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A Compact Quasi-Zero Stiffness Vibration Isolator
Using Flexure-Based Spring Mechanisms Capable of
Tunable Stiffness

Thanh-Phong Dao, Shyh-Chour Huang

Abstract—This study presents a quasi-zero stiffness (QZS)
vibration isolator using flexure-based spring mechanisms which afford
both negative and positive stiffness elements, which enable
self-adjustment. The QZS property of the isolator is achieved at the
equilibrium position. A nonlinear mathematical model is then
developed, based on the pre-compression of the flexure-based spring
mechanisms. The dynamics are further analyzed using the Harmonic
Balance method. The vibration attention efficiency is illustrated using
displacement transmissibility, which is then compared with the
corresponding linear isolator. The effects of parameters on
performance are also investigated by numerical solutions. The
flexure-based spring mechanisms are subsequently designed using the
concept of compliant mechanisms, with evaluation by ANSYS
software, and simulations of the QZS isolator.

Keywords—Vibration isolator, quasi-zero stiffness, flexure-based
spring mechanisms, compliant mechanism.

1. INTRODUCTION

ASSIVE linear isolator is able to effectively decrease

vibration when its natural frequency is less than /2 times
that of the excitation frequencies. Low stiffness is desired in
order to enhance the bandwidth of the isolator, but this causes
an undesired large deflection. To overcome this limitation, high
static stiffness but with low dynamic stiffness has thus far been
more suitable for passive vibration isolators. Ideally, the
positive stiffness should be equal to the negative stiffness at an
equilibrium position under a designed load, which results in the
definition of an isolator with high static stiffness but low
dynamic stiffness, called a QZS isolator.

Many QZS isolators have been studied in depth over the last
two decades. Platus [1] suggested a 6-dof passive isolator using
flexure beams as negative stiffness coupled with a coil spring,
resulting in zero stiffness. Carrella et al. [2] used a vertical
spring with oblique springs to construct a QZS isolator, and
analyzed its statics. Gatti et al. [3] studied the dynamic
behaviors of a 2-dof system for a QZS isolator via horizontal
springs coupled with oblique springs. Huang et al. [4] used a
Euler buckled beam as the negative stiffness corrector in order
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to improve the isolator, and investigated the stiffness and
dynamic characteristics theoretically. In addition, QZS
isolators can be designed in other ways. Zhou et al. [5]
proposed horizontal cam-roller—spring mechanisms and
vertical coil springs to cancel the stiffness of the spring for a
QZS isolator. Xu et al. [6] proposed a vibration isolator
combining a positive stiffness spring with a novel magnetic
spring with negative stiffness in parallel to improve the
performance of the isolator. Kovacic et al. [7], [8] studied the
statics and dynamics of QZS stiffness. Robertson et al. [9]
studied design parameters for a QZS magnetic spring for
isolation. In the field of vehicle driver vibration isolators,
negative springs were used to minimize fundamental
frequencies of the isolator by Lee et al. [10]. Zhou and Liu [11]
used a mechanical spring as a flexible beam, in parallel with a
magnetic spring to produce tunable QZS stiffness for the
isolator. Negative stiffness was examined by Ibrahim [12]. Le
and Ahn [13] presented an experimental investigation of a QZS
isolator with negative stiffness. In the field of flexure-based
mechanisms, Kim et al. [14] presented an optimal design of a
QZS isolator using flexures for a wide range of payloads.
Recently, Meng et al. [15] analyzed QZS isolator with a disk
spring as negative stiffness element.

Almost all existing QZS isolators focus on vibration
attenuation. However, far too little attention has been paid to
the use of compliant mechanisms to make flexure-based spring
mechanisms for QZS vibration isolators: springs that are able to
self-adjust their stiffness. Compared with conventional
mechanisms, compliant mechanisms offer advantages such as
non-friction, lubrication-free, easy to fabricate, allowing for
monolithic manufacturing, and minimal maintenance [16]-[24].

This paper presents a QZS isolator for translational vibration
based on the concept of compliant mechanisms. Using
compliant mechanisms, flexure-based spring mechanisms are
designed to provide both negative and positive stiffness.
Compliant mechanisms possess advantages, such as being
friction-free, lubrication-free, easy to fabricate, suitable for
monolithic manufacturing, and requiring minimal maintenance.
The QZS isolator presented in this paper can therefore be
implemented in miniature space.

