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 
Abstract—The design and implementation of the hybrid control 

method for a three-pole active magnetic bearing (AMB) is proposed 
in this paper. The system is inherently nonlinear and conventional 
nonlinear controllers are a little complicated, while the proposed 
hybrid controller has a piecewise linear form, i.e. linear in each sub-
region. A state-feedback hybrid controller is designed in this study, 
and the unmeasurable states are estimated by an observer. The gains 
of the hybrid controller are obtained by the Linear Quadratic 
Regulator (LQR) method in each sub-region. To evaluate the 
performance, the designed controller is implemented on an 
experimental setup in static mode. The experimental results show that 
the proposed method can efficiently stabilize the three-pole AMB 
system. The simplicity of design, domain of attraction, 
uncomplicated control law, and computational time are advantages of 
this method over other nonlinear control strategies in AMB systems. 

 
Keywords—Active magnetic bearing, three pole AMB, hybrid 

control, Lyapunov function. 

I. INTRODUCTION 

OWADAYS, two parameters are important in 
manufacturing of rotating machinery such as machine 

tools, turbines and compressors, namely, speed and accuracy. 
In these systems, AMB is being used to achieve high 
rotational speeds instead of conventional bearings. AMBs 
have advantages such as noncontact load carrying, long life 
duty, no need to lubrication, ability to work in vacuum and 
high temperature environments, high efficiency, high speed, 
and so on. 

The AMB system has almost a nonlinear behavior. Hence, a 
control technique that can stabilize the system in a large 
domain of attraction is the best solution for this application. 
Linear controllers have been extensively used by many 
researchers in this area. However, this type of controller can 
stabilize the AMB system only in a small region near the 
linearization point. In order to solve this problem, it is better to 
use a nonlinear control method. The three-pole configuration 
of AMB has strongly nonlinear dynamics, so a nonlinear 
controller is expected to have the best performance for such a 
system. The hybrid configuration is a conventional method to 
control the nonlinear systems, in which some linear controllers 
are matched to each other by a switching logic. In this method, 
the whole domain is divided into small zones, and the system 
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is controlled by designing linear controllers for these zones. 
The main benefits of this method are simplicity and coverage 
of the total domain.  

The hybrid control method has been widely used by 
researchers. Fierro et al. [1] used this technique to control a 
group of non-holonomic mobile robots with range sensors. 
The stability of the hybrid system that he developed is studied 
by using the Lyapunov theory. Karimoddini et al. [2] 
presented a bumpless hybrid supervisory control scheme to 
stabilize an unmanned helicopter. The proposed method is 
based on polar partitioning of the workspace. Lin-Shi et al. [3] 
used a hybrid control strategy to control motor drives on a 
permanent-magnet synchronous motor. Han et al. [4] used a 
hybrid feedback control to stabilize a spring-loaded inverted 
pendulum system. The results of this paper show that this 
approach has good performance on different conditions of a 
nonlinear system. Liu and Stechlinski [5] investigated the 
stabilization of a class of nonlinear systems with distributed 
delays using impulsive and switching control. Their criteria 
are based on a special type of state dependent switching law 
which partitions the state space into stabilizing sub-regions. A 
common Lyaponuv function is used to prove stability. Yuan 
and Wu [6] investigated the stability and L2-gain problems for 
a type of linear hybrid control system by utilizing ELF1 
technique. Hybrid conditions are expressed in LMIs2. They 
used the proposed method to control an inverted pendulum 
example. 

