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A Detection Method of Faults in Railway
Pantographs Based on Dynamic Phase Plots
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Abstract—Systems for detection of damages in railway
pantographs effectively reduce the cost of maintenance and improve
time scheduling. In this paper, we present an approach to design a
monitoring tool fitting strong customer requirements such as
portability and ease of use. Pantograph has been modeled to estimate
its dynamical properties, since no data are available. With the aim to
focus on suspensions health, a two Degrees of Freedom (DOF)
scheme has been adopted. Parameters have been calculated by means
of analytical dynamics. A Finite Element Method (FEM) modal
analysis verified the former model with an acceptable error. The
detection strategy seeks phase-plots topology alteration, induced by
defects. In order to test the suitability of the method, leakage in the
dashpot was simulated on the lumped model. Results are interesting
because changes in phase plots are more appreciable than frequency-
shift. Further calculations as well as experimental tests will support
future developments of this smart strategy.

Keywords—Pantograph models, phase-plots, structural health
monitoring, vibration-based condition monitoring.

1. INTRODUCTION

ONDITION monitoring plays a key-role in the

maintenance cycle of both civil and mechanical
structures; the identification of incipient damages before
breakdown is an effective way to achieve predictive safety as
well to get economic benefit and, more generally, to improve
the quality of service.

Damage detection may be implemented to identify faults in
terms of?: 1) existence; ii) location; iii) severity and furthermore
to estimate the residual service life [1].

Almost all the industrial world is concerned with this
theme, and also railway industry is pointing towards intensive
research. In the last twenty years several studies focused on
the interaction between the pantograph and the catenary
because it determines the quality of energy capture and
therefore, the maximum reachable speed of train.

A new interest has born for portable systems able to assess
pantographs health. The main task that the pantograph has to
accomplish is to keep contact with the catenary wire, in the
presence of disturbances, such as deflections, imposed by the
line, train-roof-induced vibrations and aerodynamic forces.
The interest is thus addressed so as to check the functionality
of those elements influencing the dynamics of the mechanism
i.e. the suspension systems.

In this paper, a simple strategy for the development of a
vibration-based condition monitoring machine is introduced.
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The monitoring tool is meant to be as simple as possible, but
able to judge in real-time the health of the suspensions, just
requiring the train is at rest and isolated from the electrical
line. The portability is an important customer requirement that
limits weight; the set-up should need only a clamping to the
pantograph frame. The machine will be equipped with a one
DOF mechanism that excites the pantograph under inspection;
accelerometers will collect the vibrating responses and the
processing unit will elaborate a judgment on the overall
dynamical behavior.

Analytical model that best fits the need is necessary because
faults database is not available. The main assumption is that a
two DOF system is accurate enough to describe the dynamics
in the frequency range 0-10 Hz. Dynamical parameters are
estimated by means of Lagrange's equations for any
configuration in the working interval. To verify the
assumption, a numerical modal analysis has been performed
on a FEM model. Simulation results have been used to further
considerations about the detection of structural defects. Phase
plots are considered to be an interesting instrument to smartly
recognize severe defects. As an example, a leakage in the
dashpot was supposed; a significant deviation in the phase
plots showed the suitability of the method.

II. LITERATURE REVIEW

A.Current Techniques for Vibration Based-Condition
Monitoring

Vibration based structural health is one of the possible
techniques available for condition monitoring. The system is
excited by a testing input or directly by the environmental load
for large-scale applications, i.e. bridges, building, and so on.

The exhibited vibrations are measured and elaborated in
order to assess the health of the specimen, on the basis of
alterations in the dynamical characteristics. A basic hypothesis
should therefore be verified before applying this technique:
the measured response is significantly altered once damage
has occurred [1]. The main issue is the establishment of which
vibrating index is mostly dependent on the effects of defects.
The choice is even complicated because it depends upon
boundaries conditions, different from one case to another; a
parameter fit for a specific situation might instead reveal to be
highly sensitive to measurement noise and modeling errors
due to the environmental changes [2].

