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1 
Abstract—The main objective of the current work is to introduce 

sustainability factors in optimizing the supply chain model for 
process industries. The supply chain models are normally based on 
purely economic considerations related to costs and profits. To 
account for sustainability, two additional factors have been 
introduced; environment and risk. A supply chain for an entire 
petroleum organization has been considered for implementing and 
testing the proposed optimization models. The environmental and 
risk factors were introduced as indicators reflecting the anticipated 
impact of the optimal production scenarios on sustainability. The 
aggregation method used in extending the single objective function to 
multi-objective function is proven to be quite effective in balancing 
the contribution of each objective term. The results indicate that 
introducing sustainability factor would slightly reduce the economic 
benefit while improving the environmental and risk reduction 
performances of the process industries. 

 
Keywords—Supply chain, optimization, LP models, risk, 

environmental indicators, multi-objective. 

I. INTRODUCTION 

RUDE oil is the basic valuable feedstock a large number 
of petroleum fractions and products that have added value 

caused by manufacturing and energy costs. Such products can 
be categorized as refinery, petrochemical, and chemical 
products. Refinery products range from light gases and 
naphtha to gasoline, diesel, and heavy fuel oils. Selected 
refinery feedstocks are then utilized to produce a variety of 
downstream chemicals and consumer products. Chemicals can 
be the standard industrial chemicals such as ammonia, 
acetone, ethylene, glycerol, etc., or specialty chemicals such as 
plastics, detergents, sulfates, pesticides, and so on. The 
structure of the upstream oil and gas industry together with the 
midstream refining industry and downstream chemical and 
petrochemical industries can be visualized as a supply chain 
(SC) of chemical conversion processes connecting the basic 
feedstock chemicals to the desired final products.  

Mathematical models are effectively used in decision-
making and planning the SC to deal with processing 
interactions. Their main objective is to select the optimal 
strategy for producing demanded products with minimum cost 
and best utilization of resources. Such models are purely 
economic in nature and ignore important factors such as 
environmental impacts and risk. However, incorporating these 
factors in planning models is not an easy task due to the 
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difficulties encountered in defining and quantifying the 
anticipated impacts.  

In the current work, we propose a methodology for 
introducing environmental, economic, and risk factors in SC 
models. The method is based on defining a set of indicators 
that are commonly monitored by process industries. A 
multilayer SC model of a petroleum organization will be used 
in studying the effect of the newly introduced factors on the 
optimum production plans of the chain. 

II. SC OF A PETROLEUM ORGANIZATION 

The SC network that will be considered in this work is the 
one originally proposed by Al-Othman et al. [1]. It includes all 
upstream, midstream, and downstream components of a 
petroleum organization in an oil producing country. The SC, 
shown schematically in Fig. 1, starts from oil well production, 
spans to refining and petrochemical industry, and terminates at 
the markets and demand sources.  

Crude oils produced from different locations are 
preprocessed, to stabilize them and remove associated gas and 
water, to meet the quality required for downstream operations. 
Produced crude may be categorized into different grades based 
on its “lightness” (based on specific gravity or API) and 
“sweetness” (based on amounts of impurities, mainly sulfur). 
Each grade has specific processing requirements and market 
demands. Part of the produced crude oil is exported to the 
international markets, while some quantities are processed in 
local refineries.  

In the refineries, specific mixes of different grades of crude 
oil are processed in successive unit operations to produce 
demanded product slates. Typical refinery products include 
light components, naphtha, gasoline, kerosene, gasoil, and fuel 
oil. Light components such as ethylene and propylene are 
streamed to the petrochemical industry, while other refinery 
products are either exported or used locally. In turn, 
petrochemical plants are chemical processes that convert basic 
chemicals into industrial products that are used in further 
downstream industries to produce configured customer 
products. For instance, ethylene and propylene are produced 
from light hydrocarbons, which are further converted to 
polyethylene, polypropylene, poly-vinyl-chloride (PVC), and 
other products. Furthermore, naphtha from the refinery is used 
to produce a range of aromatics that are essential for a number 
of customer products such as detergents, paints, and textiles.  

For the SC case study shown in Fig. 1, crude is gathered 
from ten locations (C1 to C10), categorized into three grades: 
light, medium, and heavy (PC1, PC2, and PC3), exported to four 
crude demand sources (MC1 to MC4), or processed in three 
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Their efforts in this respect are regularly reported and in most 
cases in terms of quantitative indicators such as number of 
days without accidents or day lost work.  

