (1)

The likelihood function is denoted as

L(μ) =
n∏

i=1

f(xi|μ, σ2). (2)

The ML estimator is solved as:

L(μ) = (2π)−n/2σ−2nexp −
{

1

2σ2

n∑
i=1

(xi − μ)2

}

lnL(μ) = −n

2
ln(2π)− 2nlnσ − 1

2σ2

n∑
i=1

(xi − μ)2

∂lnL(μ)

∂μ
= −2

∑n
i=1(xi − μ)(−1)

2σ2
= 0

μ =

∑n
i=1 xi

n
= x̄.

The μ̂ML is ML estimator is written as

μ̂ML =

∑n
i=1 xi

n
= x̄. (3)

B. Bayes Method

In Bayesian probability theory, if the posterior distributions

are in the same distribution as the prior probability distribution,

the prior and posterior will be called conjugate distributions,

and the prior is called a conjugate prior for the likelihood

function. In this case, the normal distribution is conjugate

distribution with respect to a normal likelihood function: If the



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:10, No:9, 2016

442

likelihood function is normal, choosing a normal prior over the

mean will ensure that the posterior distribution is also normal.

The resulting posterior distribution is

f(μ|σ2, xi) ∝ L(μ)g(μ|σ2)

∝ (
√
2πσ2)−nexp −

{
1

2σ2

n∑
i=1

(xi − μ)2

}

× (
√

2πσ2
0)

−1exp −
{

1

2σ2
0

(μ− μ0)
2

}

∝ exp

(
−1

2

(
nσ2

0 + σ2

σ2σ2
0

){
μ2 − 2μ

[
nx̄σ2

0 + μ0σ
2

nσ2
0 + σ2

]})
.

(4)

The parameter μ can write in form of normal distribution

as [3]

μ|σ2, xi ∼ Normal

(
nx̄σ2

0 + μ0σ
2

nσ2
0 + σ2

,
σ2σ2

0

nσ2
0 + σ2

)
, (5)

then the Bayes estimator or μ̂Bayes can be computed by

μ̂Bayes =
nx̄σ2

0 + μ0σ
2

nσ2
0 + σ2

, (6)

σ̂2
Bayes =

σ2σ2
0

nσ2
0 + σ2

. (7)

In this case, the prior is denoted as μ0 = 1 and σ2
0 = 12.

C. Markov Chain Monte Carlo (MCMC) Method

The MCMC method was first introduced by [4] as a

method to simulate values from posterior distribution which

are developed from the Bayes method. The Gibbs sampling

[5], [6] is a popular method which are generated values from

the posterior distribution approximated as a MCMC estimator.

Therefore, we carry out the WinBUGS program [7] which

is a statistical software for Bayesian analysis to estimate

MCMC estimator. In order to construct a Gibbs sampling from

MCMC, the posterior distribution from Bayes method is used

to calculate:

μ|σ2, xi ∼ Normal

(
nx̄σ2

0 + μ0σ
2

nσ2
0 + σ2

,
σ2σ2

0

nσ2
0 + σ2

)
∼ Normal(μ̂Bayes, σ̂

2
Bayes). (8)

Using this result, the Gibbs sampling algorithm proceeds as:

1) Set prior parameter: μ0 and σ2
0 .

2) Set μ = μ(t−1).

3) Calculate μ̂Bayes and σ̂2
Bayes.

4) Generate μ from Normal(μ̂Bayes, σ̂
2
Bayes).

5) Set μ(t) = μ, t = 1, 2, . . . , T .

Finally the MCMC estimator is approximated by

μ̂MCMC =
1

T

T∑
t=1

μ(t). (9)

III. SIMULATION STUDY

The simulation study is to generate the data in terms of

normal distribution with true parameters μ = 2 and σ2 = 4, 9,
and 16 at the sample sizes n = 10, 20,30, and 50. The data

are generated 500 replications in each situation by R program

[8]. To investigate the performance of ML, Bayes, and MCMC

methods, these estimators are computed by

μ̂ML = x̄,

μ̂Bayes =
nx̄σ2

0 + μ0σ
2

nσ2
0 + σ2

,

μ̂MCMC =
1

T

T∑
t=1

μ(t).

Next, we obtain these estimators from 3 methods. The

hypothesis testing is used to test the mean of estimator in

normal distribution which is different from the true parameters.

In this case, the hypotheses are

H0 : μμ̂ = μ and H1 : μμ̂ �= μ

. The t statistic is computed as:

t =
¯̂μ− μ

sμ̂/
√
m
,

where sμ̂ =

√∑m

j=1
(μ̂j−¯̂μ)2

m−1 , df = m− 1, m is a number of

replications. For the level of significance at α = 0.05, we will

reject H0 if |t| > tα/2,m−1.

IV. RESULTS

The parameter estimations of normal distribution by ML,

Bayes, and MCMC methods are given in Tables I-III. The

first and the second columns of these tables present the

sample sizes and the true parameters from simulated data. A

mean, a standard deviation, a lower and an upper bound of

95% confidence interval are shown in the next four columns.

The last two columns list the t statistics and p-values for

hypothesis testing. The p-values of the ML and MCMC from

the tables indicate that the means of the estimated parameters

are different from the true parameters with μ = 2 , and σ2 =

16 at the sample sizes n = 10 and 20. For Table II, the Bayes

estimator shows the significant difference in the mean with μ
= 2 , and σ2 = 9 at the sample sizes n = 10 and 20.