1. Frequency Analysis

The first and most commonly used strategies belong to the
so called frequency-domain; they look for modifications in the
modal parameters, i.e. frequencies and mode shapes. The basic
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principle is that common defects like cracks alter properties as
stiffness, mass, dissipation of energy; those modifications may
be detected by a frequency-shift. In general, easy and reliable
measurements can be conducted at a few points. However,
frequency does not contain spatial information about the
incipient damage as written in [3] and [1]. Some studies about
bridge beams, [4], [5], witnessed that even alteration of the
90% in the stiffness of the cross sectional areca, was not
detectable from the shift.

2. Modal Shapes

Modal shapes alterations take into account spatial
information, giving the chance to localize the affected regions.
Previous studies affirm that eigenvectors are also more
sensitive to damages [3]. On the other hand, to detect local-
structural damages, it is necessary to investigate the high
frequency band of the system under inspection. The good deal
with the high frequency band concerns the required robustness
of the investigator tool which must be able to excite the
structure without deformations. To reconstruct local modes, it
is required more number of sensors, which increases the cost
and the time of the measurement.

3. Mode-Shape Related Methods

Coordinate Modal Assurance Criterion (COMAC),
curvature and flexibility methods are evolved versions of the
mode-shape related strategy. They are supposed to be more
sensitive to loss of stiffness, but they need even more points to
make the estimation reliable. Reference [6] presents
experimental results applied on a full-size composite
helicopter main rotor blade. The damage detection methods
used in this study are COMAC and the modal strain energy
method. The undamaged blade has been identified with the
Experimental Modal Analysis and damage was simulated
attaching a small mass to the blade. Both the methodologies
were able to detect the location of defects. COMAC results
were less sensitive than the strain energy technique, and the
damage index did not detect the exact location of the added
mass. The modal strain energy formulation provided good
detection possibilities and sensitivity, even after hard
calculations, necessary to estimate the damage index.

4. Novel
Monitoring

Strategies of Vibration Based Condition

Innovative strategies emerged in recent years to accomplish
detection of complex phenomena or efficient systems for the
real-time condition monitoring.

Some literature makes refer to nonlinear identification; [7]
discusses the experimental nonlinear identification applied to
an aircraft with bolted connections. Nonlinear methods rely on
the assumption that due to damage the system might exhibit a
nonlinear response even excited in a range in which its
behavior was assumed to be linear.

Reference [8] proposes changes in the topology of the phase
space as a clue of current damage. The research has been
focused on a demonstrative case, focused on an arc, affected
by radial cracks. Both numerical and experimental results
demonstrate that the deviation of the phase space is more

sensitive to damage and less sensitive to noise, than modal-
based parameters.

B. Survey of Railway Pantographs Models

The literature contains several models of pantograph
utilized in the analysis of the interaction with the catenary. An
important issue concerns the choice of a proper model of
pantograph. It seems that the general assumption is that
pantograph global-rigid-body modes are not supposed to be
influenced from the structural elasticity and damping, i.e. in
the operating condition links may be considered as rigid
bodies, but it is hard to find demonstration about this
hypothesis. The literature agrees about the fact that the lumped
or low-order models work up to 20 Hz [9]. With this
hypothesis, it is possible to classify and locate the vibrating
modes in the frequency domain, distinguishing a low
frequency band in which are located the suspensions modes
and a high frequency band, collecting combined effects of
suspensions and structural dynamics. Lumped models differ
on the base of the specific purpose of the study.

Another general hypothesis is that under the applied load
the mechanism layout varies in the neighborhood of the initial
operational point, so that a linear model is adopted [9].
References [10]-[12] make use of a two DOF system, while
[13] introduces a three DOF system. Reference [14] increases
the order by one, in order to model the pitch.

Reference [15] uses a four-rigid body model in a multi-
body analysis, including the pan head, the plunger and the
lower and upper arms, while in [16] is shown a comparison
between a lumped model and a FEM model to simulate the
exchanged force between the pantograph and the catenary,
affirming that the simplified model is suitable.