To control a three-pole AMB, two kinds of controller can 
be designed, the first one is current-control method, and the 
second one is voltage-control approach. Classical linear 
control techniques are rarely used to control and stabilize a 
three-pole AMB. Darbandi et al. [7] proposed linear and 
nonlinear output feedback controllers to stabilize a three-pole 
AMB system. Although the system is inherently nonlinear, 
Darbandi et al. showed that the system nearly has linear 
behavior on small displacement. Hsu and Chen [8] used the 
feedback linearization method to stabilize the three-pole AMB 
and obtained admissible domain in state space by the 
Lyapunov approach. Later, Chen et al. [9] presented a new 
current-control approach based on sliding mode method for a 
three-pole AMB system. The experimental results of this 
paper show that the rotor can be levitated to the stator axis, 
and its settling time is about 0.4 sec. Later, Chen and Weng 
[10] proposed a voltage-controlled integral sliding mode 
controller. In his study, the settling time is 0.5 sec, and 
experimental results and simulations are nearly the same. 
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Chen et al. [11] implemented linear controller, feedback 
linearization, and integral sliding mode method on a three-pole 
AMB experimentally. Finally, he concluded that the linear 
controller is more sensitive to system parameter uncertainties 
and unmodeled dynamics than the sliding mode technique. 

In this study, the main goal is to propose a pseudo-linear 
controller to stabilize a three-pole AMB system. To this end, a 
hybrid control method is suggested which is based on some 
conjunct linear controllers. The proposed technique is 
inherently nonlinear, but linear control methods are used to 
design the controller and obtain the controller gains. After 
that, the designed controller is implemented on a three-pole 
AMB experimental setup in static modes. Finally, the 
simulation and experimental results are presented to illustrate 
the performance and applicability of the proposed controller. 

II. MODELING 

A. Three-Pole AMB 

Fig. 1 shows the schematic of the three-pole AMB that is 
used in this paper. The rotor is supported with a self-aligning 
ball bearing and the three-pole AMB. The self-aligning ball 
bearing allows the end of rotor to move freely in radial 
direction. The other end of rotor is levitated by the three-pole 
AMB, and the AMB is supported by a backup bearing. A 
flexible coupling is used to decrease the transmitted forces and 
moments according to misalignment. The rotor is supposed to 
be rigid and its dynamic can be modeled by 2-DOF rotating 
disk. According to the configuration of setup, the gyroscopic 
effect can be neglected [12]. 

 

 

Fig. 1 Schematic of a single magnetic bearing [12] 
 
In Fig. 2, the schematic of a three-pole AMB configuration 

proposed by Chen and Hsu [13] in 2002 is shown. In [14], 
Bouaziz et al. studied the angular misalignment and flexibility 
of coupling in an AMB, but in the present case, according to 
the above mentioned explanation, the angular misalignment 
between shaft and coupling and its flexibility are not 
considered. 

The poles radially stand with an angle of 120° from each 
other. Each pole with the surface area A is made of copper 
wires and has one coil with N turns. The magnetic flux of pole 
j is depicted by j . According to Fig. 2, the current that passes 

through coils 2 and 3 is the same, but this current makes 
opposite magnetic fluxes in their corresponding poles. When 
the system is in equilibrium position, the shaft axis and axis of 
the stator are coincident by using a bias current in the upper 
coils which counter-balances the weight. It should be 
mentioned that, in this case, two power sources are needed to 
produce the currents of coils and only one of them has a bias 

current, so this formation results in an optimum situation [7]. 
 

 

Fig. 2 Three-pole ABM with 2 coil currents [5] 
 
Assuming no flux leakage, no saturation, and no reluctance 

of core (core is made of iron), the magnetic circuit diagram of 
the AMB is shown in Fig. 3. 

 

 

Fig. 3 Magnetic circuit of three-pole AMB [5] 
 
With respect to Fig. 3, by using the Kirchhoff’s laws, a set 

of equations can be derived as: 
 

1 2 3

2 3 3 2 2 2

2 3 3 1 1 1

0

0

Ni R Ni R

Ni R Ni R

  
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 
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    

  (1)

 

where 1i  and 2i are currents of coils, and jR represents the 

reluctance, that corresponds to the air gap in each pole, which 
can be computed as given here: 
 

0

, 1,2,3j
j

s
R j

A
    (2)

 
where

0  is the permeability of free space whose value 

is 7 14 10 .H m   , and js is the air gap length of each pole. 
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For small displacements of shaft axis, we have: 
 