This study covers the statics and dynamics of this QZS
isolator with flexure-based spring mechanisms. The
non-dimensional stiffness of the isolator is then approximated
by a polynomial function using a Taylor series expansion up to
the order of 4 in order to analyze the dynamics of the system.
The nonlinear equation of the motion of the isolator is solved
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using the Harmonic Balance method, which determines the
relationships among the displacement amplitude, excitation
amplitude, and frequency. Moreover, the performance of the
isolator is evaluated using displacement transmissibility, which
is compared with a corresponding linear isolator with a QZS
isolator that only has positive stiffness.

II. DESCRIPTION OF THE MODEL

The model is based on the design concept initially suggested
by Platus [1], who used horizontal flexure beams to achieve a
negative stiffness, and a vertical coil spring representing a
positive stiffness, as given in Fig. 1 (a). Here, a schematic
diagram of a QZS isolator with flexure-based spring
mechanisms (FBSM) is developed without a coil spring, as
shown in Fig. 1 (b). A physical prototype model of a QZS
isolator with FBSMs at the static equilibrium position is shown

in Fig. 1 (¢). An exploded model of the isolator is presented in
Fig. 2. The entire system is fixed on a platform (1), which is
excited by an exciter. Two vertical springs with positive
stiffness kp (7) are coupled with two horizontal springs with
negative stiffness kq (6) and (10) through the top inner ring (9)
and bottom inner ring (14). The vertical springs provide
positive stiffness and adjust displacement by a vertical
adjusting screw (15). The vertical adjusting screw is connected
to the base (2) which is fixed to the platform. The horizontal
springs provide a negative stiffness. The horizontal springs are
connected with left sliders (4) and (12), which can move on
rays (3) and (13). The displacement of the horizontal springs
can be adjusted by adjusting screws (5) and (11). An isolated
object W has weight m (8). The springs are designed with
FBSMs in order to enable application within a miniature space.

Probe location

P

77

7

163 mm

Fig. 1 Schematic diagram of QZS isolator: (a) A traditional isolator with two horizontal flexure beams [1], (b) QZS isolator with FBSM, (c)
physical prototype model

Fig. 2 Exploded model of isolator: (1) platform, (2) base, (3) left ray,
(4) left slider, (5) left adjusting screw, (6) left horizontal spring with
negative stiffness kn, (7) vertical springs with positive stiffness kp, (8)
weight load, (9) top inner ring, (10) right horizontal spring with
negative stiffness kn, (11) right adjusting screw, (12) right slider, (13)
right ray, (14) bottom inner ring, (15) vertical adjusting screw

Fig. 3 Schematic diagram: (a) At equilibrium position, (b) deviation
from equilibrium position by a displacement d

III. STATIC ANALYSIS

The isolator with FBSMs is initially in a static equilibrium
position, as shown in Fig. 3 (a). At the static equilibrium
position, points A, B and C are the collinear points. In order to
achieve the static equilibrium position, adjustments must be
made by screws (5), (11) and (15). Unlike previous studies, the
adjusters are considered in this study. Therefore, at equilibrium
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position, the vertical springs and the horizontal springs are
compressed by deflection 9, =AY—Y, (v = mg/kp) and
O, =AX—X,, respectively, where mg is the payload, yv is the
vertical adjustment, xh is horizontal adjustment, and Ay and Ax
are the deflections of the vertical and horizontal springs,
respectively. When the negative stiffness of the horizontal
springs is equal to the positive stiffness of the vertical springs at
the equilibrium position, the isolator with FBSMs will achieve
the QZS property, hence, the so-called zero-stiffness condition.

When a force F is applied, it causes a vertical displacement d
from the static equilibrium position, as shown in Fig. 3 (b).
Therefore, the relationship between the applied force and
displacement can be studied, and further discussion of the
stiffness of the isolator is provided. Note that the magnitude of
the restoring force and the applied force are balanced, but in
opposite directions. The static equilibrium equation of the
system can be given by:

F(d)=mg—-F,-2F,sin6 o

where vertical spring force is F, =k, [(Ay —y,)-(d- yv)]’ and

Fo=k [(Ax=x,)-(L-L,)],
Lo /(L\,th)%dz, sinfd=d /L. L is the stretched length of the

horizontal springs and Lo is the initial length of the horizontal
springs.