III. DESCRIPTION OF THE RAILWAY PANTOGRAPH

The railway pantograph under consideration, shown in Fig.
1, belongs to the so called symmetric scheme, because of the
geometry in the transversal plane with respect to the motion of
the train.

The tridimensional frame is made up of two parallelograms
constrained by a couple of diagonal links such that the
mechanism has one DOF which can be represented by the
angle 9 in the longitudinal plane, as depicted in Fig. 2. Each
one of the four lower links is constrained to a corresponding
shaft which can rotate around the y axis. The rotation of the
motorized shaft is applied to the conducted one by means of
two tie-rods. The mechanism is actuated by a pneumatic
cylinder; when the cylinder is feed with compressed air, the
piston moves up and drags the parallel springs, thus generating
the rotation of the motorized shaft; the result is the lifting of
the entire pantograph. A torsion bar prevents the eventual
relative rotation between the parallelograms around the z axis.

The contact between the strip and the catenary wire is
governed by two suspensions: the principal one (Fig. 3) is
involved in the range of low frequency displacements (about
1.5 m), while the upper suspension (Fig. 4) compensates
displacements at high frequencies between the pan head and
the catenary. The springs which transmit the motion to the
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motorized shaft furnish elasticity to the principal suspension.
Damping is produced in three pneumatic dashpots, even
though the black ones in Fig. 3 are meant to work only in the
opening and closure modes. The secondary suspension is
realized by the two springs connected on the top to the pan
head.

Fig. 1 A picture of the railway pantograph under consideration
(courtesy of Trenitalia)
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Fig. 2 Pantograph scheme

For all elements except for the torsional bar material is
assumed to be structural steel with Young’s modulus E equal
to 210 GPa, density p equal to 7850 kg/m?, Poisson’s ratio v
equal to 0.3; the torsional bar is in aluminum with Young’s
modulus E equal to 69 GPa, density p equal to 2700 kg/m?,
Poisson’s ratio v equal to 0.3.

Fig. 4 Secondary suspension and suspended pan head (courtesy of
Trenitalia)

IV. DERIVATION OF AN ANALYTICAL MODEL OF THE
RAILWAY PANTOGRAPH

The identification of damages is meant to detect defects in
the vertical oscillations. To simulate the effects of forecast
damages, a model of the pantograph is necessary.

In this paper, we want to verify that structural elasticity
does not influence the vertical oscillations of the pantograph,
as well to estimate the lumped parameters. To reach the goal
two distinct models have been built.

The first one is a two DOF lumped parameter model, whose
scheme is depicted in Fig. 5; it has been derived considering
links as rigid bodies, so by means of analytical dynamics laws,
we have brought out an equivalent system.

The second model is a more accurate one and was obtained
with the FEM, including all the relevant elements, and so
considering distributed masses and elasticity. A comparison of
results between the two models was accomplished to compare
the predictive behavior of the first simplified model vs. the
second FEM more accurate one.

Numerical test was conducted starting from an equilibrium
position in the working space of the pantograph
(correspondent to the interval 9min-Imax in Table I), with the
assumption of small displacements, even though the
kinematics is actually nonlinear. Linearity is extended to all
the elements, including springs and dashpot; the last one, in
particular, is modeled as a viscous damper with a constant
damping coefficient. The chosen configuration is obtained
when ¢ is equal to 59 deg. Table I collects the main
geometrical and physical properties (M stands for the total
mass).
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For the sake of simplicity, we will neglect deviations in
dimensional and geometrical tolerances, considering that
external and inner constraints i) act like ideal hinges deleting
five DOF; ii) introduce negligible friction.

Fig. 5 Geometrical scheme of the pantograph

TABLEI
MAIN PROPERTIES OF THE PANTOGRAPH

Symbol Value Units

Jmin 10 deg
Imax 59 deg
Sp.min 0.1179 m
Spmax 2.167 m
Iy 1.100 m
I, 1.659 m
e 0.045 m
Miot 88.1570 kg
Ksp 9235.6 N/m
ks 1621 N/m
Cda 6944.4 N s/m

A. Lagrange Formulation of the Pantograph Dynamics

Under the previous assumptions, we can use Lagrangian
mechanics. Pantograph motion is planar with respect to the X-z
plane; there is also a symmetry with respect to the z; thus we
obtain an eccentric crank-rod scheme as shown in Fig. 6.