1 0

2 0

3 0

3 / 2 / 2

3 / 2 / 2

s s y

s s x y

s s x y

 


  


  

  (3)

 
where x  and y  are displacement of shaft axis relative to 

the stator, and 0s is the nominal air gap. Substituting (3) into 

(2) and solving (1), three relations between coils currents, 
magnetic flux and displacement of shaft axis can be obtained 
as [7]: 
 

1 2 0 12 3 (2 s y) ix i      
 

 

(4) 
 

2 0 2 0 1(6 s 3 x 3 y) ( 2 s 3 x y)i i          
(5) 

 

3 0 2 0 1(6 s 3 x 3 y) (2 s 3 x y)i i         
(6) 

 

 2 2 2
0 02 / 12 3 3AN s x y       (7) 

 
By evaluating the energy stored in the air gap and using the 

virtual work principal [7], [15], the magnetic force can be 
evaluated as: 

 
2

0

, 1,2,3
2

i
if i

A




    (8) 

 
In this study, the gyroscopic effect and flexibility of the 

supports and bases in x and y directions are ignored, so the 
resultant magnetic forces in x and y directions with the 
mentioned assumptions can be calculated as: 

 

2 2
3 2 3 2

0
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3 4xf f f
A

  


     
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   
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(10) 
 

 
By substituting (4)–(7) into (9) and (10), the following 

equations are obtained: 
 

2 2 2 22
0 1 0 1 2

2
0 0 2

2 (2s y)i 2 3(x y 4 )i i3

2 6x(2 y)i
x

x s
f

A s


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(11) 
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f

A x i
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 (12) 

 
According to the above equations, it is obvious that the 

forces of three-pole AMB are nonlinear functions of coils 
current and displacements of the shaft axis that create 

nonlinear coupling of shaft equations in x and y directions. 

The equations of the rotor in static mode can be expressed 
as: 

 

xmx f  

 

(13) 
 

ymy f mg   (14) 

 
where m is the effective mass of rotor, and g is gravity 

acceleration. 

1i and 2i  are used instead of 1i and 2i to counteract the 

weight of shaft by a bias current. 
 

1 1i i  

 

(15) 
 

2 2 bi i i   (16) 

 

bi is the bias current in the upper coils. By substituting 

(15) and (16) into (11) and (12), bi can be evaluated as: 
 

0
0

1
2

6bi Amg
s




   (17) 

 
The dynamics of three coils can be described by: 
 

1
1 1 1

1 2
2 2 2( )

d
r i N v

dt
d d

r i N v
dt dt



 

  

   


  (18) 

 
where 1r is resistance of coil 1 (bottom coil), and 2r is the 

resistance of coils 2 and 3 (upper coils). Equations (13), (14), 
and (18) model the equations of the three-pole AMB. 

III. HYBRID CONTROL 

A. Controller Design 

To design the controller by the hybrid method, the system 
equations should be expressed in PWA3 form. In PWA 
formulation, the working area is divided into some sub-
regions, then in each sub-region, the nonlinear system is 
linearized about a point in the corresponding sub area [16], 
[17]. In this paper, the total region is divided into 13 sub-
regions with linearization point on each region, and when the 
number of sub-regions increases, the performance of system 
improves [18]. In each region the controller is designed by 
using the LQR method, and after that, the system is simulated. 
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     

 

0 0 0 0, ,

0 1,...,13
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T
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E X D i

Y x y
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

(19) 

0 0 0 0( , ) , ( , ) ,

1, ...,13

i i i ii i

f f
A X u B X u

X u
i

 
 
 


(20) 

 

The matrices iA  and iB  are derived from the linearization 

of nonlinear equations, 0
i

X is the linearization point that is 

shown in Fig. 4, and i
hot  depicts high order terms of 

nonlinear equation after linearization. For all of sub-

regions,
0 0 0[ ] 1,...,13

i

Tu i  . 0i iE X D   defines each 

sub-region; in the other words, this inequality specifies 
switching of controller. 0i iE X D   depicts the switching 

boundary. 
To explain the system in state space, the state variables are 

chosen as: 
 

