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Reducing Uncertainty of Monte Carlo Estimated
Fatigue Damage in Offshore Wind Turbines Using

FORM
Jan-Tore H. Horn, Jørgen Juncher Jensen

Abstract—Uncertainties related to fatigue damage estimation of
non-linear systems are highly dependent on the tail behaviour
and extreme values of the stress range distribution. By using
a combination of the First Order Reliability Method (FORM)
and Monte Carlo simulations (MCS), the accuracy of the fatigue
estimations may be improved for the same computational efforts.
The method is applied to a bottom-fixed, monopile-supported large
offshore wind turbine, which is a non-linear and dynamically sensitive
system. Different curve fitting techniques to the fatigue damage
distribution have been used depending on the sea-state dependent
response characteristics, and the effect of a bi-linear S-N curve is
discussed. Finally, analyses are performed on several environmental
conditions to investigate the long-term applicability of this multistep
method. Wave loads are calculated using state-of-the-art theory, while
wind loads are applied with a simplified model based on rotor thrust
coefficients.

Keywords—Fatigue damage, FORM, monopile, monte carlo
simulation, reliability, wind turbine.

I. INTRODUCTION

DYNAMIC structures subjected to stochastic, non-linear

environmental loads may require many long simulations

to confidently estimate fatigue damage in the design phase

[1]. Depending on the degree of non-linearity in the

system, computed fatigue may vary significantly between each

simulation [2], and extreme values may have large impact on

the expected lifetime estimation. An example is illustrated

in Fig. 1 for the mudline fatigue damage on a 10MW

monopile mounted offshore wind turbine. The conventional

seed averaging method (DC) is normalized with the expected

damage (De).

It is clear that the results are converging, but are highly

dependent on extreme values when the number of seeds are

small to moderate. The behaviour is explained by investigating

the fatigue damage distribution in Fig. 2. Extreme values are

five times greater than the expected value, and the shape

indicates a Weibull distribution. The present distribution yields

a larger probability of extreme outliers compared to a Gaussian

process, leading to slower convergence of the mean value.

However, extreme values are also physical and need to be

accounted for nonetheless.
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Fig. 1 Three example fatigue estimations for 100s simulations with U=6m/s,
HS=1.5m, and TP =4.7s
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Fig. 2 Example fatigue distribution for 10,000 samples with U=6m/s,
HS=1.5m, and TP =4.7s

The proposed method in [2] is to replace the large values

with a FORM evaluation of the extremes in the fatigue

distribution tail. As a result, outliers are accounted for in each

fatigue estimation, but with less impact on the variance. The

paper is built up as follows: First, an introduction to FORM

analysis is given. Then, fatigue damage calculation methods

are presented, both conventional, the method from [2], and new

proposals for representation of the fatigue probability density

function (PDF). A more detailed description of the procedure

is found in Section II-G, while the simulation models are

presented in Section III. Finally, results are presented in

Section IV.

II. BACKGROUND

A. FORM

The objective of the FORM analysis is to minimize the

function

G(u) = Dext −D(u) (1)

to determine the design-point D(u∗) ≈ Dext by a linear

approximation. Here, Dext is some extreme fatigue damage
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and u = [ū1, . . . , ūm, ũ1, . . . , ũn] are standard normal random

variables. The conventional Hasofer-Lind (HL) and modified

HL (MHL) method as described in [3], has been used

as iteration schemes. The equations to be satisfied at the

design-point are [4]:

G(u∗) = 0

u∗ + λ∗∇G(u∗) = 0

where

λ∗ = −∇G(u∗)u∗

|∇G(u∗)|2
and the gradient is defined as:

∇G(u) =
[
∂G

∂u1
,
∂G

∂u2
, . . . ,

∂G

∂um+n

]T
(2)

Iterations on u is based on the function value of (1) and the

gradient. The (k+1) iteration point is found from a weighted

linear function:

uk+1 = ak + (1− ξ)dk (3)

where

ak = [uk∇G(uk)−G(uk)]
∇G(uk)