Q is the origin of the Cartesian axes. The crank 1 represents
one of the lower arms on the right in Fig. 2; the rod 2
represents the upper arms and the diagonal on the right in Fig.
2; the slider element 3 represents the torsion bar. G; is the
crank center of mass; r; is the distance between G; and the
hinge in Fig. 6; G is the rod center of mass. The crank-rod
mechanism is reduced to a system of punctual masses and
concentrated moments of inertia, shown with points and rings
in Fig. 7.

The following legend needs to be considered: m; is the mass
of the crank; J; is the moment of inertia of the crank with
respect to its center of mass; Ja is the half moment of inertia
along the y axis of the shafts, the tie-rods, the springs and the
dashpot, evaluated with respect to point A. Because the rod
rotates around a moving instantaneous center of rotation, it is
easier to use a fictitious system with the same mass m; and the
same kinetic energy; from the equivalence we obtain two
masses Mg and Mc located at the extremes and a moment of

inertia Jgc around the center of mass. Table II collects the
values.

Fig. 6 Equivalent kinematic scheme
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Fig. 7 Reduction of the mechanism to a system of punctual masses
and moments of inertia

TABLE II
'VALUES OF MASSES AND INERTIAS OF THE REDUCED MECHANISM

Symbol Value Units

m, 1.6775 kg
m, 2.7029 kg
mg 1.4074 kg
mc 1.2955 kg
ms 2.3101 kg
mg 15 kg
Ja -0.9110 kg m?
J 0.1413  kgm?
Jsc -1.2682 kg m?

Since we aim at reducing the dynamics to the z axis, Sp and
Ss are assumed as Lagrangian parameters; 4 and ¢ are assumed
as normal coordinates locating the crank and the rod position
with respect to any slider coordinate.
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For the kinetic energy T, if T is the contribution due to the
pantograph and Ts to the suspended mass, the following
expression holds:

1
T, :E[(2~JA+4-J1 +4m +2-mgl? )k +

ey
+2-JBck¢2+2-mC+m3}s'p2;
1 2 2.
Ts :Emsss > (2)
T=T,+T; 3)
where;
k5=d3(s); )
s
do(s)
k,= - 5)

From the (1), it is possible to define an equivalent mass my
varying with s, as follows:

mP(SP):(Z.JA+4"]l+4'm1r12+2'm|3|12)k(92+ (6)

2 .
+2-Jgck,” +2-mg +my;

Fig. 8 illustrates the dependence of the equivalent parameter
in the working range of Sp; as Sp increases, the inertia of the
mechanism gets higher because the corresponding rotation of
the links decreases.

Pantograph FrameEquivalent M ass

sp(m)

Fig. 8 Pantograph frame equivalent mass

For the potential energy U, we have U, for the pantograph
and Us for the suspended mass. So:

U=U,+U, 7)
1 dls rin ’
Upzz(z'ksp)[ dps g] sz ®)
P
1 2
Usziks(ss—sp) )

It is thus possible to define an equivalent stiffness K
varying with s,, as:

2
dIS rin
kp(sp):2~ksp(dpsng : (10)

Fig. 9 illustrates the dependence of the equivalent parameter
in the working range of Sp; while S, increases, k, does the
same.

SuspensionSpringsEquivalentStif fness

15 16 1.7 1.8 1.9 2 2.1 22
sp(m)

Fig. 9 Suspension springs equivalent stiffness

Viscous damping force is accounted for the Rayleigh's
dissipation function F [17]:

1 .
F =50daku25pz; an
where
K, :—d:;gsh (12)

Fig. 10 illustrates the dependence of the equivalent
parameter in the working range of Sp; while s, increases, Cp
does the same.