Figs. 1-3 show the histograms of the estimated parameter

with ML method which followed a normal distribution. The

Bayes method shows the histogram in normal distribution at

at σ2 = 4, 9, and 16 on Figs. 4-6. For MCMC method, the

histograms follow a normal distribution at σ2 = 4, 9, and 16
on Figs. 7-9.
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TABLE I
THE MEAN, STANDARD DEVIATION (SD), LOWER CONFIDENCE

INTERVAL (LCI), UPPER CONFIDENCE INTERVAL (UCI), T STATISTICS

(T), AND P-VALUES BY ML METHOD

n μ = 2 mean S.D. t p-values

σ2 = 4 1.9799 0.6474 -0.6933 0.4844
n=10 σ2 = 9 1.9830 0.9136 -0.4140 0.6790

σ2 = 16 2.1312 1.2436 2.3589 0.0187*
σ2 = 4 2.0141 0.4648 0.6806 0.4964

n = 20 σ2 = 9 1.9678 0.6889 -1.0440 0.2970
σ2 = 16 2.1036 0.9016 2.5760 0.0104*
σ2 = 4 2.0189 0.3527 1.2013 0.2302

n = 30 σ2 = 9 1.9979 0.5237 -0.0891 0.9290
σ2 = 16 1.9860 0.7354 0.4237 0.6719
σ2 = 4 1.9990 0.2846 -0.0673 0.9463

n = 50 σ2 = 9 2.0112 0.3991 0.6305 0.5287
σ2 = 16 2.0250 0.6074 0.9215 0.3572

* indicated significance level at 5 %

TABLE II
THE MEAN, SD, LCI, UCI, T, AND P-VALUES BY BAYES METHOD

n μ = 2 mean S.D. t p-values

σ2 = 4 1.9489 0.6259 -1.8233 0.0688
n=10 σ2 = 9 1.9145 0.8531 -2.2396 0.0255*

σ2 = 16 2.000 1.1042 0.0018 0.9985

σ2 = 4 1.9976 0.4571 -0.1140 0.9093
n = 20 σ2 = 9 1.9328 0.6634 -2.2642 0.0239*

σ2 = 16 2.0363 0.8458 0.9619 0.3365
σ2 = 4 2.0076 0.3488 0.4913 0.6234

n = 30 σ2 = 9 1.9738 0.5116 -1.1414 0.2542
σ2 = 16 1.9444 0.7049 -1.7617 0.0787
σ2 = 4 1.9924 0.2827 -0.5935 0.5531

n = 50 σ2 = 9 1.9964 0.3934 -0.2008 0.8409
σ2 = 16 1.9986 0.5921 -0.0507 0.9596

* indicated significance level at 5 %
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Fig. 1 Histograms of estimated parameters μ with ML method when μ = 2
and σ2 = 4
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Fig. 2 Histograms of estimated parameters μ with ML method when μ = 2
and σ2 = 9

V. CONCLUSION

The mean of estimated parameter from ML and MCMC

methods are not different from the true parameters in most

cases except the large variance and small sample sizes.

However, Bayes method are not different from the true

parameters in most cases except the moderate variance and
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Fig. 3 Histograms of estimated parameters μ with ML method when μ = 2
and σ2 = 16
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Fig. 4 Histograms of estimated parameters μ with Bayes method when
μ = 2 and σ2 = 4
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Fig. 5 Histograms of estimated parameters μ with Bayes method when
μ = 2 and σ2 = 9
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Fig. 6 Histograms of estimated parameters μ with Bayes method when
μ = 2 and σ2 = 16

TABLE III
THE MEAN, SD, LCI, UCI, T, AND P-VALUES BY MCMC METHOD

n μ = 2 mean S.D. t p-values

σ2 = 4 1.9698 0.6473 -1.0409 0.2986
n=10 σ2 = 9 1.7040 0.9136 -0.7243 0.4692

σ2 = 16 2.1156 1.2436 2.0796 0.0380*
σ2 = 4 2.0084 0.4648 0.4596 0.6849

n = 20 σ2 = 9 1.9601 0.6888 -1.2940 0.1963
σ2 = 16 2.0938 0.9017 2.3270 0.0203*
σ2 = 4 2.0149 0.3527 0.9454 0.3449

n = 30 σ2 = 9 1.9923 0.5237 -0.3268 0.7439
σ2 = 16 1.9788 0.7355 -0.6434 0.5202
σ2 = 4 1.9958 0.2846 -0.3243 0.7458

n = 50 σ2 = 9 2.0066 0.3991 0.3699 0.7116
σ2 = 16 2.0189 0.6074 0.6981 0.4854

* indicated significance level at 5 %
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Fig. 7 Histograms of estimated parameters μ with MCMC method when
μ = 2 and σ2 = 4
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Fig. 8 Histograms of estimated parameters μ with MCMC method when
μ = 2 and σ2 = 9
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Fig. 9 Histograms of estimated parameters μ with MCMC method when
μ = 2 and σ2 = 16

small sample sizes, but the Bayes method is depended on

the parameters of prior distribution so the output may change

in this case. If we did not identify the prior distribution, the

ML method will work with good performance for estimating

parameter of normal distribution.
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