Safety and risk are usually included in the three components 
of sustainable development (environmental, economic, and 
social). For instance, human toxicity is considered in 
environmental indicators, expenditure on health is economical, 
and work satisfaction is included social aspects. Hutchins and 
Sutherland [12] considered safety as a representative social 
indicator together with labor equity, health care, and 
philanthropy. However, for a decision in industrial planning, 
safety or risk indicators should dominate over other social 
indicators. 

The primary hazard in the oil industry is in the chemical 
inventory and usage. They may be considered as hazardous 
and present a primary risk whether they are in the form of raw 
materials, intermediates, or finished products [13]. Risk is 
basically the product of the incident probability and the 
magnitude of the harmful effects. Based on this definition, Al-
Sharrah et al. [14] developed a simple risk index that can be 
applied to chemical plants. The index uses the properties of 
major chemicals associated with the production, and defined 
as: 

 

K = Freq  Haz  Inv  Size (1) 
 
where, Freq = Frequency of accidents, number of accidents 
per process per year, Haz = Hazardous effect of a chemical, 
people affected per ton of released chemical, Inv = Inventory 
of chemical released, ton per accident, Size = Size of plant, 
number of major processes in plant. Thus, the overall unit of 
the index K is people affected per year. The plant is assumed 
to have major processes in which chemicals are being treated, 
and an accident in any part of the plant may cause, in an 
extreme case, the release of the plant inventory. The proposed 
index was applied for risk analysis in a petrochemical plant 
[15]. Frequency of accidents (Freq) was derived from the 
historical chemical accidents database, and the hazardous 
effect (Haz) was correlated with the lethal dose of chemicals.  

IV. SC OPTIMIZATION MODEL 

The SC optimization model used in this work is the one 
developed by Al-Othman et al. [1]. The optimization model is 
a multi-period deterministic planning model developed for the 
entire SC of a petroleum organization. The SC consists of all 
activities related to crude oil production, processing, and 
distribution. Detailed description of the mathematical model is 
given in Al-Othman et al. [1].  

The objective function is basically defined to maximize 
sales revenue and minimize total production and logistics 
costs, and penalize lost demands and backlogs. 
  

 min C R P DSP
ecoZ C C C C   

 
 (2) 

 
Equation (2) consists of four cost categories; CC, CR, CP, 

and CDSP, corresponding to the four sectors of the petroleum 

SC shown in Fig. 1. These sectors are: (a) crude oil production 
and distribution, (b) refining, (c) petrochemicals, and (d) 
down-stream petrochemicals, respectively.  

A. Environmental and Risk Terms 

A number of modifications have been introduced on the SC 
optimization model. Constraints were introduced to limit the 
minimum production rates of refining and petrochemical 
products. The constraints are necessary to prevent the model 
from recommending the closure of a plant when market prices 
are low, because it is unrealistic and not practical to shutdown 
re-operate chemical plants especially in short-time periods. 
Another modification is that the objective function (2) has 
been extended to multi-objective after adding environmental 
and risk indicators to present sustainability. Input data and 
economic parameters are the same as those used by Al-
Othman et al. [1].  

The environmental term added to the objective function 
account for CO2 emissions from four sectors of the SC. 
Emissions are mainly from fuel consumption in the plants as 
well as shipping of end products to demand sources 
(downstream industries, different markets, and end users). 
Data for CO2 emissions related to energy consumption have 
been obtained from two sources; EIA [16] and de Beer et al. 
[17]. Two parameters were defined; Em1 and Em2 to account for 
CO2 emitted per production of refining and petrochemical 
products, respectively. Data related to amount of CO2 emitted 
(in Kg) per distance to destination have been estimated as 
reported in Prpic-Orsic and Faltinsen [18]. 

The risk term has been introduced to the objective function 
in terms of people affected by chemical accidents, as 
represented by (1). Data needed for evaluating the risk term 
are mainly the number of people affected per tonne of specific 
chemical, and the inventories of chemicals at different stages 
of the SC [14]. 