1 1 2 2 3

4 5 6

, ,

, ,

x i x i x x

x x x y x y

  

   
 (21) 

 

In the linearization points, states of 1 4 6, ,x x x  are equal to 

zero, 
2x  is bi , and 3 5,x x  are shown in Fig. 4. In this figure, 

the sub-regions, switching boundaries, and the linearization 
points of sub-regions are shown. These sub-regions are 
obtained by try and error in this paper. The configuration of 
sub-regions impresses the controller performance. Researchers 
can study about configuration of zones to optimize the 
performance. In fact, the work space of the shaft is limited by 
backup bearing into a circle with 0.5 mm radius. 
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Fig. 4 The zoning and linearization points in x-y plane 
 
In this study, the controller and observer are designed, and 

their combination is used. In the other words, to get feedback 
in the controller, the states of observer are used. To control 
this system a linear feedback controller is designed as: 

 

7

8

ˆ

1,...,13i i i

X

u K x m i

x

 
 

    
 
 

 (22) 

 
where iK  is controller gain, im is constant for the controller 

in each region, and im  sets the equilibrium point of each sub-

system defined by (19) and (22) to the origin, because the 
system should not be stabilized in the current sub-region. State 
variables 7x  and 8x  are the integrator terms in the following 

form: 

 

7 3

8 5

x x dt

x x dt








 (23) 

 

After adding the above states to X , new vector 

7 8
T TX X x x     is defined, and according to this 

definition, other system matrices are obtained as: 
 

 2 6
6 2 2 2 2 2 2 2

6 2 2 2

0
, 0 0

0
i

i

A
A I I

I


   
 

 
  
 

 (24) 

 0 0
T

i iB B  (25) 

 

where 2 2I   is an identity matrix. 
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Feedback gains are obtained by using LQR method. To this 
end, the following cost function is considered: 

 

 
0

T TJ X QX u Ru dt


   (26) 

 

in which R and Q  are positive definite weight matrices. The 

optimal gain of controller for each sub-region when the 
performance index is given by (26) is obtained as [19]: 
 

1 T
i i iK R B P  (27) 

 
where iP is the unique positive definite solution of the steady 

state Riccati equation: 
 

1 0T T
i i i i i i i iA P PA PB R B P Q     (28) 

 
To make trajectories converge to the main equilibrium point 

that is in sub-region 1, the equilibrium point of each sub-
system (19) and (22) has not to be in its corresponding 
domain, and these points must be coincident on the origin. 
Now, for this purpose, constant terms of controllers, im , are 

selected as:  
 

 
1

1 0 0

0 0 0( , )
i i

i i

i iT
i i i i

i

A X B u
m B B B

f X u A X

   
    

 (29) 

B. Observer Design 

The position of shaft end that is levitated by three-pole 
AMB and the coil currents are measurable states. Shaft 
position is measured with proximity sensors, and coil currents 
are obtained by using the Hall sensors. The coil currents signal 
are very noisy and cannot be used in feedback control law [7]. 
The proximity sensors measurements are quite noisy, Sun et 
al. in [20] proposed a soft sensing method based on support 
vector regression and Extended Kalman filter that can estimate 
the displacement precisely. In this study, the proximity sensors 
data are used in control law directly. Moreover, measuring the 
velocity of shaft is not possible, therefore, for the mentioned 
reasons, an observer has to be used for estimating the states of 
system. The equations of observers are given by: 

 

 ˆ ˆ ˆ , 0 1,...,13
ii i o i iX A X B u K Y Y E X D i      

(30) 

0 0 1 0 0 0ˆ ˆ ,
0 0 0 0 1 0

Y CX C
 

   
 

 (31) 

 

where iA , iB  and C are linearized system matrices,
ioK is 

the observer gain in each sub-region, and ˆ ˆ
iu K X . ˆ

iK  has 

the following form: 
 

