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Characterizing Multivariate Thresholds in Industrial
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Abstract—This paper highlights some of the normative issues
that might result by setting independent thresholds in risk analyses
and particularly with safety regions. A second objective is to explain
how such regions can be specified appropriately in a meaningful way.
We start with a review of the importance of setting deterministic
trade-offs among target requirements. We then show how to
determine safety regions for risk analysis appropriately using utility
functions.
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[. INTRODUCTION

ECISION analysis is a rigorous normative method for

ranking, valuing, and selecting the best decision
alternative cased on the expected utility criterion (for
references on the theory of decision analysis see [1]-[3]; for a
reference on multiattribute utility theory, see [4], and for
applications of decision analysis, see [5]).

Decision analysis has been applied in numerous areas
including industrial engineering design and industrial risk and
reliability analysis. Often deviations of expected utility occur
in organizations for simplicity or for tactical and operational
decisions. Some of the most common deviations result from
target-based incentives, design by threshold requirements, and
setting threshold safety regions in risk analysis. The flow
down of requirements in engineering design is a common
approach to centralizing design decisions but, if conducted
incorrectly, it might also pose issues with the overall design.
See for example [6]-[8] for application of decision analysis to
milling profit maximization that uses value instead of
thresholds; and [9] for a references that includes common
errors in thresholds; and [10]-[12] for normative methods for
setting thresholds.

The purpose of this paper is to draw attention to the
implications of setting arbitrary multivariate threshold
requirements in industrial engineering applications and to
provide some perspective on normative methods for setting
thresholds. In particular, we shall discuss deterministic
thresholds in a design decision, as well as thresholds set
independently for safety regions in risk analysis.

II. MULTIVARIATE DETERMINISTIC THRESHOLDS IN
ENGINEERING DESIGN

To start, consider the following example from [12] with two
direct value attributes of a product, say X and Y, and where

A. E. Abbas is professor of Industrial and Systems Engineering and Public
Policy at the University of Southern California, Los Angeles, CA,
(aliabbas@usc.edu)

more of each attribute is preferred to less over the domain of
the attributes. The level sets (isopreference contours)
corresponding to this preference must have a non-positive
slope as shown in Fig. 1.

If requirement thresholds are set independently for each
attribute, such that each attribute must exceed a threshold
value, then the acceptable designs are limited to those in the
rectangular (shaded) region. Now consider two design
configurations, A and B, superimposed on the contours of
constant value. Design B lies within this region (and therefore
meets the target requirements that have been set) but it has a
lower value than design A, which is outside this region and yet
lies on a higher value contour. Thus, the design that would be
induced by this requirement has a lower value than one that
would be rejected by the requirement. This difference in
choice comprises a value gap a loss of value to the design
enterprise. It is plausible that these requirements are physical
requirements, but quite often requirements are set arbitrarily.
To avoid this type of behavior, a simple axiom must be
introduced.

Axiom 1: There shall be no design outside the requirements
region that is preferred to a design within the requirements
region.

Axiom 1 necessitates assigning trade-offs to design

requirements and aligns the value function approach for
engineering design with the requirements approach. The
following proposition results from Axiom 1.
Proposition 1: If Axiom 1 is satisfied by the requirements for
all possible designs, then the requirements must define a space
that is bounded by a contour of constant value as determined
by the corporate value function.

Proposition 1 illustrates the importance of constructing a
value function and assessing representative trade-offs among
the design requirements. The proposition also implies that
threshold requirements cannot be set independently for each
attribute, and must be associated with the trade-offs amongst
them.

III. MULTIVARIATE SAFETY THRESHOLDS IN RISK ANALYSIS

Now consider, the common risk-scenario plot that is widely
used in risk analysis and that incorporates two axes: severity
of a consequence and the probability of loss (or probability of
success of an attack) as shown in Fig. 2. The figure shows four
rectangular regions: the bottom left region is commonly
colored green and referred to as the safe region. The top right
region is commonly colored red and represents a danger zone,
and the remaining two regions are usually colored orange and
represent intermediate risk regions.
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Fig. 1 Alternative A has a higher value than B, but the target rewards B and penalizes A

A. What is the Problem with This Formulation?

There are several issues with this representation. First of all,
it is important to observe that an attack might have multiple
possible consequences. For example, an attack might involve
multiple levels of severity with different probabilities.
Representing an attack scenario by only one point in this
graph is therefore misleading. This implies that an attack
should be a cloud of points on this space and not just one point
representing only one possible loss scenario with a given
probability.