The vertical spring is compressed by a deflection
S, =A, -y, and the horizontal spring is compressed by a

horizontal ~spring force is

deflection § = Ax - x, - Therefore, the applied force F related to

the displacement d can be determined by:

8L, 6)

F(d)=k,(d-vy,)-2kd
(L —x, ) +d?

Take (2) divided by kpLo, and the non-dimensional force
yields:

F(d)=(d-9,)-2ad| 2L 3

where F = F/kpl_o, a= kn/kp, and the geometric ratio is
yv:yv/LO’é’:x:é‘x/LO’ )zh :Xh/LO’andd:d/LO'

Take the derivative of (3) with respect to non-dimensional
displacement, and the non-dimensional stiffness of the system
can be achieved as:

-1 “

There is a unique condition between the parameters o and dx,
which results in the zero stiffness characteristics at the static
equilibrium position. This condition is obtained by setting
k(d = 0) =0. And to make the stiffness equation more general,

the horizontal adjustment sets X=1/2 . Thus, the QZS
condition is yielded as:

N ~ 1 1
Sops =6, =——— (5)
BT 4 2

Substituting (5) into (3) and (4), the force-displacement
relationship and the QZS stiffness of the QZS isolator can be
given respectively by:

P B+
O T e e

Qzs

|2Q25=1—2[ 1 ] (5QZS+1)(1_)A(h) ~1 (7

45st +2 [(1 %, )2 . dAZT/Z

For §, =0, & =1/2, Fig. 4 shows the non-dimensional
force-displacement characteristic for different values of SX
( SX =-04, SX =-0.25, and 5 =02). A smaller negative

value of Sx leads to a slightly positive stiffness. In contrast, a

larger compressed deflection in the positive direction leads to a
slightly negative stiffness near the equilibrium position.

D e LA B e e o e e B L s s

-1 -08 -06 -04 -02 0 02 04 06 08 1

~

d

Fig. 4 Force-displacement curves with different éA'X

Fig. 5 compares the non-dimensional stiffness curves for
0,=-0.4, 6,=-0.25, and 6, =0.2 Although all three curves

achieve zero stiffness, a smaller negative value of J; has a
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larger average stiffness for a given region near the equilibrium
position. Conversely, S, towards a positive value, such as

5,=02 5, has a smaller average stiffness.

6_

-1 08-06-04-02 0 02 04 06 08 1

A

d

Fig. 5 Stiffness curves for different SX

IV. DYNAMIC ANALYSIS

QZS is presented in this paper to suppress vertical vibrations
with a high-static-low-dynamic stiffness when the base is
excited causing vibration, which is transmitted to the isolating
system. The vibration level of the isolated object W depends on
the dynamic stiffness of the vibration isolator. The isolator is
supported by a frame whose displacement is represented by z.
The frame is excited via a sinusoidal displacement z with
magnitude Z and frequency w to describe external disturbance,
as depicted in Fig. 6. The damping effect on the isolator is
illustrated using a viscous damper added with the vertical
spring in parallel so that the equation of the motion for the
vibration isolator system under harmonic excitation accounts
for dissipative terms.

=
N

//
]
-
_—]
/
— ]
i
z = Zeoswt
Y
ot »

Fig. 6 Schematic diagram of dynamic model

The governing equation of the dynamics of the isolator is
achieved using Lagrange’s formulation. First, the kinetic
energy T and potential energy V of the isolator are as:

T:lm(d+z) and V = L kg? )
2 2

where m is the mass of the isolated load W, and K is the stiffness
of the isolator system, as derived in (4).
The dissipation function C can be described as:

C:%cdz ©)

where c is the damping coefficient of the damper. The dynamic
equation of the isolator is derived by combining (8) and (9).

The Lagrange L, is formed by taking the difference of the
scalar quantities of kinematic energy T and potential energy V
of the system, L, =T -V.