11 12 13 14 15 16

21 22 23 24 25 26

ˆ i i i i i i

i
i i i i i i

K K K K K K
K

K K K K K K

 
  
  

 (32) 

 

in which 
mniK  is the element of ˆ

iK . The three-pole AMB 

system is observable in each sub-region. In the other words, 
the observability matrix is full rank for this system in each 
sub-region. The observability matrix for each linearized zone 
is as: 
 

2
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i
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i

i
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C

C A

C A
N

C A

C A

C A

 
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 

  
 
 
 
  

 
(33) 

 
The observer gains are calculated by pole placement 

method. The poles are set four times or five times greater than 
the poles of controllers to have a suitable performance. 

The estimation error is the difference between the system 
states and observer states, therefore the error dynamics can be 
written as: 

 

ˆe X X   
 

(34) 

 
ii o ie A K C e hot    (35) 

 
If the estimation error converges to zero, the observer 

estimates the system states. The stability proof of the 
observer/controller system is expressed in the next section. 

IV. RESULT 

A. Simulation Results 

The simulation results for the three-pole AMB are presented 
in this section. The model that is given by (13), (14) and (18) 
is used to simulation. The nominal parameters of the system 
are expressed in Table I, which are also the parameters of the 
experimental setup. 

The matrices utilized in the LQR cost function are selected 
by a trial and error process as: 

 

1

2

0 2 0
,

0 0 0.1

Q
Q R

Q

   
    

  
 (36) 

 
where 1Q  and 2Q  are diagonal matrices and they are given 

as: 
 

 1

4 8 7
2

1,1,5,1

5 10 ,1,5 10 ,10

Q diag

Q diag



    
 (37) 
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TABLE I 
PARAMETERS OF THE EXPERIMENTAL SYSTEM 

Symbol Description Value 

s0 Nominal air gap 1.0 mm 

N Coil turns 350 

A Pole face area 4.5×10-4 m2 

ds Shaft diameter 30 mm 

l Shaft length 550 mm 

dr Magnetic bearing rotor diameter 70 mm 

sb 
Backup bearing (Supporting 

bearing) nominal air gap 
0.5 mm 

m Effective mass of the shaft 1.4 kg 

me 
Product of mass and Eccentricity 

of mass center 
100×10-6 kg.m 

 
The results are shown in static mode. The initial conditions 

for state variables for simulation are: 
 

0 01 20 0

0.1 0

0.5 0

i i

x mm x

y mm y

 

 

  




 (38) 

 
and the initial conditions for the observer are: 
 

0 01 2
ˆ ˆ0 0

ˆ ˆ0 0

ˆ ˆ0 0

i i

x x

y y

 

 

 





 (39) 

1. Hybrid Technique 

The results of system simulation with hybrid controller 
based on the above equations and initial conditions are given 
in the following figures. Fig. 5 shows the steady state of 
system trajectory for shaft. 
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Fig. 5 Shaft trajectory obtained by implementing hybrid control in 
dynamic mode 

 
In simulation, it has been tried that the real conditions 

which govern the experimental test are considered. According 
to these conditions, the results of simulating system are 
presented in Fig. 6. According to TABLE I, the nominal air 
gap is 1 mm, and the shaft does not collide with the supporting 
bearing. 
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Fig. 6 Displacement of shaft in X and Y directions and their 
estimating by implementing hybrid control in dynamic mode 

 
To control the system in this situation, a control command 

is needed, and this input is depicted in Fig. 7. The required 
control signals to stabilize the system are two voltages applied 
to the power-supply of the three-pole AMB coils. 
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Fig. 7 Analog voltage of power amplifier for hybrid controller in 
dynamic mode 

 
Fig. 8 shows the power consumption versus time in hybrid 

control. 
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Fig. 8 Power consumption of coils for hybrid controller in dynamic 
mode 

2. Non-Hybrid Linear Technique 

If the nonlinear system is linearized around the equilibrium 
point of three-pole AMB system, the linearized matrices of 
sub-region 1 is obtained. Now, if the proposed matrices of the 
LQR method are used to design a simple non-hybrid linear 
controller for the system, the simulation results are obtained 
like the ones presented in the following figures. For the initial 
conditions that are introduced above, Fig. 9 shows the 
behavior of system in X Y  coordinates. In this figure, the 
collision with backup bearing is seen at the beginning of 
stabilization. 
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Fig. 9 Shaft trajectory obtained by implementing a simple non-hybrid 
linear control in dynamic mode 

 
The results of simulation in X and Y directions are indicated 

in Fig. 10. This figure shows that the observer can estimate the 
state of x and y. 