T

|∇G(uk)|2 (4)

and

dk = uk − ak (5)

which is illustrated in Fig. 3. For the HL method, ξ = 1, so

that (3) reduces to uk+1 = ak. With the MHL method, uk is

chosen along the line dk by stepwise increasing ξ in (3) from

0.2 to 1.0 in order to minimize the following cost function [3]:

M(u) = |u − ∇G(u)u
|∇G(u)|2∇G(u)|2 + cG(u)2 (6)

In this particular case, c ∝ (Dext)
−2 has given a reasonable

cost function, putting most weight on the last term.

u1

u2

G(uk) < 0

G = 0

uk

•
∇G(uk)

ak

dk

Fig. 3 Illustration of FORM iteration

log N

log Δσ

Fatigue limit

N1 = K1Δσ−m1
1

N2 = K2Δσ−m2
2

Fig. 4 S-N curves above and below the fatigue limit.

B. S-N Curves

Fatigue damage is calculated using S-N curves obtained

from [5] for a structure in seawater with cathodic protection,

and the material parameters obtained are given in Table I for

a bi-linear curve illustrated in Fig. 4. The fatigue damage is

then obtained with a rainflow counting (RFC) method using

the WAFO toolbox [6] in MATLAB. The Palmgren-Miner rule

for accumulated damage is given as

D =
∑
j

nj

Nj
=

∑
j

njK
−1
j (SCF ·Δσj)

mj

(
t

tref

)k·mj

(7)

where Δσj is the rainflow filtered stress range for S-N curve

j [7] and nj is the rainflow counted number of cycles. The

stress concentration factor (SCF) is taken as 1.0, using the

base material cross section at the mudline which in this case

has a diameter of 8 m and thickness of 110 mm.

TABLE I
PARAMETERS FOR BI-LINEAR S-N CURVE

m1 3.0
m2 5.0
log10K1 11.764
log10K2 15.606
Fatigue limit [MPa] 52.63
SCF 1.0
tref [mm] 25
k 0.2

C. Fatigue Damage Estimation Using the Reliability Index

The traditional way of calculating the expected fatigue

damage is to average over N statistically independent

simulations:

De =
1

N

N∑
i=1

Di (8)

which is equivalent to integrating over the PDF of the fatigue

damage to get the expected value:

De =

∫ ∞

0

Df(D)dD (9)
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We now define the reliability index β through the standard

normal cumulative density function (CDF), Φ:

P [D > Di] = 1− i

N
= Φ(−βi) (10)

resulting in

βi = −Φ−1(P [D > Di]) ≈ −Φ−1(1− i

N
) (11)

for sorted fatigue damage values so that Di ≤ Di+1 and i =
1, 2, .., N −1. The fatigue damage PDF can now be expressed

in terms of β using the formulation in (10):

f(D) =
dF (D)

dD
=1− P [D > Di]

=− dΦ(−β)

dβ

dβ

dD

=
1√
2π

exp(−1

2
β2)

dβ

dD

(12)

Note that we obtain a Gaussian distribution PDF for

constant dβ/dD. The expected fatigue damage in (9), can now

be re-written as a summation:

De =

∫ ∞

0

Df(D)dD

=
1√
2π

N∑
i=1

Di(βi) exp(−1

2
β2
i )Δβi

(13)

It is clear that De → ∞ since ΔβN → ∞ when using

(10). Instead, a linearization of the tail as described in the

next section is performed. The first N −1 increments in β for

the summation are evaluated as:

Δβi =

⎧⎪⎨⎪⎩
1
2 (βi+1 − βi) for i = 1
1
2 (βi+1 − βi−1) for 2 ≤ i ≤ N − 2

βi − βi−1 for i = N − 1

(14)

D. Tail linearization

It is assumed that for large β, the relationship with the

fatigue damage is close to linear:

D(β) = A+Bβ (15)

which means that the extreme fatigue damage values follow

a Gaussian distribution. As a result, the last term of the

summation in (13) for i = N , can be written as [2]:

1√
2π

DN (βN ) exp(−1

2
β2
N )ΔβN

=
1√
2π

∫ ∞

βN−1

D(β) exp(−1

2
β2)dβ

= A(1− Φ(βN−1)) +
B√
2π

exp(−1

2
β2
N−1)

(16)

which inserted in (13) gives

DSL =
1√
2π

N−1∑
i=1

Di(βi) exp(−1

2
β2
i )Δβi

+A(1− Φ(βN−1)) +
B√
2π

exp(−1

2
β2
N−1)

(17)

where SL denotes a combination of summation and

linearization. The constants A and B in (15) is found using the

FORM analysis to obtain a sufficiently large extreme fatigue

damage Dext and a corresponding reliability index βFORM.

An example is shown in Fig. 5 where a linear function is

fitted to the tail of the fatigue damage values. This particular

case contains 10,000 simulations of simulation time Tsim =
100s. A FORM analysis yields the plotted coordinate for a

yearly extreme damage and corresponds well to the simulated

extremes and the hypothesis of a linear tail i.e. Gaussian

distributed. The simulated fatigue damage is converted to an

equivalent yearly damage with:

Dyear = 365 · 24 · 602 · Dsim

Tsim

(18)

D

β

D
e

(D
ext

,β
FORM

)D(β)=A+Bβ

Fig. 5 Example linear tail fit

In order to obtain a proper linear fit, a sufficient amount

of simulations has to be done. From Fig. 5, it is clear that

the coordinate in addition to the FORM-evaluated point has

to lie on the linear area of the results, meaning approximately

β > 1.2. Also, since βN is supposedly large, the second point

has to be (DN−1, βN−1). Finally, combining βN−1 > 1.2
with (11) yields N > 8. The coefficients in (15) can now be

written as:

B =
Dext −DN−1

βFORM − βN−1
(19)

A = DN−1 −BβN−1 (20)

E. Special Case for Gaussian Fatigue Damage

In the special case that the fatigue damage is Gaussian

distributed, (15) is a good approximation for β ∈
{−∞, . . . ,∞}. As a result, the expected fatigue damage can

be found as:
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DL =

∫ ∞

0

Df(D)dD

=
1√
2π

∫ ∞

0

D exp(−1

2
β2)

dβ

dD
dD

=
1√
2π

∫ ∞

β′
D exp(−1

2
β2)dβ

=
1√
2π

∫ ∞

β′
(A+Bβ) exp(−1

2
β2)dβ

=A

∫ ∞

β′

1√
2π

exp(−1

2
β2)dβ

=A(1− Φ(β′)) +
B√
2π

exp(−1

2
β′2)

(21)

and for β′ → −∞:

DL = A (22)

Note that B disappears due to the integration of an odd

function over the entire domain. The above result means that

a good estimate of De can be found from only two pairs of

(Di, βi), and the coefficients in (15) are now:

B =
D2 −D1

β2 − β1
(23)

A = D1 −Bβ1 (24)

which means that for β′ → −∞:

DL =
D1β2 −D2β1

β2 − β1
(25)

where D2 > D1. For a good linear approximation, it is

preferred that D2/D1 
 1, therefore, the FORM procedure

may be used to find β2 = βFORM for some extreme value of

D2 = Dext. The remaining point for linear regression has to be

found by several simulations which is demonstrated in Section

IV-A.

F. Weakly Non-Gaussian Fatigue Damage

Due to the utilization of bi-linear S-N curves, the fatigue

damage might be slightly non-Gaussian or Weibull distributed

with respect to β, which means that a quadratic polynomial

description might be more appropriate than the linear

representation in (15):

D(β) = A+Bβ + Cβ2 (26)

which inserted into (9) yields:

DQ =

∫ ∞

0

Df(D)dD

=
1√
2π

∫ ∞

0

D exp(−1

2
β2)

dβ

dD
dD

=
1√
2π

∫ ∞

β′
(A+Bβ + Cβ2) exp(−1

2
β2)dβ

=A (1− Φ(β′)) +
B√
2π

exp(−1

2
β′2)