Dashpot Equivalent DampingCoef ficient
55 ' '

‘i
% 45
=z
40-/
35| !
15 16 1.7 1 21 22

8 19
s(m)

Fig. 10 Dashpot equivalent damping coefficient

Lagrange’s equations for the unforced system can be
written as follows:
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d [{ﬂ ] oT U oF
e T T T =%
dt o8, ds, 0s, 05,
d(eT) oT oU oF
—_——-—+——+ —= 0;
dt\ 0s, ) s, 0s, 05,

By substituting the previous definitions and neglecting the
kinetic energy derivatives with respect to the Lagrangian
coordinates [17], one obtains:

mp(sp)-s-p +Cp(s )Sp +kp(sp)(sp_ss):o;
ms, +k, (s, —s,)=0;

(13)

(14)

The pantograph mechanism can be thus reduced to a two
DOF model with lumped parameters dependent on the
Lagrangian coordinate Sp (see Fig. 11).

Mg Sg
I

% kstor

m,(s,) 3
PAST I Yy

Kn(sp) § H:‘ cplsp)

Fig. 11 Lumped model

For the pantograph frame, in particular, it is possible to
define a natural frequency f, as well as a damping factor ¢ and
a damped natural frequency fq per each value of s, as follows:

f.(s,)= %zpp)); (15)
T .
A EARN ™

It is interesting to notice, in Fig. 12, that despite both mMeq
and keq increase with Sy, the natural frequency increases as
well, meaning that the dependence of keq from Sp is more
important than that of meq. The damped frequency follows the
same pattern.

Pantograph FrameN atural Frequency

09 (@)
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=
— 08
g
075
07"
15 16 1.7 1.8 19 2 21 22

sij(m}

PantographFrameDamped Frequency
(b)
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Ja(Hz)

0.65

/

0.6/
1.5 1.6 1.7 1.8 1.9 2 21 22
sp(m)

Fig. 12 Pantograph frame natural (a) and damped frequency (b)

The linearized equations about the equilibrium position of
interest, at S,=2.166 m may be written in the matrix form:

Md(t)+Cq(t)+Ka(t)=0 (18)
where;
s
Q=[ pj; (19)
s,
M = m, 0 20)
= 0 m
O on
=10 o0
K, 0
::[o kp+k5m] 22)

Table IIT collects the values for the configuration under
consideration.
The system is subjected to arbitrary viscous damping,

because the damping matrix C is not proportional to the mass
matrix M and the stiffness matrix K; for this reason, the

calculation of the damped frequencies is not possible in the
configuration space; however it is possible to use the state

space. To this end, we introduce the state space vector X as:
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X= 1 (23)
A g .

X(t)=Ax(t) (24)

where;
al 01
= |-MK -MC 25)

where 0is the 2x2 null matrix and | is the 2x2 identity
matrix. ”Ehe modal frequencies can be ca;ried out from the two
couples of poles of é [17]. Natural frequencies (fn )i are
equal to the magnitude of poles under 2w, while the damped
frequencies ( fd )i correspond to the imaginary part of poles

under 2. To better underline the effect of damping, modal
damping ratios & are also evaluated, as in:

(26)

Table IV collects the obtained values (i stands for the
imaginary unit).
TABLE III
LUMPED PARAMETERS OF THE EQUIVALENT2 DOF
Symbol Value Units

Sp 2.166 m
m, 8.0621 kg
ms 15 kg
kp 256.99 N/m
Kstor 3242 N/m
Cp 52.81 N-s/m
TABLE IV
CALCULATED SCALAR MODAL PARAMETERS OF THE 2 DOF SYSTEM
Natural Damping ratio Damped
Poles frequency (Hz) 0 frequency
(Hz)
-1.0862 + 3.1236i 0.5263 0.3284 0.4971
-2.1889 + 24.9973i 3.9937 0.0872 3.9784

B. Development of FEM Model of the Pantograph

In order to verify the assumption discussed in Sec. A
numerical modal analysis has been performed by means of the
commercial software ANSYS. Structural elements have been
modeled with thick beam elastic elements (BEAM 188 in
ANSYS). The ratio between the length of the links and their
cross sectional characteristic dimension is around 15%, so that
Timoshenko's theory must be applied. Springs are modeled
with longitudinal springs elements (COMBIN14) with three
DOF per each node. To simulate the inertia of the pan head

two concentrated masses with three DOF (MASS21) have
been applied on the top of the upper springs.