The power consumption of three coils are obtained for the 
simple linear controller. This result is shown in Fig. 12. 
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Fig. 10 Displacements of shaft in X and Y directions and their 
estimating by implementing the simple non-hybrid linear control in 

dynamic mode 
 
The input voltages are presented in Fig. 11. The behavior of 

controllers can be seen versus time. 
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Fig. 11 Analog voltage of power amplifier for the simple non-hybrid 
linear controller in dynamic mode 
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Fig. 12 Power consumption of coils for linear controller in dynamic 
mode 

 
According to above results for non-hybrid linear and hybrid 

controller, the voltage usage can be decreased in the hybrid 
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technique compared to the linear method. Moreover, power 
used to control the three-pole AMB is decreased by using 
hybrid technique and by increasing number of sub-regions. 
Integrating the power consumption yields the total used 
energy for 0 to 0.4 sec. The energy consumption in hybrid 
method is 1.2014 J , and the used energy of linear control is 

1.4718 J . 

B. Experimental Results 

To check the effectiveness of the hybrid method, hybrid 
controller is applied to a three-pole AMB system. To compare 
the hybrid method with the simple non-hybrid linear 
technique, the linear controller is implemented on the setup. 
Figs. 14 and 13 show the experimental setup of three-pole 
AMB. 

 

 

Fig. 13 Three-pole AMB [5] 
 
The hybrid controller designed in the previous section is 

applied to the real system. The system has two proximity 
sensors for measuring the position of rotor axis and two Hall-
effect sensors to measure the coils current. In the proposed 
controller, the displacement values measured by proximity 
sensors are used to switch controller. The hybrid controller is 
tested on the experimental setup for static mode. The 
proximity sensors can sense subject in 0.5 mm until 2.5 mm 
and give the output signal in the range of 0-10 V. In the other 
words, 0.5 mm to 2.5 mm is the working area of sensor, and 
the displacement of any object in this area is measured by 
sensors. To this end, the sensors are mounted in adequate 
distance from the rotor. The sensors used in this experiment 
setup are Balluff model: BAW M08EI-UAD25F-BP03 has the 
accuracy of10 m . The Hall-effect sensors have 80 kHz 

bandwidth and they are sensitive to 66-185 mV/A output. The 
discretization time in this study is 150 microseconds.  

The controller has been designed in continuous space but 
the controller devices and sensors work digitally. Then, the 
hybrid controller is implemented in digital technique on 
experimental setup. In the digital control, the controlling 
bandwidth is limited by accuracy of devices and sensors. 

 

 

Fig. 14 Experimental setup of three-pole AMB [5] 
 
To measure the shaft position, inductive proximity sensors 

are used in x and y directions as depicted in Fig. 14. The 
digital controller consists of a 12 bit A/D, a D/A convertor, 
and a PC with a Pentium IV processor running at 2.8 GHz 
under RTAI, a real-time open source application interface 
operating system that works on Linux. To apply the designed 
controller on the experimental model in real-time control for 
the AMB with a frequency of 5 kHz, the C++ programming 
language and RTAI extension of Linux operating system are 
used.  

The coils are driven by two PWM power amplifiers with the 
switching frequency of 22 kHz. These power amplifiers 
provide maximum continuous output current of 10 A. The 
power supply delivers 24 V for proximity sensors and 40 V for 
the power amplifier. 