+
1√
2π

∫ ∞

β′
Cβ2 exp(−1

2
β2)dβ

=A (1− Φ(β′)) +
B√
2π

exp(−1

2
β′2)

+ C

(
1− Φ(β′) +

β′
√
2π

exp(−1

2
β′2)

)
=(A+ C)(1− Φ(β′)) +

B + Cβ′
√
2π

exp(−1

2
β′2)

(27)

and for β′ → −∞:

DQ = A+ C (28)

Typically, one could choose β′ = β1 from simulations. The

constants A, B and C are found using a polynomial curve

fitting to the data in MATLAB, including the FORM evaluated

point which is crucial to obtain stable results for few seeds.

G. Procedure

The complete procedure for the SL method is summed up

as:

1) Perform N simulations with a detailed simulation model

and evaluate the first N − 1 terms in (13)

2) Use a simplified and computationally efficient model to

find βFORM and u∗ for a given Dext > DN−1. It is

preferred that βFORM > 2.5
3) Do an iteration on the detailed model with u = u∗ to find

an updated Dext, which is valid for the detailed model,

but with the same reliability index, βFORM

4) Use the results in 1) and 3) to evaluate (17)

Details regarding the simulation models are given in the next

section. The simulation procedure for the simplified model

is illustrated in Fig. 6, where the yellow blocks represent

codes developed in MATLAB for this particular set-up. First,

the FORM-evaluated set of standard normal random variables,

u, is transformed to uniform random variables, ε, through

ε = 2πΦ(u) (29)

in fatigue.m. Then, the calculated environmental forces and/or

wave elevation from force.m are passed on to USFOS where

the dynamic simulations are performed. Finally, desired

response time-series are returned to MATLAB and fatigue.m for

post-processing. The damage is then calculated and returned

to FORM.m for evaluation.
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FORM.m fatigue.m

force.m USFOSresult.txt

uk

D(uk)

Fex(t)

ε
Fresp(t)

βFORM

Dext

Fig. 6 Block diagram of simulation process for the simplified model

H. Summary of Methods for Fatigue Estimation

The presented methods for fatigue damage calculation are

summed up in Table II.

TABLE II
FATIGUE CALCULATION METHODS

Description Symbol Formulation

Conventional DC
1
N

∑N
i=1 Di

Sum+Linear DSL

1√
2π

N−1∑
i=1

Di exp(−1

2
β2
i )Δβi

+A(1− Φ(βN−1)) +
B√
2π

exp(−1

2
β2
N−1)

Linear DL A(1− Φ(β1)) +
B√
2π

exp(−1

2
β2
1)

Quadratic DQ (A+ C)(1− Φ(β1)) +
B + Cβ1√

2π
exp(−1

2
β2
1)

In this work, it is found that the expressions for DL and

DQ can be replaced by their asymptotic values in (22) and

(28), respectively. This has lead to more stable estimations of

the fatigue damage.

I. Limitation of Variables in FORM Analysis

To speed up the FORM analysis, iterations are only

performed on the random variables contributing the most to

the fatigue damage. In other words, a sensitivity evaluation

based on the first iteration is carried out. The most significant

variables are stored in u′ after the first iteration, satisfying:

min (∇G(u′)) > ν|∇G(u1)| (30)

for some constant ν so that u′ only contains the significant

values. Further, u2 = u′ implying that the following

simulations are only using the variables from u′. For

instance, wave components with small frequencies and/or

small amplitudes will not have impact on the fatigue damage

calculation, and the number of components will depend on

the sea-state. In Fig. 7, an example is shown where 7 out

of 19 wave components are found to be insignificant. For

the disregarded variables, values from the first iteration are

used for evaluation of β, and as constants in the remaining

simulations. If deterministic wave amplitudes are used, it is

assumed that the significant components are grouped.