Using Lagrange’s formulation, the equation of the motion
for the QZS system is expressed in non-dimensional form as:

d"+2&d" +Kyped = 2ZQ* cos Q1 (10)

by introducing the non-dimensional parameters as:

c 5 Z w k
§=2 :Z=779=79szs=75
mw, L, w, K,
N A (11)
rowrdr=d g9 g-4
WO WO LO

where w, = lk% is the un-damped natural frequency of the

system without negative stiffness.

Recalling (4), in order to simplify the subsequent dynamic
analysis, the relationship between stiffness and displacement is
approximated by a polynomial using a Taylor series expansion
up to an order of 4 expanded about the equilibrium position d =
0 and for x;, =0, defined by:

R R 4 kMg
qus = Razs (O)"'Z sti( ) (12)

Koss (0) = 60 (6,5 +1) )
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The dynamic equation of motion of the isolator is derived as:

A7+ 280" +1- 20855 + 30 (S5 +1)d7 "

9 /. I
—Za((YQZS+1)d4=ZQZCOSQr

where the prime (.)’ represents differentiation with respect to 7.
The Harmonic Balance method is a useful method that is not
restricted to weak nonlinear problems, and has high accuracy.
This method is adopted here to solve (14) and find the first
approximation of the primary response.
Introducing a phase in excitation terms, (14) can be written
as:

"+ 260"+ 1208 + 3a(Ss +1)d s
_%a(é‘ozs +1)a4 =707 COS(QT+¢)

Assuming that the response solution of d is:
d = Dcos(Q7) (16)

where D = D/L,,.
Substituting (16) into (15) results in:

-DQ? cosQT—2§[A)QsinQr
& 32 2
+3a(5QZS+1)D cos” Qr a7

—%a(SQZS +1)Ij4 cos*Qr
=70’ cos pcosQr — 707 singsinQr

Neglecting the high order harmonic term, the coefficients of
the same sines and cosines of (17) must be equal. This leads to:

-DQ =707 cos ¢ (18a)
2£DQ =70%sing (18b)
Squaring and adding (16a) and (16b) results in:

(BQ) +(2600) = (27} (19)

Solving the above quadratic equation for Q? yields:

Qz%/zgﬂ (20)

The displacement transmissibility is defined as the ratio of
the amplitudes between the absolute motion of the isolated
object W and the base. The relative motion d is defined as

d=d — 27, where d is the absolute vertical motion of the

isolated object, and z is the excitation from the base. Thus, the
amplitude of the absolute motion is D+Z . The displacement
transmissibility is calculated as:

D+7 D>+27%+2DZ cos
;B2 (727202 cong)
7 7
& s, 2D?
D472 21
[ . Q] @)
- Z

(B2 42278 & +1)

-2
z

Equation (21) can written in the form of decibel as:

=
Q (22)

V. RESPONSES AND ISOLATION PERFORMANCE

A. Displacement-Time Response

The numerical simulation of displacement with respect to
time is realized through approximately dynamic equation (10),
as shown in Fig. 7. The input signal is consinusoid with
amplitude Z of 10, the excitation W = 1.5 rad/s and the phase ¢
of zero. Equation (10) is solved by using the Ode45 package in
MATLAB. The physical parameters are used in the numerical
simulation, given as follows: « = 1, £=0.03, m = 5 kg, and k, =
1.6 N/mm.

250 y T T '

200 f e =t \
150}
100 [ | P |3 Fod / "', 1

500 | | \ | ! I ! I

0

Displacement (mm)

0 1 2 3 1 5 6
Time (sec)

Fig. 7 Displacement response with respect to time history

B. Effect of Damping Ratio on Transmissibility

Fig. 8 shows the displacement transmissibility with respect
to different damping ratios. The input displacement is Z of 10,
and Q is in the range from 0 to 10. The peak of the
transmissibility is the highest with respect to & = 0. When the
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damping ratio increases, the peak value decreases. All curves
are gradually oriented to the right.
C.Effect of Input Displacement on Transmissibility

The effect of the input displacement on the isolation range is
given in Fig. 9. When the input displacement increases, the
displacement transmissibility decreases.