Formulations of the environmental and risk terms which are 
defined in (3) and (4) are similar to the economic objective 
function defined in (2). 
 

 min C R P DSP
envZ E E E E     

 

(3) 
 

 min C R P DSP
riskZ R R R R     (4) 

 
where the components of (3) and (4) are defined as follows in 
(5) and (6): 
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It is clear that the formulations of environmental and risk 

contributions to the objective function (3) and (4) have 
different level of details that makes the proposed model more 
realistic and overcome the shortcomings of other models.  

The remaining task is aggregating the three objectives in a 
multi-objective optimization model that accounts for the 
contribution of each of the three terms, i.e. economic, 
environmental and risk. The weighted objective method was 
used in defining the sustainability objective function as: 
 

* * *
eco env risk

sustainability
eco env risk

Z Z Z

f f fZ
 

   
 

 (7) 

 
In (7), the contribution of each objective is divided by a 

normalizing factors ௜݂
∗. As shown below, the three 

normalizing factors are determined by individual solution of 
the single objective functions represented by (2)-(4). 

V. RESULTS AND DISCUSSION 

The SC optimization model is a linear programming model 
(LP) that consists of 2,969 equations and 8,681 variables. The 
model was solved using the General Algebraic Modeling 
System (GAMS) optimization package [20]. Optimal solutions 
were obtained at two levels. First single objective (SO) 
function models were solved to get the industry bounding 
structure. For the second level, the multi-objective (MO) 
model was solved in which the three cost terms, economic, 
environment and risk, were included.  

To determine the normalizing factors, ௜݂
∗, the three SO 

models were solved individually. The SO economic objective 
(2) resulted in an optimum cost of 10.55 billion USD per year, 

which is considered comparable to values reported in similar 
studies [21]. The SO environmental objective (3) estimated 
environmental emission as 142.1-ton CO2 per year, which is 
also comparable with results reported by Mallidis et al. [19]. 
The SO risk objective (4) was solved for two extreme cases. 
The first case assumed ideal SC where all products are either 
consumed in the downstream sectors or shipped. Obviously, 
for this case resulted in zero affected persons per year. On the 
other hand, for the second risk case assumed storage of all 
products before distribution to their final demands. The result 
was 128 people affected per year. 

Results obtained from solving the MO problem (7) are now 
compared with those of the three SO models in Table I. When 
environmental and risk issues are considered, the economics 
reduced profit by 46% and 13%, respectively, but it resulted in 
43% reduction in CO2 emissions, and 100% less affected 
people. The results also show that the highest CO2 emission is 
obtained for the SO risk case because storage of products is 
restricted, and shipments are the highest. The contrary is 
shown for the SO environmental objective because shipments 
are restricted while storages are encouraged, hence risk issues 
increased (Table I). 
 

TABLE I 
COMPARING RESULTS OF THE SO AND MO OBJECTIVE FUNCTIONS 

 
SO 

Economic 
SO 

Environmental 
SO Risk MO 

Profit (billion USD/yr) 10.55 5.73 9.19 8.05 

Emission (tonCO2/yr) 252.6 143.3 259.9 187.7 

Affected People 9 65 0 3 

 
Profitability contribution of each sector of the SC is 

compared in Table II. It is evident that the crude oil sector has 
the highest contribution to the overall profitability of the 
organization, for the results obtained from solving the SO 
models as well as the MO model. The contributions of the 
refining sector come second, while the rest two petrochemical 
sectors share similar minor contributions.  
 

TABLE II 
COMPARING THE PERCENT PROFITABILITY CONTRIBUTION RESULTS OF 

DIFFERENT SC SECTORS 

 
SO 

Economic 
SO Environmental SO Risk MO 

Crude oil 67.7% 75.0% 63.1% 72.1% 

Refinery 29.2% 22.1% 35.5% 25.2% 

Petrochemicals 1.7% 1.0% 1.0% 1.1% 

DS Petrochemicals 1.4% 1.9% 0.4% 1.6% 
Total profit 

(billion USD/yr) 
10.55 6.08 9.19 8.02 

 
Introducing environmental and risk factors affects also the 

planning results related to shipments and demands. The ratio 
of shipped products to their demanded quantities is shown in 
Fig. 2 for the four sectors. The plots illustrate that demands are 
not usually satisfied (ratio less than one), with the highest for 
the crude oil, followed by the refining products, while the 
petrochemical products which are very low meet the 
demanded amounts. It is clearly shown in Fig. 2 that the SO 
economic model resulted in the best fulfillment of demands 
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