ωmin ωi ωcut

ω [rad/s]

Sw(ω)

Fig. 7 Example discretized wave spectrum with significant wave
components in red

III. SIMULATION MODELS

A. Structural Model

The structural model is a monopile based on the 10 MW

DTU reference wind turbine [8]. The transition piece and pile

have a diameter of 8 m and thickness of 110 mm, and it

is located at 30 m water depth. The first and second natural

periods are 4.8 s and 1.0 s, respectively. Rotor- and nacelle

masses are lumped to the tower top,and the soil layers are

modelled as non-linear springs all. An illustration of the model

is shown in Fig. 8 with corresponding parameters in Table III.

To be able to perform the FORM analysis in reasonable

time, a simplified model is used for the iterations. This is

based on the assumption that the design-point is the same

for the detailed and simple model. In other words, a sea-state

giving extreme fatigue on the simple model will also give

M

x,w

z

Fa(t)

k1

k2

kn−1

kn

d
s

d
H

E
I(

z)

ζ(t)

Fig. 8 Simplified wind turbine model
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TABLE III
SIMULATION MODELS

H [m] 115
d [m] 30
ds [m] 42
M [ton] 675

extreme damage on the detailed model. Differences between

the models are stated in Table IV. Note that the difference

in simulation time are not very large, which means that very

limited time can be used on the FORM analysis in order to

justify the use of the presented method. If a complete wind

turbine model including rotor had been used, simulation time

would at least be doubled, and the proposed method is even

more attractive. However, more work has to be done to find

a simple aerodynamic model that matches the complete rotor

dynamics by only using a single wind series, like e.g. [9].

TABLE IV
SIMULATION MODELS

Detailed model Simple model
Elements 21 12
Number of soil springs 26 6
Rotor No No
Aerodynamics CT CT

Hydrodynamics 2nd order 1st order
Controller None None
Real time/sim. time [s/s] 0.4 0.2

B. Hydrodynamic Loads

The wave elevation in an irregular sea is described with

[10]:

ζ(t) =

m∑
i=1

√
2Sw(ωi)Δω cos(ωit+ ε̄i) (31)

where Δω = 2π
T [11] and ωi = ωmin + (i − 1)Δω. The

maximum number of wave components can be found as m =
ωcut−ωmin

Δω ≤ 0.35T when ωmin = 0.3[rad/s] and

ωcut = min

[
2.5,

√
2g

HS

]
(32)

Here, the wave amplitudes are deterministic to limit the

number of random variables, but they can also be modeled

as Rayleigh distributed [12]. For small m, this should be done

in order to obtain a Gaussian surface elevation. The phase

angles are uniformly distributed and obtained from normally

distributed variables with (29). For the simple model, only

the wave components are given as input to USFOS, which

automatically calculates the first order hydrodynamic forces.

The detailed model utilizes second order hydrodynamic forces

which is pre-calculated in MATLAB and given as a spatially

time-variant interpolation grid as input to USFOS. Kinematics

calculations are based on an FFT algorithm similar to what is

used in [13]. From previous studies [13], it has been found that

second order wave loads are only significant when HS > 5,

which means that these loads can be neglected in smaller

sea-states, which increases the computational efficiency.

C. Simplified Aerodynamic Thrust Model

The turbulent wind is found by realizing the Kaimal

spectrum [14]:

Suu(f) = σ2
u

(
4L

Ū

)(
1 +

6fL

Ū

)−5/3

(33)

where the standard deviation

σu = I(0.75Ū + 5.6) (34)

is given as a function of the mean wind speed, Ū , and

turbulence intensity, I , which is set to 0.14. The total wind

speed is then:

U(t) = Ū + V (t) (35)

where the gust component, V , is found with:

V (t) =

n∑
i=1

√
Suu(fi)Δf/π cos(2πfit+ ε̃i) (36)

where Δf = 1
T and n = fcut−fmin

Δf = 1−0
Δf = T . Which

means that the number of components in the wind gust is

equal to the simulation time for a high frequency cut-off of 1

Hz. Higher frequencies are excluded to simulate the low-pass

filtering effects of the rotor. The thrust force can now be found

using:

Fa =
1

2
ρaπR

2CT (β, λ)U
2 (37)

where CT is the aerodynamic thrust coefficient dependent on

pitch angle (β) and tip-speed ratio (λ), R is the rotor radius and

ρa is the density of air. Here, it is assumed that the pitch angle,

and tip-speed ratio λ = ωRR
U , can be written as functions of the

rotor-induced lowpass-filtered wind speed, Ũ , and true wind

speed U :

β ≈ β(Ũ) =

{
0, for Ucut-in ≤ Ũ < UR

˜U−UR

1.8˜U−6.7
[rad], for Ũ ≥ UR

(38)

λ ≈ λ(U, Ũ) =

{
λopt

˜U
U , for Ucut-in ≤ Ũ < UR

λopt
UR

U , for Ũ ≥ UR

(39)

where λopt =
ωmaxR
UR

= 7.5 is the optimal tip-speed ratio. The

lowpass filtered wind speed is found with:

˙̃
U =

1

τ

(
U − Ũ

)
(40)

for some time constant τ , which has to be tuned according

to a more detailed simulation model. It has been found that

τ = 3 gives sufficiently accurate thrust for all wind speeds in

this case. The above equations are resulting in:

C ′
T (U, Ũ) =

{
CT (0, λopt

˜U
U ), for Ucut-in ≤ Ũ < UR

CT (
˜U−UR

1.8˜U−6.7
, λopt

UR

U ), for Ũ ≥ UR

(41)

which is plotted in Fig. 9. Further, the thrust coefficient,

CT (β, λ) can be approximated by the polynomial:
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Fig. 9 Thrust coefficient, C′
T (U, Ũ), with dashed line for Ũ = U and

dotted lines for the most probable region: Ũ = U(1± 0.2)

CT (β, λ) ≈ a00 + a01λ+ a02λ
2 + a10β + a20β

2

+ a11λβ + a12λ
2β + a21λβ

2
(42)

with the constants for the present turbine given in Table V.

The modified expression for the aerodynamic thrust is then:

Fa =
1

2
ρaπR

2C ′
T (U, Ũ)U2 (43)

TABLE V
THRUST COEFFICIENT PARAMETERS

a00 -0.27127
a01 0.19974
a02 -0.007461
a10 0.02822
a20 -5.875e-05
a11 -0.0088
a12 -9.822e-05
a21 -6.342e-05

The presented aerodynamic model is lacking the ability to

capture transient load effects and other thrust variations due

to the presence of a rotor, but it is considered to be sufficient

for this initial study.

D. Deterministic 3P Effects

To account for thrust variations that oscillates with three

times the rotor frequency, given a three-bladed rotor, a

deterministic time-series is added to the wind to create an

equivalent wind speed. In reality, only the wind shear and

tower shadow are deterministic effects, while the rotational

sampling of the rotor is stochastic and hence neglected in

this case. A sinusoidal function with amplitude of 8% of the

instantaneous true wind speed and a frequency of three times

the rotor frequency, ωR, is added:

Ueq = U + 0.08U sin(3ωRt) (44)

where

ωR ≈ ωR(Ū) =

{
λopt

Ū
R , for Ucut-in ≤ Ũ < UR

λopt
UR

R , for Ũ ≥ UR

(45)

In other words, the rotational frequency of the rotor is

assumed to be close to constant during the simulations, which

might result in a slightly unrealistic load excitation at exactly

3ωR.

E. Aerodynamic Damping

Aerodynamic damping has a great influence on the fatigue

damage on the tower and pile. Usually, the aerodynamic

damping is accounted for in the structural damping matrix

when a simple thrust model is used. Here, the thrust is

found through an equivalent drag force on a cylinder at

the rotor-nacelle assembly location. The thrust can then be

transferred to the tower by a simple drag formulation including

relative velocity:

Fa,rel(U, Ũ) =
1

2
ρaDCD(U, Ũ) [U − VRNA]

2
L (46)

By Fig. 10 it is clear that this approach is able to represent

the expected aerodynamic damping which is reported to

be 4-7% in most cases [15]. When only wave loads are

considered, the structural damping is increased from 1 to 5% to

account for damping contribution from an operational turbine.
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Fig. 10 Decay test at 16[m/s] wind speed with structural damping and
relative wind speed comparison

F. Random Variables

The total uniform random variables from wind and waves

are collected as

ε = [ε̄, ε̃] (47)

where ε̄ = [ε̄1, ..., ε̄m] are wave component phase angles and

ε̃ = [ε̃1, ..., ε̃n] are wind component phase angles, if used.