As mentioned earlier, the gyroscopic effect and flexibility 
of supports and bases are not considered in modeling of the 
proposed three-pole AMB. The designed controller can 
stabilize the system and it shows that the presented approach 
is efficient and applicable. 

3. Hybrid Technique 
Fig. 15 shows the trajectory of system in the absence of 

rotation. Here, the controller can bring the rotor axis to the 
stator axis. After activating the controller, the current in upper 
coils is increased to produce the required force for overcoming 
the shaft weight. When the current of the upper coils reaches 
to its bias value, the shaft starts to move toward the bearing 
axis. Fig. 15 shows that the proposed controller can stabilize 
the three-pole AMB system. 

Horizontal and vertical displacements of the shaft versus 
time are shown in Fig. 16. From this figure, it can be 
concluded that the observer can estimate well the state 
variables of the real system using the data obtained from the 
sensors measurements. 
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Fig. 15 Trajectory of shaft axis in experimental test for the hybrid 
method in the static mode 
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Fig. 16 Trajectory of shaft axis in experimental test for the hybrid 
method in the static mode 

 
The input voltages of the hybrid-linear feedback controller 

are illustrated in Fig. 15. One of the most important features of 
a controller is its magnitude required to stabilize the system. In 
magnetic bearings, it is very important that the coils current 
does not increase beyond the saturation limit of the magnetic 
core. 

Each coil requires power to supply voltage and current for 
it. The power consumption of two coils is shown in Fig. 18 for 
the hybrid controller. The total energy that is used in 10 
seconds to control the system in hybrid technique equals 
6.7493J . 

4. Non-Hybrid Linear Technique 

To compare the simple non-hybrid linear control with the 
hybrid control, the obtained linear controller in the previous 
sections, is applied on the experimental setup. Fig. 19 shows 
the trajectory of system for the static mode. In this figure, it 
can be seen that the shaft axis is led to the equilibrium 
position. 
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Fig. 17 Control signal in experimental test that control the system for 
the hybrid method in the static mode 
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Fig. 18 Power consumption for hybrid method in the static mode 
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Fig. 19 Trajectory of shaft axis in experimental test for the linear 
method in the static mode 

 
The horizontal and vertical displacements of the shaft 

versus time are shown in Fig. 20. From this figure, it can be 
said that the observer can predict well the state variables of the 
real system using the data obtained from the sensors 
measurements. 
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Fig. 20 Trajectory of shaft axis in experimental test for the non-
hybrid linear method in the static mode 

 
The input voltages of the linear controller are illustrated in 

Fig. 21. The maximum input voltage on non-hybrid linear 
method is 3.5V ,  and the maximum voltage of hybrid 

controller is 2V . 
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Fig. 21 Control signal in experimental test that control the system for 
the non-hybrid linear method in the static mode 

 
Each coil requires power to supply voltage and current for 

it. The power consumption of two coils is shown in Fig. 22 for 
the no-hybrid linear method. The total energy that is used in 
10 seconds to control the system in this technique equals 
8.1188 J . The consumed energy has been increased in non-

hybrid linear method comparing to the hybrid technique. 
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Fig. 22 Power consumption for the non-hybrid linear method in the 
static mode 

V. CONCLUSION 

Design and implementation of hybrid controller for an 
experimental three-pole AMB model have been presented in 
this study. It is shown that a linear hybrid control method can 
be used and applied to three-pole AMB as a nonlinear 
controller method. The gains of controller are set by LQR 
method for each sub-region and the observer gains are derived 
by the pole placement method. Darbandi in [7], compare the 
linear controller with integral sliding mode and concluded that 
the linear controller has better performance and short 
computational time against integral sliding mode method. For 
this purpose, a non-hybrid linear controller is designed by 
LQR technique and then implemented on AMB setup to 
compare it with hybrid control. According to experimental 
results, hybrid control method uses less voltage and power to 
stabilize the rotor compared to non-hybrid linear technique. 
Simulation and experimental results show the effectiveness of 
the proposed method. An important advantage of this method 
compared to other nonlinear methods is its simplicity in design 
and application. 
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