The QRDAMP method is suitable because high damping
ratio is expected to be present. The following Table V reports
the first 20 natural and damped frequencies. Damping factors
have relevant values only for the first two modal frequencies,
but are negligible for all the others, so that the modes above 4
Hz are almost undamped. Frequencies lie in the 0-50 Hz range
and it is possible to notice that some couples of modes have
about the same frequency, as a result of the geometric
symmetry of the pantograph.

TABLE V
ESTIMATED SCALAR MODAL PARAMETERS OF THE FEM MODEL
Frequency Natural Damping Complex
Number frequency (HZz) factor (/) Frequency (Hz)

1 0.5224 0.3108 0.5
2 3.8382 0.7689-10"! 3.8025
3 9.8369 0.8951-10* 9.8369
4 13.4508 0.3115-102 13.4481
5 19.3517 0.1766-10* 19.3517
6 21.7291 0.3039-10 21.7266
7 22.2107 0.8126-10* 22.2104
8 23.0749 0.2135-103 23.0744
9 23.8704 0.1809-1073 23.8701
10 26.4331 0.2033-1073 26.4328
11 28.9848 0.8505-10* 28.9847
12 30.4000 0.9667-10° 30.3994
13 30.4000 0.3724-107 30.4000
14 31.6389 0.7215-103 31.6385
15 31.8897 0.1656-1073 31.8890
16 34.8633 0.3346-107 34.8628
17 36.2361 0.5148-10* 36.2361
18 37.2559 0.7242-10* 37.2558
19 50.3291 0.6885-10* 50.3290
20 51.1194 0.5784-10* 51.1194

Figs. 13 and 15 show the real part of the eigenvectors, that
is the natural mode shapes. From the observation of the first
two mode shapes, in Fig. 13, it seems that no structural
deformation appears.

Fig. 14 illustrates another mode present in the band of
interest, associated to a bending around X axis. All the other
modes, located at higher frequencies, may be considered local,
because they exhibit deformations confined to restricted
regions. Structural modes of the thinner beams appear in the
modal set and according to this, modal density increases above
the global-modes-band. The ratio between the cross-sectional
moment of inertia and the geometrical length is really different
between the main beams of the frame; for the diagonal the
ratio is 1.3308 m?, while for the lower beam is 0.0764 m;
this proves that mainly the only upper arms vibrate and the
lower arms are not involved because of their high stiffness
with respect to the pantograph frame. In pictures (a), (b), (c),
in Fig. 15 are evident different bending modes of the upper
half of the frame. Mode shapes may be thereby classified as in
Fig. 16.
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(@ | (b)

Fig. 13 (a) First mode shape (0.52 Hz); (b) Second mode shape
(3.8025 Hz)

r

Fig. 14 Third mode shape (9.8369 Hz)

¢
.

L

Fig. 15 Some mode shapes in the interval 0-50 Hz; (a) at 13.4481 Hz;
(b) at 19.3517 Hz; (c) at 21.7266 Hz; (d) at 23.8701 Hz; (e) at
28.9847 Hz; (f) at 31.6385 Hz

Global modes

Local modes (glohal)

I | b (H)

Bl 10 52

Fig. 16 Classification of estimated modes in the frequency range

C. Comparison of FEM vs analytical model

The following Table VI synthetizes the comparison
between the estimation based on the modal frequencies.
Considering the simplified model brings some error; in
particular, the approximation is better on the first mode, as
demonstrated by lower percentage errors on the natural
frequency and damping ratio. Natural frequencies are better
estimated than damping ratios for both modes.

Because the interest lies on the development of a strategy
that detects deviations from the dynamic response, there is no
need to reconstruct with extreme precision the dynamic
properties. The assumption that the two DOF model is
equivalent to the pantograph behavior is thus adequately
demonstrated.