D.Effect of Different Damping Ratios on the Natural
Frequency

Fig. 10 shows the effect of different damping ratios on the
natural frequency of the system. It is assumed that the ratio

D/ Z remains constant while the damping ratio is a design

variable. For example, in Fig. 10, the natural frequency is
smallest with respect to £=0.2, and the natural frequency is

Thus, the natural
frequency increases with an increased damping ratio.

highest corresponding to £=0.14 .

20 T T T v

10

1]

-10 damping ratio =0 4
- damping ratio = 0.2
damping ratio = 0.3 B
damping ratio = 0.4

Displace ment transmissibility (dB)

a0k damping ratio = 1.5 i
A0} §
50F 4
B0} 4
70 L y L L

0 2 4 6 8 10

o]

Fig. 8 Effect of damping ratio on displacement transmissibility

Displacement transmissibility (dB)

Fig. 9 Effect of input displacement on transmissibility

E. Comparison with a Linear Vibration Isolator

Fig. 11 shows a comparison between the presented QZS
isolator and a linear system with respect to & =0.05. It can be
observed that the effective frequency of the isolator is smaller
than that of the linear system, and the peak transmissibility of

the isolator is less than that of the linear system. Another
important observation is that the transmissibility of the isolator
is lower than that of the linear isolator in the low frequency
range. In terms of low frequency vibration isolators, the QZS
vibration isolator system is superior to a linear system.

VI. ANALYSIS OF THE [SOLATOR

A. Analysis of Springs

As seen in Fig. 12, each vertical FBSM and each horizontal
FBSM includes multiple cell structures combined in series. Fig.
13 gives a 2-D view of the cell structure. Each vertical and
horizontal planar spring has six cells. Each cell consists of
multiple flexure hinges connected with rigid links. The top and
bottom of each planar spring is also connected with flexure
hinges. Each flexure hinge has a rectangular cross section. The
rectangular cross-section flexure hinge is chosen because its
large deflection results in a reduced stiffness of overall
structures. Each cell is placed in symmetry. For the vertical
spring, each flexure hinge has an in-plane thickness t; and an
out-plane thickness wi. For the horizontal spring, each flexure
hinge has an in-plane thickness t; and an out-plane thickness
w,. Table I presents the design parameters of the isolator.

1

09}
ost damping ratio = 0.02 ‘/‘:
------ damping ratio = 0.06 o
o7}k damping ratio = 0.10 J,—" J
damping ratio = 0.14 s
06} ',-' J
""‘

Q osf L -
04f __/"‘ i
03 4
02} .
01 1

0 L L . \ \ \

0 01 02 03 04 05 06 07 08
Dz

Fig. 10 Effect of damping ratio on the natural frequency

30

Proposed isolator
20+

===-= | inear isolator }'-"*.‘

Displacement transmissibility (dB)

205 0.2 0.4 0.6 0.8 1 12 14 16

Q

Fig. 11 Comparison between the presented isolator and a linear
isolator
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TABLE I
DESIGN PARAMETERS OF THE ISOLATOR

Parameters ~ Value Unit
) 0.4 mm
t 0.4 mm
b, 8 mm
b, 3 mm
W =W, 10 mm
h, 4.39 mm
h, 4.39 mm

kn 15.5 N/mm

kp 4.5 N/mm

45.6 mm

| b,

un 7 pg

(a) (b)

Fig. 12 (a) Vertical spring (84.2 mm x 66.8 mm x 10 mm), (b)
horizontal spring (49.42 mm x 45.60 mm x 10 mm)

Flesure hinge

Flexure hinge

I
i
i
i
i
i
I
i
i
I
|
i
I
|
Flexure hinge i
I

Fig. 13 2-D view of cell structure of: (a) vertical spring and (b) oblique
spring

The stiffness of the isolator is dependent on the flexure
hinges. Each flexure hinge is subjected to a bending load F;
therefore, the deflection of the flexure hinges relies on them
in-plane thickness and the out-plane thickness. This is
expressed by:

3

Thus, the stiffness of each flexure hinge is calculated as:

_ 3Ewt’
4

k 24)

where, K is the stiffness of each flexure hinge, F is the bending
load, E is Young’s modulus of material, | is the sectional
moment of inertia, W is the out of plane thickness of the flexure
hinge, and t is the in-plane thickness of the flexure hinge.
From the above discussion, if a varying stiffness of the
isolator is required, the out of plane thickness W of the flexure
hinge or the in-plane thickness t of the flexure hinge must also
be changed. A new stiffness of the isolator can be found by
adjusting W or t for each spring in:
ﬁ _ sztzzz (25)
kl Wt
where, k is the stiffness and subscripts 1 and 2 indicate the
original and new parameters, respectively. To achieve a new
specific stiffness ko, the value of t» or wy; must be changed
accordingly so that the right side of (25) is equal to the left side.
Calculation, for instance, of K, Kp2 is increased to 2.5 N/mm,
while kp; = 1.6 N/mm and wi; = 10 mm; then Wz, should be
adjusted to 15.625 mm if ty; is still unchanged. By adjusting the
thickness, a new stiffness can be easily designed without
changing the shape of the cell structure.
Another condition for adjusting the stiffness of the isolator is
given by:

K _hy (26)

In (26), each cell of the springs is considered as a lever type
amplification mechanism, in that its amplification ratio
depends on the distance h from the end of the lever to a point
located on the flexure hinge. Therefore, this study has
discovered that only a change in the distance results in an
adjustment in the stiffness k. The virtual prototype of two
horizontal springs and two vertical springs are created. 65 Mn
spring steel is chosen as the material for the springs because it is
affordable and has high sensitivity, low elastic lag, and fatigue
resistance. It also has a Young’s modulus of 206000 MPa, yield
strength of 784 MPa, a Poisson’s ratio of 0.28 and density of
7850 kg/m?.

Each horizontal FBSM weighs 130 g, while each vertical
spring weighs 342 g. A static finite element analysis using
ANSYS 13 is conducted to determine the stiffness of the
springs. The automatic method is applied for meshing both
springs. They are then refined to achieve a good meshing
quality according to the Skewness criterion in ANSYS. The
force-to-displacement curves of the horizontal and vertical
springs are obtained to measure the stiffness, as shown in Figs.
14 (a) and (b), respectively. The average stiffness of each
horizontal spring is 14.2871 N/mm, while the average stiffness
of each vertical spring is 3.2164 N/mm. Both values are slightly
lower than those desired, given in Table I (4.5 N/mm and 15.5
N/mm). The maximum displacement of the horizontal spring is
4=1.3999 mm when a load of 20 N is located at the top of the
horizontal spring, as shown in Fig. 15 (a). The maximum
displacement of the vertical spring is 4 = 6.2179 mm when a
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load of 20 N is located at the top of the vertical spring, as shown
in Fig. 15 (b).

Fig. 16 (a) illustrates the stress distribution of the horizontal
spring versus the different displacements; the maximum stress
is 359.23 MPa when the load is 20 N. Fig. 16 (b) illustrates the
stress distribution of the vertical spring versus the different
displacements; the maximum stress is 654.5 MPa when the load
is 20 N. Both stresses are much smaller than the yield strength
of 65 Mn spring steel (784 MPa). After analysis by FEA, the
results revealed that the planar springs have linear
characteristics similar to a coil spring. Therefore, the planar
springs are adopted for the isolator. They are also applicable in
situations that require more compact spaces. The number of
components and complex assembly are reduced with the use of
planar springs.

1§ T ot miomincn
L@ ®)
14 : ; P e
g - Horizontalspring____” gL Ve 7
PN T
\E- ) \E, ;I A .
N 06 - -
04 ol e i e e i Zﬁ 777777 R
0 |- 2= Stiffness = 142871 Niom | L ik
0 T T T 1 0 T T T 1
05 01w 0 5 w0 15
F® FN)

Fig. 14 Diagram of force-displacement curve: (a) horizontal spring, (b)
vertical spring

=

"
%)
o]
3
3

Fig. 15 Deformation of: (a) horizontal spring, (b) vertical spring

B. Static Analysis of the Isolator

For the mass m of the isolated load W of 0.25 kg, with other
parameters retained as in Table I, for example, a static finite
element analysis in ANSYS 13 is performed to illustrate the
force-to-displacement curve of the isolator. A fixed boundary
condition is at the bottom of the supporting platform. An
applied force F is applied to the top plate of the load W. An
automatic meshing is applied for the springs. A static finite
element analysis using ANSYS 13 is conducted to determine
the stiffness of the spring. The automatic method is applied for
meshing both springs. They are then refined to achieve a good

meshing quality according to the Skewness criterion in
ANSYS. The force-to-displacement curve of the isolator is
given in Fig. 17. The average stiffness of the isolator is 9.9265
N/mm.