IV. RESULTS

The three sea-states considered are shown in Table VI

and represents typical FLS conditions at Dogger Bank along

with their probability of occurrence, p. Expected relative

contribution to the equivalent yearly fatigue damage is shown

in Table VII, and it is clear that the largest sea-state is

contributing the most although it has a lower probability of
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TABLE VI
SEA-STATES FOR FLS CONDITIONS

No. HS [m] TP [s] U [m/s] p [-]
1 1.5 4.7 6 0.1002
2 3.0 6.2 10 0.0314
3 4.8 7.5 14 0.0092

TABLE VII
RELATIVE FATIGUE CONTRIBUTIONS FROM SEA-STATES

Waves only Wind and waves
Sea-state Dyear,e Dyear,e · p Dyear,e Dyear,e · p

1 0.011 0.001 0.016 0.0016
2 0.360 0.011 0.100 0.0031
3 1.330 0.012 0.830 0.0076

occurrence. However, the statistics are limited to these three

sea-states, and it is likely that the cumulative contribution from

small sea-states will dominate.

When only wave loads are used, the aerodynamic damping

is accounted for by increasing the structural damping to 5%.

The damping is applied as Rayleigh damping with proper

coefficients to obtain the wanted damping level at the first

and second vibrational mode. Larger damping also gives a

smoother response surface, which makes the FORM iterations

converge faster. An example fatigue damage contour is shown

in Fig. 11 where two of the largest wave components are varied

from 0 to 2π. The contour confirms that the fatigue damage

is very sensitive to the wave phase angles.

For validation of the results, 10,000 simulations have been

run for the different sea-states, using approximately 120

CPU hours for each condition with the detailed model. The

validation plots are presented in Fig. 12. By varying the SCF

in the fatigue calculations, it is found that the curvature in

highly dependent on the fatigue limit of the bi-linear S-N

curve. For sea-state 3, the stress amplitudes are mainly located

above the fatigue limit. This results in the same exponent for

almost all rainflow counted stress ranges for this sea-state and

a close to Gaussian distributed fatigue damage, especially for

wave loads only. For the smaller sea-states, only some stress

ranges are exceeding the fatigue limit, resulting in a larger
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Fig. 11 Example response surface by varying two wave component phase
angles for sea-state 3
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Fig. 12 Fatigue damage results with 10,000 simulations for each sea-state
and loading condition

variation between the different seeds and more samples in

the distribution tail. These processes are closer to Rayleigh

or Weibull distributions.

The three presented methods for alternative fatigue damage

estimation in Table II are fitted to the results from the

wave only analysis by sea-state 1 and presented in Fig.

13. Here, 10 seeds are randomly drawn from the 10,000

existing simulations, and the different methods are applied. To

conclude, the SL method and quadratic fit seems to represent

the underlying distribution well, whereas the linear fit misses

the distribution slightly, but may still be appropriate for finding

the expected value since it crosses β = 0 almost exactly at

D/De = 1.

A. Wave Loads Only

As an initial study, only wave forces was included in

the model. To reduce the number of random variables,

deterministic wave amplitudes are used and the simulation

time is limited to 100 seconds, which gives a maximum of

TABLE VIII
FORM DESIGN-POINTS FOR WAVE LOADS

Sea-state Dyear,ext βFORM

1 0.03 3.15
2 0.80 2.55
3 2.40 2.40
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Fig. 13 Example fits using the three presented methods using wave loads
only and 10 simulations with sea-state 1. Underlying distribution and the

FORM evaluated point is plotted.