TABLE VI
COMPARISON BETWEEN THE ANALYTICAL MODEL AND THE FEM MODEL
P Analytical FEM Absolute
arameter . . .
calculation estimation percentage error

(fn): (Hz) 0.5263 0.5224 0.7520
(fn), (Hz) 3.9937 3.8382 4.0505

& () 0.3284 0.3108 5.6758

& () 0.0872 0.0769 13.4489

V.DAMAGE PREDICTION BY PHASE PLOTS ANALYSIS

A.Numerical Simulation of Damage in the Dashpot

In terms of appreciable defects, it is important to notice that
local modes are associated with the high-frequency band, as
shown from the numerical modal analysis. In order to excite
the specimen without deformations, the required stiffness
might be incompatible with the portability. Frequency
techniques need also to record measurements in the
neighborhood of all the regions supposed to suffer defects
during their life. As a conclusion, it is hard to recognize
defects like clearance in the hinges and cracks with a simple
system. This is the reason that brings us to focus on faults
prone to be detected in the easiest way, such as those affecting
the low-frequency dynamics. The main idea of our analysis is
to use deviations in the phase plot as an index of damage. This
choice is particularly suitable in this case; detection, in fact,
aims to recognize those alterations that significantly influence
the shape of the phase plots.

Fault models are necessary to predict possible damages
when historical data are not available. We simulated a leakage
in the dashpot that yields to a reduction of the damping
coefficient of 90%. Damped frequencies vary as reported in
Table VII.
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TABLE VII
VARIATION IN THE DAMPED FREQUENCIES DUE TO THE SIMULATED DAMAGE
Frequency Safe Damaged Absolute percentage
(Hz) pantograph  pantograph deviation
(fa): 0.4971 0.5221 5.0292
(fa)2 3.9784 4.0238 1.1412

The analysis simulates the free response of the system
under an imposed initial displacement, applied on the
pantograph frame DOF The intensity of the displacement has
been chosen such that the assumption of linearity is satisfied;
for example, a value of 0.02 m has been used; as a proof, the
modification in natural frequencies and damping ratios
produced by the considered displacement is less than 1%. The
integration has been carried out so as the transient of the
damaged system would be extinguished; the result is a time
interval of 75 s.

The historical series are depicted for the first 8.5 s in Fig.
17.

(@) PantographFrameResponse : Displacement

= Safe
15 ¢ Damaged|

T e S Y N A B
t(s
(b) SuspendedM assResponse : Displacement
20 : : . : . ‘ ‘
Safe

Damaged

7% 1 ' ) 4 5 ; 8 9
t(s)
Fig. 17 Time histories (8.5 s); (a) pantograph frame; (b) suspended
mass

From the time series, it is immediate to reconstruct the
trajectories in the so called phase space, i.e. the phase plots.
The phase plot is a parametric representation expressing the
relationship between the components of the state-space vector
of the system. The parameter is time, i.e. each point on the
phase plot curve represents the values assumed by the state
components in a certain instant of time. For the present case,
the phase space is defined as in (23).

For an unforced system, dynamics is expressed by:

e .

As time increases, the state evolves, under the dynamic law
F, starting from the initial condition X,. Phase plots are

usually used to study the stability properties of a system.
Starting from an equilibrium position or fixed-point, the
response to small perturbations is different depending on the
kind of system [17]. The most interesting aspect is that also
the so-called attractor might change. The attractor is a subset
of the phase space that may be thought of as a region to which
all trajectories tend to as time goes to infinity [8]. For a
damped oscillator, the attractor is the origin of the plane; after
the perturbation the system describes a trajectory
corresponding to a converging spiral. An undamped oscillator
tends instead, to an elliptic curve, since the dynamic
equilibrium is governed by the balance of inertia and elastic
forces.