4 Tm—m———————————— 700
S e L L) R
Sl g
S IO R
B R G el
72 100 +———F~————— @
7 I 0+
0 T T T ] 0 T T T !
0 035 06999 10499 35224 0 15345 3109 4.6634 6.2179
A (mm) A (mm)

Fig. 16 Stress-displacement curve of: (a) horizontal spring, (b) vertical
spring

25 Fm—————————————-

——Isolator

F )

Fig. 17 Force-to-displacement curve of the isolator

C.Modal Analysis

ANSYS Modal module is used to execute the modal
analysis. The boundary conditions of the isolator are fixed only
at the bottom plate, but are free elsewhere. Six fundamental
natural frequencies of the isolator are shown in Table II. The 1%,
2™ and 3" modes are a linear mode of the load W along the
z-axis at 12.410 Hz, 15.311Hz and 16.421Hz, respectively, as
shown in Fig. 18 (a). The 4" mode is an up-down mode of the
load W in the y-axis at 29.504 Hz, as shown in Fig. 18 (b). The
5% mode is a rolling mode of the load W around the z-axis at
30.055 Hz, as described in Fig. 18 (c). The 6™ mode is a rolling
mode of the load W around the x-axis at 36.856 Hz, as
illustrated in Fig. 18 (d). The combination of a sufficient
number of modes can build up a general motion of the isolator.

TABLE II
S1X FUNDAMENTAL NATURAL FREQUENCIES OF THE ISOLATOR
Modes 1 2 3 4 5 6
Natural
frequencies  12.410 15311 16421  29.504 30.055 36.856
(Hz)

D.Response Analysis

The compact dimensions of the isolator are 218 mm x 163
mm x 100 mm. The probe location of the estimated response is
at the center of the isolated load W. The effects of various
damping ratios ¢ on the output displacement are considered, as
shown in Fig. 19. Modal-based Harmonic module in ANSYS
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with full method is used to describe the displacement response
of the isolated load W. The peak response will correspond with
the displacement response of the isolated load W. The value of
¢ varies, such as 0 and 0.02. Beta damping is chosen as 0.07.
The frequency range is from 0 Hz to 15 Hz. The input
displacement is excited at the bottom. The peak of
transmissibility with the damping ratio of 0.02 is always much
less than that with a & of zero.

Fig. 18 Shape models: (a) The 1%, 2", and 3" modes, (b) The 4
model, (¢) The 5" mode, (d) The 6" mode

280 / 10.2 .f'J
!

f /

/
f
541 @¢=0 / 1015,/ ®¢=002
/

i

/
i

Amplitude (mm)

10.4 10.1 \
35 73 W o125 15 305 15 10 125 15

Frequency (Hz)

Fig. 19 Effect diagram of damping ratio on the output displacement:
(a) =0, (b) ¢=0.02

VII. CONCLUSION

This paper presented a QZS isolator for vertical vibration.
FBSM were presented to provide negative and positive
stiffness for the isolator using the concept of compliant
mechanism. The stiffness of the springs can be redesigned to
obtain a desired stiffness for various load weights. The isolator
was easily assembled, and is very compact.

Static analysis was carried out to obtain the non-dimensional
force and non-dimensional stiffness of the system.
Furthermore, the dynamics of the system were also investigated
using theoretical analysis. The nonlinear equations of the
system were solved using the Harmonic Balance method. The
efficiency of the isolator was evaluated by investigating the
displacement transmissibility. It was found that the

transmissibility of the QZS isolator is lower than that of current
linear systems.

The static analysis of the springs was conducted using
ANSYS software. The simulation of the QZS isolator was
carried out to investigate the stiffness and performance. The
results indicated that the stiffness of the springs is changed as
little as possible and the QZS isolator is effective for compact
spaces.

Future work will focus on constructing a prototype of the
QZS isolator, and carrying out experimental investigations to
confirm its effectiveness.
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