35 insertions in u. However, by using (30), the number of

variables are reduced to between 15 and 25, depending on

the spectrum and significance threshold. The FORM evaluated

design-points chosen for proper representation of the extremes

are shown in Table VIII.

The complete results for wave loads are shown in Fig. 14

with number of utilized seeds in the fatigue estimation on

the x-axis. For each number of seeds, K = 300 independent

simulations are used to evaluate the mean fatigue and standard

deviation. In most cases, the expected fatigue has converged

after about 20 seeds for all methods. The most promising

results are in sea-state 1 and 2, where the expected fatigue is

converging quickly and the variance is lower than the variance

using the conventional averaging, σ2
C , defined as

σ2
C|N =

1

K

K∑
i=1

(Di −DC|N )2 (48)

where DC|N is the mean fatigue for N simulations. Note

that the linear and quadratic fit provides the best results

when accurately estimating the expected fatigue while having

relatively low variance, which is the suggested benefit by

using these methods. The SL method is most beneficial for

small N , when the two last terms in (17) are still contributing

significantly. Interestingly, the SL method does not provide

a sufficiently large reduction in the variance, which is due
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Fig. 14 Standard deviations of fatigue damage estimation given number of
seeds (N ) of 100s simulations with only wave loads. Gray lines are the

mean fatigue normalized with true damage.

to variations in the MCS point for linearizing the tail. For

sea-state 3, no large improvements are seen in the uncertainty

of the results. An explanation for this is that the conventional

method is already estimating the fatigue quite accurately for

a relatively small number of seeds.

For the FORM method to be preferable, the time used for

finding βFORM must be smaller than additional Monte Carlo

simulations to obtain a smaller variance with the conventional

method. For sea-state 3, this is clearly not feasible, but it may

be beneficial for sea-state 1, considering that finding βFORM

consumes the same time as 40-60 simulations, depending

on the initiation point. With a large difference between the

detailed and simple model, the argument of curve-fitting is

even stronger.

B. Wave and Wind Loads

When including wind loads, the simulation model has

proved to be slightly more non-linear resulting in larger

fatigue damage variations as seen in Fig. 12. Therefore, it

is expected that the presented methods will be even more

efficient. However, the inclusion of wind loads leads to a

dramatic increase in random variables. For a simulation time of

100s, as much as 135 random variables has to be used to avoid

repetition of the environmental loads. Even though the number

is reduced to about 90-110 by using (30), the computational
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efforts to find βFORM are still significant, meaning more than

100 simulations with the detailed model. For demonstration

of the method, results in Fig. 15 are found using the second

largest points in Fig. 12 as the FORM design-points.

The complete results are shown in Fig. 15 using the same

approach as for the case with only wave loads. Here, the results

are very similar to what is observed in the wave load case.

Reduction of the uncertainty is seen for small number of seeds

with the curve-fitting methods, but not large enough to justify

using significant computational efforts on the FORM analysis.
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Fig. 15 Standard deviations of fatigue damage estimation given number of
seeds (N ) of 100s simulations with wind and wave loads. Gray lines are the

mean fatigue normalized with true damage.

V. CONCLUSION

To conclude, the fatigue damage estimation using a FORM

procedure may lead to a reduced uncertainty if the FORM

design-point is properly found and contributes significantly

to the integration. Especially the linear and quadratic curve

fitting methods have proven more reliable that conventional

averaging. It has been found that the standard deviation is

reduced up to 30% for load cases where the fatigue damage

distribution deviates from the normal distribution.

The multi-step FORM procedure might be computationally

efficient in a wide range of applications if the simulation model

can be simplified sufficiently. For the presented procedure

applied to wind turbines to be computationally competing with

the conventional average of simulations, βFORM for Dext has

to be found with relatively small efforts, or be known from

previous analyses by e.g. scaling with respect to the significant

wave height [16]. A simpler linear model corresponding to a

wind turbine model with a more sophisticated aerodynamic

model should be used in future work to reduce computational

efforts and evaluate the applicability and effectiveness of the

presented methods.
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