Fig. 18 reports the phase plots for a safe and a damaged
pantograph; in pictures (a) and (b) safe and damaged structure
solutions are overlapped, per each DOF. Patterns mismatch for
both DOF solutions. To quantify the difference in trajectories,
we can take as reference points those in which velocity is null,
because they are easier to be identified, as shown in pictures
(¢), (d), (e), where they are labeled with alphabetic letters (A-
H and o-6 for the continuous curve and Ad-Hd and ag-64 for
the dotted one). Point A represents the first time in which,
after the initial displacement, velocity is null; in B the
phenomenon happens for the second time and so on for the
successive points. By analogy, we can define points Ad-Fd as
well as a-6 and ag-04 . The first step is to evaluate the distance
between two consecutive reference points on the damaged
structure phase plot, for several couples of points. The
discrepancy with the corresponding distances for the safe
pantograph is an eligible parameter to detect faults. Table VIII
collects the values of distance for four couples of points. The
relative percentage difference increases with the trajectories
abscissa, (i.e. the time) and except for the first couple it is
about 100%. The deviation takes into account the different
amplitudes of the response, due to the variation in damping.
We notice that reference points correspond, in the time
history, to the peaks of the response.

Fig. 19 illustrates the phase plots for the last 25 s; in the
case of damaged structure the system is still approaching the
attractor, while for the safe pantograph the motion is expired
as shown from the values of displacement and speed.
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Fig. 19 Pantograph frame DOF trajectories approaching attractors; (a) safe structure; (b) damaged structure

TABLE VIII
PHASE PLOTS DISCREPANCY

Absolute percentage

Distance for Distance for

safe pantograph  damaged pantograph deviation
A-B=19.3720 Ag-Bg = 24.6700 27.3488
C-D=8.770 Cy¢-Dg=21.3510 143.4550
E-F=3.7634 E4-F¢=21.0620 459.6535
G-H=2.0359 Gg—Hy=24.4080 1098.9
a-3=8.7840 ag-fa=14.5040 65.1184
y-0=7.7960 74-04=15.1990 94.9590
£-(=6.2976 e-(g=14.1720 125.0374
n-6=3.7316 ne-04=11.7626 215.2160

B. Final Considerations

The convenience in the use of phase plots is that the
detection strategy may be transformed in a simple problem of
pattern recognition. It is not necessary to estimate with high

precision the properties of the systems; it is only required to
recognize a difference between the trajectories obtained from
the specimen and those of the safe structure.

For the simulated fault frequency shift is about 5% on the
first frequency; it is even lower on the second one. With the
use of phase plots, several values of the discrepancy index
may be obtained. In the proposed simulation, the four values
are in the interval 30-1000%. It is clear that in this analysis the
use of phase plots is more effective than the frequency
technique.

From a practical point of view, a detection strategy that
makes use of time measurements is simpler than a frequency-
based one. The necessary Experimental Modal Analysis
demands, in fact, for more computational effort in order to
estimate modal parameters.
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VI. CONCLUSIONS

Detection systems able to recognize incurring damages are
powerful instruments to guarantee the functionality of
structures as well to reduce cost of maintenance.

In this paper, we deal with the elaboration of a strategy for
the detection of faults in railway pantographs. The research is
constrained by specific customer requirements such as
portability and ease in use, so the analysis is focused on the
main dynamics of the pantograph, rather than on each element
prone to failure.

The development of the strategy needs a model of
pantograph because no historical data on damages are
available. A simplified model has been obtained by means of
analytical dynamics. The assumptions have been verified
comparing modal frequencies calculated from the analytical
model with those evaluated by a complete FEM model. The
difference in results is acceptable, for the purpose of the
analysis, so the lumped model is verified.

The use of phase plots for the detection of faults seems to
be a convenient choice with respect to the requirements of
portability and simplicity; it is in fact immediate to construct
the trajectories, once time histories are known. The leakage in
the dashpot has been simulated, by reducing the associated
damping coefficient. The proposed strategy compares the
shape of phase plots prior and after the damage. The noticed
discrepancy is evident and more appreciable than frequency
shift.

In a next step, the model will be validated by an
Experimental Modal Analysis. Further studies are needed to
take into account the effects of nonlinearities on phase
trajectories; tests are also required to prove the suitability of
the method.
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