Second, even if a successful attack represented only one
loss point, the contours represented by this chart cannot be
meaningful. The chart implies that we are indifferent between
two scenarios having the same probability of success but one
has a larger damage. To illustrate, Fig. 2 represents three
possible attack scenarios, A, B, and C. The chart shows

Probability of Success

Severity

indifference between prospects B and C, as they both lie in the
Red region. It is not possible to consider those scenarios
equally because, although they have the same probability, one
has a much higher severity for the consequence. Therefore, C,
would be a much worse scenario than B but they lie in the
same region and have the same risk code. Using rectangular
regions is misleading, and rectangular color codes to represent
risk is inappropriate and misleading. Furthermore, it is
difficult to provide a trade-off between probability of success
and severity of a consequence without calculations using tools
such as utility values. To illustrate, we will now show how to
calculate indifference contours and demonstrate that the
indifference regions defined by rectangular contours in Fig. 2
can never occur with reasonable utility functions.

Fig. 2 Safety regions set by independent threshold levels of likelihood and severity
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Using expected utility theory, we can plot the relation
between probability of success and severity. For additional
reading on utility functions for individuals and groups, see
[13]-[15], and for probability encoding, see [16]-[19].

To start, consider a scenario where there is 90% chance of a
loss (or damage) of severity worth $1 Million and a 10%
chance that the scenario would not occur resulting in $0 loss.
Now suppose we wish to identify the severity of the loss, |,
with probability 80% that would make us indifferent to this $1
Million loss scenario. Using the principle of “gain some - lose
some”, if we are indifferent, and if the new loss has a lower
probability of occurrence, then we should expect that the loss
value | would be more than $1 Million. Fig. 2 shows this
scenario. Indifference between the two scenarios implies that
the expected utility of each deal must be equal. Therefore, we
need the utility values of the prospects involved.

Suppose that a decision maker has an exponential utility
function with risk aversion coefficient ¥ equal to 107°. For

—~107°x

example, the utility function has the form U (x) =1-¢

The expected utility of the deal on the left-hand side of Fig.
3is:

09(1-¢""")+0.1(1-67"")=0.9(1-¢).
The expected utility of the second lottery is

08(1-e""}+0.2(1-e"""") =0.8(1-¢""").
Equating the expected utilities of both deals gives

09(1-¢)=08(1-e""" )=

| =_—Lln(l—2(l—e)j =-1.076 Million
10 8
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Indeed, the loss amount is more than $1 Million as
expected.

0.9 0.8
$-1M $?
< 0.1 < 0.2
$0 $0
Fig. 3 Indifference between two deals having different probabilities
of loss

We can repeat the same analysis for different probabilities
of loss. Fig. 4 shows the deals for a loss probability of 0.7.
Using similar analysis as above shows that the indifference
loss amount for a probability of 0.7 is

-1 9 .
I = ln(l——(l—e)):—1.166 Million .
7

107

0.9 0.7
$-1IM $?

0.1 0.3
$0 $0

Fig. 4 Indifference between two deals having different probabilities
of loss

By repeating the same steps for various probabilities of loss,
we can get the indifference contour for all values of
probability of loss vs. loss. Fig. 5 plots the indifference
contour for losses and probabilities of loss that are equivalent
to a 90% chance of losing $1 million. It is clear that the
indifference region is not rectangular.

0 1000000

Severity of Loss

2000000 3000000

Fig. 5 Trade-offs between probability of loss and severity of loss

In principle, we can also repeat these steps starting with
different probabilities of loss and determine the corresponding
iso-preference contours. Fig. 6 shows the analysis conducted

starting with probabilities of loss of $1,000,000 corresponding
to 0.1, 0.3, 0.5, 0.7, and 0.9 for comparison. As we can see
these trade-offs were calculated by using utility values and the
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shapes of these contours would vary based on the risk aversion
coefficient that is used.

Another problem with the rectangular representation of Fig.
2 is why there is a cut-off threshold region in the first place. If
we are given a loss probability and a consequence with
severity, such as B or C, then a small reduction in loss

1

Probability of Loss

probability will result in a change of the risk situation from
Red to Orange. This sudden change in state of the risk results
in a reduction in readiness and alert. It is best to think of
readiness and preparations as a decision about allocation of
resources using full probability distributions instead of cut-off
threshold values.
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Fig. 6 Trade-off contours between probability of loss and severity of loss

IV. CONCLUSION

Multivariate thresholds are widely used in industrial
engineering applications. Independent thresholds should not
be set alone but specified with trade-offs among the threshold
values using isopreference contours. In deterministic settings,
this requires a deterministic value function. In probabilistic
settings, this requires a utility function. Setting independent
thresholds over each variable, or attribute of interest, can
result in loss of value.
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